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Abstract

We study the stable matching problem under the random matching model where
the preferences of the doctors and hospitals are sampled uniformly and independently
at random. In a balanced market with n doctors and n hospitals, the doctor-proposal
deferred-acceptance algorithm gives doctors an expected rank of order log n for their
partners and hospitals an expected rank of order n

logn for their partners [10, 13]. This
situation is reversed in an unbalanced market with n + 1 doctors and n hospitals [1],
a phenomenon known as the short-side advantage. The current proofs [1, 2] of this
fact are indirect, counter-intuitively being based upon analyzing the hospital-proposal
deferred-acceptance algorithm. In this paper we provide a direct proof of the short-
side advantage, explicitly analyzing the doctor-proposal deferred-acceptance algorithm.
Our proof sheds light on how and why the phenomenon arises.

1 Introduction

In this paper, we study the deferred-acceptance algorithm for the stable matching problem.
In the balanced case with n doctors and n hospitals, it is known that the proposing side has
a significant advantage in terms of the ranks of their assigned partners. Take, for example,
a random matching market, where the preference lists of each doctor and each hospital are
sampled uniformly and independently at random. Then, under the doctor-proposal deferred-
acceptance algorithm, each doctor has an expected rank for their partner of order log n while
each hospital has an expected rank for its partner of order n

logn
[10, 13]. Recently, Ashlagi

et al. [1] proved that this advantage is reversed in an unbalanced market with n+ 1 doctors
and n hospitals. Now, the doctor-proposal deferred-acceptance algorithm produces a stable
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matching where each hospital is matched to a doctor it ranks at the order of log n on average
and each doctor is matched to a hospital they ranks at the order of n

logn
on average.

The proof of Ashlagi et al. [1] (and its simplification by Cai and Thomas [2]) are indirect.
Essentially, by studying the hospital-proposal deferred-acceptance algorithm, they show the
short-side (hospitals) hold this advantage in every stable matching. In this paper, we present
a direct proof of the short-side advantage by directly studying the doctor-proposal deferred-
acceptance algorithm. Arguably, this is the most natural way to prove this result. More
importantly, it additionally sheds light on why this scenario is drastically different than the
balanced marked. Indeed, as stated in [2], “because some hospital must go unmatched, the
algorithm will only terminate once some hospital has proposed to every doctor. This is a very
different random process, and one can imagine it must run for a much longer time, forcing
the proposing hospitals to be matched to much worse partners than in the balanced case.
Unfortunately, this random process is fairly difficult to analyze (for instance, to get a useful
analysis, one would need to keep track of which hospital is currently proposing, which doctors
they have already proposed to, and how likely each doctor is to accept a new proposal)”;
consequently, they take a different approach.

The paper is structured as follows. To begin, we present some background on the stable
matching problem and introduce the random matching model in Section 2. Our result and a
high-level overview of the argument used is given in Section 3. Section 4 contains the proof.

2 Background

2.1 The Stable Matching Problem

In the stable matching problem, we are given a set D = {d1, d2, . . . , dm} of m doctors and a
set H = {h1, h2, . . . , hn} of n hospitals. Let µ be a matching between the doctors and the
hospitals. We say doctor d is matched to hospital µ(d) in the matching µ, where µ(d) = ∅
if d is unmatched. Similarly, hospital h is matched to doctor µ(h), where µ(h) = ∅ if h is
unmatched.

Every doctor d ∈ D has a preference ranking ≻d over the hospitals; similarly, every
hospital h ∈ H has a preference ranking ≻h over the doctors. We assume that every doctor
and every hospital prefers to be matched than unmatched. Given the preference rankings,
we say that doctor d and hospital h form a blocking pair {d, h} if they prefer each other to
their partners in the matching µ; that is, h ≻d µ(d) and d ≻h µ(h). A matching µ that
contains no blocking pair is called stable; otherwise it is unstable. Consequently, the set of
stable matchings form the core of the stable matching game.

2.2 The Stable Matching Lattice

Critically, the core in this game is non-empty [3]. Indeed, the core may contain an exponential
number of stable matchings [7]. Intriguingly, the core induces a distributive lattice (M,⩾)
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as noted by Conway (see Knuth [7]). Formally, the order ⩾ is defined via the preference lists
of the doctors by setting µ1 ⩾ µ2 if and only if every doctor weakly prefers their partner in
the stable matching µ1 to their partner in the stable matching µ2; that is µ1(d) ⪰d µ2(d), for
every doctor d. Interestingly, McVitie and Wilson [9] proved that the interests of the doctors
and the hospitals are diametrically opposed within the lattice. That is, every doctor weakly
prefers their partner in the stable matching µ1 to their partner in the stable matching µ2

if and only if every hospital weakly prefers their partner in the stable matching µ2 to their
partner in the stable matching µ1. By the lattice property, in the supremum of the lattice
each doctor is matched to their most preferred partner amongst any stable matching (called
their best stable-partner) and each hospital is matched to its least preferred partner amongst
any stable matching (called her worst stable-partner). Thereupon, the supremum stable
matching is called the doctor-optimal/hospital-pessimal stable matching. Conversely, the
infimum of the lattice is the doctor-pessimal/hospital-optimal stable matching.

2.3 The Deferred-Acceptance Algorithm

The celebrated deferred-acceptance algorithm by Gale and Shapley [3] outputs the doctor-
optimal stable matching when the doctors make proposals (see Algorithm 1) and the hospital-
optimal stable matching when the hospitals propose. These results hold regardless of the
specific order of proposals.

Algorithm 1: Doctor-Proposal Deferred-Acceptance Algorithm

while there is an unmatched doctor d who has not proposed to every hospital do
Let d propose to their favourite hospital h who has not yet rejected them;
if h is unmatched then

h provisionally matches with d;

else if h is provisionally matched to d̂ then

h provisionally matches to its favourite of d and d̂, and rejects the other;

Of subsequent relevance is that the deferred-acceptance algorithm terminates either when
every doctor is matched or when every unmatched doctor has proposed to every hospital.
For a comprehensive study of stable matchings see, for example, the book of Gusfield and
Irving [4].

2.4 The Random Matching Model

The deferred-acceptance algorithm has been widely studied in random matching model begin-
ning with Wilson [13] and further classical works by Knuth, Pittel and coauthors [7, 10, 8, 11].
In the random matching model, the ranking of each doctor is a random permutation of the
hospitals, namely the set [n] = {1, 2, . . . , n}, drawn uniformly and independently at random.
Similarly, the ranking of each hospital is a random permutation of the set [m] = {1, 2, . . . ,m},
drawn uniformly and independently at random.
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Consider first the case of a balanced market where the number of doctors equals the
number of hospitals, that is, when m = n. Under the doctor-proposal deferred acceptance
algorithm, with high probability, each doctor ranks their partner at position of order log n
on average in their preference ranking. In sharp contrast, on average, each hospital only
ranks its partner at position of order n

logn
[13, 10].

However, in an unbalanced market the situation is reversed. Suppose that there is one
more doctor than hospital, that is, m = n + 1. In a remarkable result, Ashlagi et al. [1]
showed that, with high probability, each hospital ranks its partner at O(log n) on average
and each doctor ranks their partner at Ω( n

logn
) on average, despite the use of the doctor-

proposal deferred-acceptance algorithm. Indeed, every stable matching has this property.
Thus, in an unbalanced market, the proposing side loses its advantage if its side is long (that
is, of greater cardinality than the proposal-receiving side) and the advantage transfers to the
short side.

3 Our Result

Analyzing the doctor-proposal deferred-acceptance algorithm directly is much simpler in the
balanced case than in the unbalanced case. This is because in balanced markets the algo-
rithm terminates when each hospital has received at least one proposal. Thus, the problem
essentially reduces to a coupon collecting problem [13, 2]. In contrast, in an unbalanced mar-
ket (with n + 1 doctors) the algorithm terminates when some doctor has been rejected by
every hospital. Ergo, the number of proposals made is far greater in an unbalanced market
than in a balanced market. Correspondingly, understanding the sequence of proposals made
under the doctor-proposal deferred-acceptance algorithm in an unbalanced random matching
market is complex. Indeed, Cai and Thomas [2] state that “this random process is fairly
difficult to analyze” because it would entail keeping “track of which doctor is proposing,
which hospital they have already proposed to, and how likely each hospital is to accept a
new proposal”.

For this reason, Ashlagi et al. [1] prove their result indirectly. Specifically, rather than
doctor-proposal deferred-acceptance algorithm they study the hospital-proposal deferred-
acceptance algorithm. Informally, their argument is as follows. Because the hospitals form
the short side this terminates quickly with the hospital-optimal stable matching. They then
show that even if a doctor rejects every proposal they receive they are extremely unlikely
to receive many proposals. Thus the expected rank of their best stable partner is low. This,
in turn, implies that in every stable matching the doctor is matched with a partner of low
rank. Of course, the doctor-optimal stable matching is one of these stable matchings. So
this conclusion must apply if we had instead run the doctor-proposal deferred-acceptance
algorithm to find it. The proof in [1] is quite long and intricate. Cai and Thomas [2] provide
a nice, short proof but, again, their proof is indirect based on the outline above for hospital-
proposals. Recent works by Kanoria et. al. [6], and Potukuchi and Singh [12] extend this
approach to the setting in which agents have incomplete preference lists.

In this paper we present a direct proof that specifically analyzes the doctor-proposal
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deferred-acceptance algorithm. Let us formally state the result and then provide a high level
overview of the proof strategy.

3.1 Statement of the Result

There are n hospitals that form a set H = {h1, h2, . . . , hn} and (n + 1) doctors that form a
set D = {d1, d2, . . . , dn+1}. Each hospital h ∈ H has a random preference of doctors that
can be expressed by a permutation rh : D → [n + 1] taken uniformly at random from the
set of all (n + 1)! permutations of the set [n + 1] = {1, 2, . . . , n + 1}; rh(d) is the rank of a
doctor d for a hospital h (the smaller the better). Similarly, each doctor d ∈ D has a random
preference of hospitals that can be expressed by a permutation rd : H → [n] taken uniformly
at random from the set of all n! permutations of the set [n]. All (2n + 1) preferences are
generated independently.

Our results are asymptotic by nature, that is, we will assume that n → ∞. We say that
some event holds asymptotically almost surely (a.a.s.) if it holds with probability tending to
one as n → ∞. Now, we are ready to state the main result

Theorem 3.1. Consider a random matching market, where the preference lists of each of
the n + 1 doctors and each of the n hospitals are sampled uniformly and independently at
random. Then, a.a.s. the doctor-proposal deferred-acceptance algorithm produces a stable
matching where each hospital is matched to a doctor it ranks at the order of log n on average
and each doctor is matched to a hospital they ranks at the order of n

logn
on average.

3.2 Sketch of the Argument

Let

k =

⌊
n

5c log n

⌋
and ℓ =

⌊
n2

ac log n

⌋
,

where c = 18 > max{8, 4/ log(5/4)} and a = 100e200 ≥ max{150, 300, 100e200} are constants
that are large enough to satisfy various inequalities that will be required for the argument
to hold. We remark that we did not attempt to optimize the constants.

We consider an algorithm in which doctors propose. We say that a hospital h ∈ H is
popular if it received at least k proposals. Hospitals that are not popular are called unpopular.
We will stop the algorithm prematurely at time T when there are exactly ⌊c log n/4⌋ popular
hospitals. Of course, the algorithm might converge to a stable matching before this happens,
so we are not guaranteed to reach this situation. However, we will show that it does happen
a.a.s. (see Corollary 4.4).

To that end we argue as follows. We say that a hospital h ∈ H likes a doctor d ∈ D if
d is in one of the top ⌊c log n⌋ places on its list of preferences. Note that whether h likes d
or not depends only on the list of preferences rh; in particular, it is not affected by whether
d proposed to h or not. We will first show that a.a.s. each doctor d ∈ D is liked by at least
c log n/2 hospitals (see Lemma 4.2). Since at time T there are at most ⌊c log n/4⌋ popular
hospitals in total (exactly that many if the process stopped prematurely), there are thus at
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least c log n/4 unpopular hospitals that like d. It is unlikely that they are all matched with
someone better than d. Indeed, we will show that a.a.s. this does not happen for any of the
doctors (see Lemma 4.3). But, if a stable matching is reached, then the unique doctor that
is unemployed at that time would have made a proposal to every hospital. The fact that
they are still unemployed means that all of the hospitals are matched with someone better
than d. Since it is not true a.a.s., it implies that a.a.s. the process stopped prematurely
at time T when the number of popular hospitals reached ⌊c log n/4⌋, not because a stable
matching was found (again, see Corollary 4.4).

The argument so far shows that a.a.s. at least ⌊c log n/4⌋ hospitals become popular before
the algorithm converges to a stable matching. This means that, before the algorithm finishes,
a small set of ⌊c log n/4⌋ hospitals receives at least k · ⌊c log n/4⌋ = (1+o(1)) ·n/20 proposals
in total. Our next task is to show that such a situation is a.a.s. impossible if the total number
of proposals is exactly ℓ, regardless of which doctors make such proposals (see Lemma 4.5).
(Clearly, this also implies that it cannot be done with less than ℓ proposals a.a.s.) Therefore
a.a.s. doctors propose (on average) at least ℓ/(n + 1) = Ω(n/ log n) times before a stable
matching is found.

Finally, we show that a.a.s. less than ⌊400ac log n⌋ hospitals receive at most n/(20ac log n)
proposals if the total number of proposals is exactly ℓ, regardless of which doctors make such
proposals (see Lemma 4.6). This implies that a.a.s. hospitals are matched with doctors that
are in the top of O(log n) of their preference lists (on average).

4 The Direct Proof

4.1 Concentration Inequalities

Let us first state a few specific formulations of Chernoff’s bound that will be useful. Let
X ∈ Bin(n, p) be a random variable distributed according to the Binomial distribution with
parameters n and p. Then, a consequence of Chernoff’s bound (see e.g. [5, Theorem 2.1]) is
that for any t ≥ 0 we have

Pr(X ≥ EX + t) ≤ exp

(
−EX · φ

(
t

EX

))
≤ exp

(
− t2

2(EX + t/3)

)
(1)

Pr(X ≤ EX − t) ≤ exp

(
−EX · φ

(
−t

EX

))
≤ exp

(
− t2

2EX

)
, (2)

where φ(x) = (1 + x) log(1 + x) − x, for x > −1 (and φ(x) = ∞ for x ≤ −1).
Moreover, these bounds hold in a more general setting as well, that is, for X =

∑n
i=1 Xi

where (Xi)1≤i≤n are independent variables and for every i ∈ [n] we have Xi ∈ Bernoulli(pi)
with (possibly) different pi-s (again, see e.g. [5] for more details).
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4.2 Observation 1

We will use the well-known principle of deferred decision. Indeed, we may defer exposing
information about the random permutation rh for a given hospital h until a new proposal
is made to h. When d proposes to h, we simply place d in a random place on h’s list of
preferences that is still available.

Moreover, note that permutations of [n+1] can be generated in the following unorthodox,
but convenient, way. We first select a random subset A of [n + 1] of cardinality k, permute
independently elements of A and [n + 1] \ A, and then concatenate these two permutations
(of lengths k and (n + 1 − k), respectively) to create a permutation of [n + 1]. Translating
this to our scenario, for each hospital h ∈ H, we may independently generate a random
subset Ah of [n+ 1] of cardinality k, before the matching algorithm starts. Each time a new
proposal is made to h, the doctor that proposed is placed at a random place from Ah that
is still available in h’s permutation. Once we run out of available spots in Ah (which means
that h just became popular), we move to selecting spots from [n + 1] \ Ah. However, for
unpopular hospitals we only ever draw spots from Ah giving us the following observation.

Lemma 4.1. For each hospital h ∈ H, we independently generate a subset Ah ⊆ [n + 1]
of cardinality k. We run the algorithm until it stops prematurely or a stable matching is
created. Let Dh ⊆ D be the set of doctors that proposed to hospital h. Then, the following
property holds: for each unpopular hospital h ∈ H, doctors in Dh have ranks from Ah on the
list of preferences of hospital h.

4.3 Observation 2

If the game ends because a stable matching is created, then some poor doctor d must have
proposed to every single hospital but is still unemployed. Most hospitals have this doctor d
not so high on their lists so it is not too surprising that they did not like them. However,
there are still many hospitals that have d quite high on their respective preference lists. It is
unlikely that all of them, especially unpopular ones, found a better match. This motivates
the following definition.

Recall that a hospital h ∈ H likes a doctor d ∈ D if d is on one of the top ⌊c log n⌋ places
on its list of preferences. For a given doctor d ∈ D, the number of hospitals that like d is
the binomial random variable X ∈ Bin(n, ⌊c log n⌋/(n + 1)) with expectation asymptotic to
c log n. It follows immediately from Chernoff’s bound (2), applied with t = EX− c log n/2 ∼
c log n/2, that there are at most c log n/2 hospitals that like d with probability at most

exp
(
−(1 + o(1))

c

8
log n

)
= o(1/n),

provided that c > 8. Hence, by the union bound over (n + 1) doctors, we get the following.

Lemma 4.2. A.a.s., every doctor is liked by at least c log n/2 hospitals.
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4.4 Observation 3

Let us concentrate on a fixed doctor d ∈ D. We first go over hospitals’ preference lists,
regardless whether d proposed to them or not, to identify hospitals that like them. By
Lemma 4.2, since we aim for a statement that holds a.a.s., we may assume that there are at
least c log n/2 hospitals that like d. We may arbitrarily select ⌈c log n/2⌉ of them.

Recall that we stop the process prematurely when there are exactly ⌊c log n/4⌋ popular
hospitals, in total. Hence, at time T there are at least ⌊c log n/4⌋ unpopular hospitals that
like d. Unfortunately, which of the hospitals that like d become unpopular depends on many
other events so we need to take the union bound over all possible selections of ⌊c log n/4⌋
hospitals out of ⌈c log n/2⌉.

By Lemma 4.1, doctors that proposed to a unpopular hospital h have ranks on the list
of preferences of h from a random set Ah ⊆ [n + 1] of cardinality k. We will investigate
these sets Ah to estimate the probability that the corresponding hospitals are matched to
someone better than d. The probability that a given unpopular hospital h that likes d is
matched with someone better than d is at most the probability that h likes someone from
those doctors that proposed to h, other than d, which in turn is at most the probability that
h likes someone from Dh \ {d}. The probability that h does not like anyone from Dh \ {d}
is at least

k∏
i=1

(
1 − ⌊c log n⌋

n− i

)
=

(
1 − (1 + o(1))

c log n

n

)k

= (1 + o(1))e−1/5.

Hence, the probability that we aimed to estimate is at most 1− (1 + o(1))e−1/5 < 1/5. Since
the events corresponding to the selected unpopular hospitals are independent, the probability
that all unpopular hospitals that like d are matched with someone better than d is at most(

⌈c log n/2⌉
⌊c log n/4⌋

)(
1

5

)⌊c logn/4⌋

≤ 2⌈c logn/2⌉
(

1

5

)⌊c logn/4⌋

= O(1) ·
(

4

5

)c logn/4

= O(1) · exp

(
−c log(5/4)

4
log n

)
= o(1/n),

provided that c > 4/ log(5/4) ≈ 17.92. Hence, by the union bound over all doctors, we get
the following.

Lemma 4.3. A.a.s., the following property holds at time T : for every doctor there exists at
least one unpopular hospital that is not matched with anyone better.

The above lemma implies immediately that the process had to stop prematurely at
time T , before a stable matching is found. Hence, we obtain:

Corollary 4.4. A.a.s., the algorithm stops prematurely at time T when there are exactly
⌊c log n/4⌋ popular hospitals.
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4.5 Observation 4

Corollary 4.4 implies that a.a.s. at least ⌊c log n/4⌋ hospitals become popular before the
algorithm converges to a stable matching. By definition, each of these popular hospitals
received at least k = ⌊n/(5c log n)⌋ proposals. The next lemma shows that it takes at least
ℓ = ⌊n2/(ac log n)⌋ proposals, in total, to reach this situation.

Lemma 4.5. A.a.s., the following property holds: no set of ⌊c log n/4⌋ hospitals received at
least k · ⌊c log n/4⌋ = (1 + o(1))n/20 proposals, given that the total number of proposals is
ℓ = ⌊n2/(ac log n)⌋ (regardless of how many proposals each doctor made).

Proof. Suppose that a doctor d ∈ D proposed xd times for a total of
∑

d∈D xd = ℓ =
⌊n2/(ac log n)⌋ proposals. Of course, d is proposing according to their list of preferences rd
so xd determines which hospitals d proposes to. By standard combinatorial arguments, the
number of different scenarios to consider is(

ℓ + |D| − 1

|D| − 1

)
=

(
ℓ + n

n

)
≤

(
eℓ(1 + o(1))

n

)n

=

(
en(1 + o(1))

ac log n

)n

≤ nn = exp(n log n),

slightly too many to apply the union bound over.
To reduce the number of scenarios to consider, we will apply the following trick. Consider

any scenario (xd)d∈D with
∑

d∈D xd = ℓ. We construct an auxiliary scenario (based on
(xd)d∈D) as follows. If xd ≤ ⌈n/(ac log n)⌉, then we fix x̂d = ⌈n/(ac log n)⌉. Otherwise (that
is, if xd > ⌈n/(ac log n)⌉), we “round” xd up, that is, we fix x̂d ≥ xd to be the smallest
value of the form 2i⌈n/(ac log n)⌉ for some i ∈ N. Trivially, if the original scenario (xd)d∈D
makes at least k · ⌊c log n/4⌋ proposals to some set of ⌊c log n/4⌋ hospitals, then the auxiliary
scenario (x̂d)d∈D does so too. More importantly, the total number of proposals of the auxiliary
scenario is not much larger than the original value, namely, ℓ. Indeed, note that∑

d∈D

x̂d ≤ (n + 1) · ⌈n/(ac log n)⌉ + 2
∑
d∈D

xd ≤ (1 + o(1)) 3ℓ.

The advantage is that there are substantially fewer auxiliary scenarios than in the original
case.

For any i ∈ N, let zi be the number of values of x̂d that are at least 2i⌈n/(ac log n)⌉.
Since at most n/2i−1 values of xd are more than 2i−1⌈n/(ac log n)⌉, we have zi ≤ n/2i−1.
Hence, the number of auxiliary scenarios to consider can be estimated as follows:∑

z1≥z2≥...

(
n + 1

z1

)(
z1
z2

)(
z2
z3

)
· · · ≤

∑
z1≥z2≥...

2n+1 · 2z1 · 2z2 · · ·

≤
∑

z1≥z2≥...

2(n+1)+n+n/2+n/4+...

≤ (n + 1)O(logn) · 23n

= exp(O(log2 n)) · 23n.
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The justification for the first and the second inequality is as follows: since zi ≤ n/2i−1,(
zi

zi+1

)
≤ 2zi ≤ 2n/2i−1

. The third inequality holds because there are at most log2 n terms zi
and each of them is at most n + 1.

Finally, the number of choices for the set of ⌊c log n/4⌋ hospitals is(
n

⌊c log n/4⌋

)
≤

(
en

⌊c log n/4⌋

)⌊c logn/4⌋

= exp(O(log2 n)).

Hence, the union bound has to be taken over exp(O(log2 n)) 23n pairs consisting of some set
of ⌊c log n/4⌋ hospitals and some auxiliary configuration.

Let us then fix any set of ⌊c log n/4⌋ hospitals and any auxiliary configuration (x̂d)d∈D
with

∑
d∈D x̂d ≤ (1 + o(1)) 3ℓ. Before we estimate how many of the

∑
d∈D x̂d proposals are

made to the selected hospitals, we need to deal with one more technicality, namely, active
doctors that proposed at least n/2 times. Active doctors in the extreme case may propose to
all the hospitals including the selected ones. But, clearly, there cannot be too many active
doctors. Indeed, let i ∈ N be the largest i such that 2i ≤ ac log n/3 (which implies that
2i ≥ ac log n/6). We get that the number of values of x̂d that are at least 2i⌈n/(ac log n)⌉ ≤
(1+o(1))n/3 is zi ≤ n/2i−1 ≤ 12n/(ac log n). Hence, the number of active doctors is at most
12n/(ac log n) and so they contribute at most 12n/(ac log n) · ⌊c log n/4⌋ ≤ 3n/a ≤ n/50 to
the total number of (1 + o(1))n/20 proposals made to the selected hospitals, provided that
a ≥ 150. It follows that at least n/40 proposals made to the selected hospitals have to come
from non-active doctors.

We expose now proposals from non-active doctors, one by one. For a given non-active
doctor d ∈ D, we expose hospitals on the top x̂d positions on the preference list of d, one
proposal at the time. The probability that a proposal is made to a hospital from the selected
ones is equal to

⌊c log n/4⌋ − i

n− j
≤ ⌊c log n/4⌋

n/2
≤ c log n

2n
,

where i is the number of the selected hospitals d already proposed to and j is the number of
hospitals d proposed to so far; clearly, j ≤ n/2, since d is not active. As mentioned earlier,
the total number of proposals (coming from non-active doctors) is at most (1+o(1)) 3ℓ ≤ 4ℓ.
Hence, the number of proposals that are made to the selected hospitals can be stochastically
upper bounded by the binomial random variable X ∈ Bin(4ℓ, c log n/(2n)) with EX =
2ℓc log n/n = 2n/a − o(1) and EX ≤ 2n/a. We apply the (slightly more fancy) Chernoff’s
bound (1) with t = n/40 − EX ≥ n/40 − n/150 > n/50, provided that a ≥ 300. Note that

φ(t/EX) ≥ φ(a/100)

= (1 + a/100) log(1 + a/100) − a/100

≥ (a/100) log(a/100) − a/100

≥ (a/100) log(a/100)

(
1 − 1

log(a/100)

)
≥ 3a/2,
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provided that a ≥ 100e200. We get that the failure probability is at most

exp (−EX · φ(t/EX)) ≤ exp

(
−(1 + o(1))

2n

a
· 3a

2

)
= exp(−(1 + o(1)) 3n)

and, as promised, the conclusion holds by the union bound. Indeed, the probability that
there exists a set of hospitals and an auxiliary configuration that fails the desired property
is at most

exp(O(log2 n)) 23n exp(−(1 + o(1)) 3n) = exp(O(log2 n))

(
2

e
+ o(1)

)3n

= o(1).

4.6 Observation 5

The next lemma implies that less than ⌊400ac log n⌋ hospitals received at most n/(20ac log n)
proposals. These hospitals might be matched with a doctor that is not necessarily at the top
of their corresponding lists but, trivially, with the rank of O(n). The remaining hospitals
received at least n/(20ac log n) proposals and so the rank of their partners is expected to be
O(log n). Hence, the expected rank of a typical hospital is

O(log n)

n
·O(n) +

n−O(log n)

n
·O(log n) = O(log n).

Lemma 4.6. A.a.s., the following property holds: no set of ⌊400ac log n⌋ hospitals received at
most 20n proposals, given that the total number of proposals is ℓ = ⌊n2/(ac log n)⌋ (regardless
of how many proposals each doctor made).

Proof. The argument is very similar to the one to prove Lemma 4.5 so we only provide a
sketch. As before, suppose that a doctor d ∈ D proposed xd times for a total of

∑
d∈D xd =

ℓ = ⌊n2/(ac log n)⌋ proposals. Again, to reduce the number of scenarios to consider, we
construct an auxiliary scenario (based on (xd)d∈D) but this time we “round” xd down instead.
If xd < ⌈n/(4ac log n)⌉, then we fix x̂d = 0. Otherwise (that is, if xd ≥ ⌈n/(4ac log n)⌉),
we fix x̂d ≤ xd to be the largest value of the form 2i⌈n/(4ac log n)⌉ for some i ∈ N ∪ {0}.
If the original scenario (xd)d∈D makes at most 20n proposals to some set of ⌊400ac log n⌋
hospitals, then the auxiliary scenario (x̂d)d∈D does so too. The total number of proposals of
the auxiliary scenario is not much smaller than ℓ, the original value. Specifically,∑

d∈D

x̂d ≥
∑
d∈D

xd − (n + 1) ·
⌈

n

4ac log n

⌉
− 1

2

∑
d∈D

xd ≥ (1 + o(1)) ℓ/4.

As before, the advantage is that there are substantially less auxiliary scenarios than the
original ones. For any i ∈ N ∪ {0}, let zi be the number of values of x̂d that are at least
2i⌈n/(4ac log n)⌉. Since at most 4n/2i values of xd are at least 2i⌈n/(4ac log n)⌉, we have
zi ≤ 4n/2i. Hence, the number of auxiliary scenarios to consider can be estimated as follows:∑

z0≥z1≥...

(
n + 1

z0

)(
n + 1

z1

)(
n + 1

z2

)(
z2
z3

)(
z3
z4

)
· · · ≤ exp(O(log2 n)) 25n.
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Since the number of choices for the set of O(log n) hospitals is exp(O(log2 n)), the union
bound has to be taken over exp(O(log2 n)) 25n pairs consisting of some set of ⌊400ac log n⌋
hospitals and some auxiliary configuration.

Let us fix any set of ⌊400ac log n⌋ hospitals and any auxiliary configuration (x̂d)d∈D with∑
d∈D x̂d ≥ (1+o(1)) ℓ/4. We expose proposals from doctors, one by one. For a given doctor

d ∈ D with x̂d > 0 (which implies that, in fact, x̂d ≥ ⌈n/(4ac log n)⌉), hospitals on the top x̂d

positions on the preference list of d form a random set of size x̂d from H, the set of hospitals.
We order (arbitrarily) the selected hospitals and check if d proposed to them, one hospital
at a time following the fixed order. Suppose that we already investigated i hospitals and d
made an offer to j ≤ i of them. The remaining xd− j hospitals that d made an offer to form
a random set from the n − i hospitals we have not checked yet. So, the probability that a
proposal is made to the next hospital from the selected ones is equal to(

n−i−1
x̂d−j−1

)(
n−i
x̂d−j

) =
x̂d − j

n− i
=

x̂d −O(log n)

n−O(log n)
= (1 + o(1))

x̂d

n
≥ x̂d

2n
.

Hence, the number of proposals that are made to the selected set of hospitals can be
stochastically lower bounded by the random variable X =

∑
d∈D

∑⌊400ac logn⌋
i=1 Xd,i, where

(Xd,i) are independent variables and for every 1 ≤ i ≤ ⌊400ac log n⌋ and d ∈ D we have
Xd,i ∈ Bernoulli(pd) with pd = x̂d/(2n). Clearly,

EX = E

∑
d∈D

⌊400ac logn⌋∑
i=1

Xd,i

 =
∑
d∈D

⌊400ac log n⌋ · pd =
⌊400ac log n⌋

2n

∑
d∈D

x̂d

≥ (1 + o(1))
50acℓ log n

n
= (1 + o(1))50n ≥ 40n.

It follows from Chernoff’s bound (2) with t = EX−20n ≥ EX/2 (see also the comment right
after (2)) that

Pr(X ≤ 20n) = Pr(X ≤ EX − t) ≤ exp

(
− t2

2EX

)
≤ exp

(
−EX

8

)
≤ e−5n

and, as before, the conclusion holds by the union bound.

Acknowledgement. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. DMS-1928930, while the authors were in residence at
the Simons Laufer Mathematical Sciences Institute in Berkeley, California, during the Fall
semester of 2023.

References

[1] I. Ashlagi, Y. Kanoria, and J. Leshno. Unbalanced random matching markets: the stark
effect of competition. Journal of Political Economy, 125(1):69–98, 2017.

12



[2] L. Cai and C. Thomas. The short-side advantage in random matching markets. In
Proceedings of the Fifteenth Symposium on Simplicity in Algorithms (SOSA), pages
257–267, 2022.

[3] D. Gale and L. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

[4] D. Gusfield and R. Irving. The Stable Marriage Problem: Structure and Algorithms.
MIT Press, 1989.
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