
PERFECT MATCHINGS AND LOOSE HAMILTON CYCLES
IN THE SEMIRANDOM HYPERGRAPH MODEL

MICHAEL MOLLOY, PAWEL PRALAT, AND GREGORY B. SORKIN

Abstract. We study the 2-offer semirandom 3-uniform hypergraph model on n vertices. At each
step, we are presented with 2 uniformly random vertices. We choose any other vertex, thus creating
a hyperedge of size 3. We show a strategy that constructs a perfect matching, and another that
constructs a loose Hamilton cycle, both succeeding asymptotically almost surely within Θ(n) steps.
Both results extend to s-uniform hypergraphs. Our methods are qualitatively different from those
that have been used for semirandom graphs. Much of the analysis is done on an auxiliary graph
that is a uniform k-out subgraph of a random bipartite graph, and this tool may be useful in other
contexts.

1. Introduction and Main Results

1.1. The model. The canonical Erdős-Rényi random graph model [8] has been studied exhaus-
tively since the 1960s. It is deeply understood, and by now a great deal of attention has been
devoted to variants and special cases, including hypergraphs, sparse graphs, planar graphs, and
maker-breaker games. A version of the Erdős-Rényi model is that, given n vertices, edges arrive,
one per round, uniformly at random. One variant, suggested around 2000 by Achlioptas and first
analyzed in [5], is that edges arrive two at a time, and just one of the two is added to the graph.

The semirandom graph process we consider here has a similar character. Instead of being
offered a pair of edges, we are offered a vertex, and we may add any edge on that vertex; another
way to view it is that we are offered a star, and choose one of its edges to add. This process
was suggested by Peleg Michaeli, introduced formally in [4] in 2020, and has already received a
good deal of attention. It can be viewed as a “one player game”, and generalizes several well-
known and important processes including the Erdős-Rényi random graph process itself, and the
“k-out process” (about which we will say more). We concentrate on its natural generalization to
hypergraphs, as proposed in [1].
In the r-offer s-uniform semirandom model, the player constructs a sequence of s-uniform

hypergraphs Ht on vertex set [n] := {1, . . . , n}, with the goal that Ht satisfies a given property P
as quickly as possible. In each round t ∈ N, a uniformly random set of r vertices is offered, and
the player chooses s − r additional vertices according to some strategy, to make a hyperedge
that is added to Ht−1 to form Ht. When choosing the s− r vertices, the player has full knowledge
of the r vertices offered and of the past, including the hypergraph Ht−1 at the end of the previous
round.

1.2. Our contribution. Our contribution is to resolve some natural first questions for the hyper-
graph semirandom process, notably in the case where each offer specifies two vertices rather than
just one. We believe that this is the first work on semirandom hypergraphs that is qualitatively
different from anything that has been done for semirandom graphs. In this work, the property P
is that the semirandom hypergraph should contain as a subgraph a desired structure, namely a
perfect matching or a loose Hamilton cycle. Constructing such spanning structures has also been
one focus of the study of semirandom graphs.
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A main point of difference is that for graphs, it has always been possible to quickly and simply
construct most of the structure desired, then cleverly fill in the final gaps. That approach does
not seem to work here. Instead, we first generate a large absorbing structure of some sort, build
a small part of the desired structure using the few vertices absent from the absorber, then use the
absorber to complete the desired structure. Also, while the semirandom work on graphs has been
able to address the desired graph directly, we found it necessary to work in an auxiliary graph.

To suggest the profoundly greater challenges of semirandom hypergraphs compared with graphs,
let us mention an approach to matching that works for graphs but seemingly not for hypergraphs.
It is easy to semirandomly construct a random k-out graph or hypergraph; we discuss this further
in Section 2. In the graph case, by [12], the k-out almost surely contains a perfect matching. In
the hypergraph case, by contrast, Devlin and Kahn [7] observe that the corresponding statement
is “almost certainly correct [but] likely to be difficult [to show]”, as it is stronger than the 2008
resolution of Shamir’s Problem by [19] and would imply a (still open) “natural guess regarding a
beautiful problem of Frieze and Sorkin” (from [10]). Devlin and Kahn make progress towards this
by proving the presence of a perfect fractional matching, but that is not sufficient for our purpose.
Even if this approach did work, it would likely be existential; we prefer (and obtain) an efficient
construction.

To avoid confusion, we remark that our successful approach to hypergraph matching has some
superficial similarity to this. We are able to construct a k-out auxiliary graph (not hypergraph)
on most (unfortunately not all) of the vertices to give an absorbing structure that guarantees a
hypergraph matching after the exceptional vertices are dealt with.

1.3. Our results. Results presented in this paper are asymptotic by nature. We say that a
property P holds asymptotically almost surely (a.a.s.) if the probability that H has property
P tends to 1 as n goes to infinity.

In our first main result, we concentrate on the 2-offer semirandom construction of a 3-uniform
hypergraph H on n vertices, n divisible by 3, so that H will contain a perfect matching (a partition
of the set of vertices into n/3 hyperedges).

Theorem 1. For some constant C, the 2-offer 3-uniform semirandom model has a strategy that,
for n divisible by 3, in time t = Cn, gives a hypergraph Ht a.a.s. containing a perfect matching.

We present the strategy explicitly, and show how to construct a matching in H (not merely
proving its existence). This result is clearly best possible up to the constant C, which we have
made no effort to optimise.

Our linear-time construction extends to perfect matchings in an s-uniform hypergraph when the
player is offered r = 2 vertices and is able to select s−2 vertices. Moreover, it immediately implies
the same result for a “1-offer” semirandom model, as the player can simply simulate a 2nd random
offer vertex with the first of the s− 1 chosen vertices.

Theorem 2. For any s ≥ 3 and r ∈ {1, 2}, for some constant C, the r-offer s-uniform semirandom
model has a strategy that, for n divisible by s, in time t = Cn, gives a hypergraph Ht a.a.s.
containing a perfect matching.

Our second main result is a somewhat similar strategy to construct a 3-uniform hypergraph H
on n vertices, n divisible by 2, so that H will contain a loose Hamilton cycle.

Theorem 3. For some constant C, the 2-offer 3-uniform semirandom model has a strategy that,
for n divisible by 2, in time t = Cn, gives a hypergraph Ht a.a.s. containing a loose Hamilton
cycle.

This result also extends.
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Theorem 4. For any s ≥ 3 and r ∈ {1, 2}, for some constant C, the r-offer s-uniform semirandom
model has a strategy that, for n divisible by s − 1, in time t = Cn, gives a hypergraph Ht a.a.s.
containing a loose Hamilton cycle.

For both perfect matchings and Hamilton cycles, the 1-offer results follow as corollaries of the
2-offer ones but, unsurprisingly, can be obtained much more easily. One way to do so is touched
upon in a footnote near the start of Section 3: where for both matchings and cycles our 2-
offer constructions use a three-phase strategy, for the 1-offer model, a simple version of the first
phase suffices. These 1-offer constructions are presented as warm-ups near the start of Section 4
(addressing matchings) and Section 5 (Hamilton cycles).

1.4. Outline. Section 2 gives some background on the semirandom process. Section 3 sketches the
approach we will take. The approach relies greatly on a certain auxiliary graph, and the section
motivates, states, and proves the lemmas governing the auxiliary graph. (Roughly: a random
bipartite graph contains a large uniformly random k-out subgraph. A.a.s., every large subgraph
of such a graph, if it has minimum degree at least k− 1 and parts of equal size, contains a perfect
matching.) Section 4 proves Theorem 1 by presenting a 2-offer strategy for constructing a 3-
uniform hypergraph matching, and analysing it. Subsection 4.4 proves the extension to s-uniform
hypergraphs. This is a simple modification of the argument for the 3-uniform case but requires
reference to the strategy: Theorem 2 is not a black-box corollary of Theorem 1. Section 5 proves
Theorems 3 and 4. The strategy for constructing a loose Hamilton cycle is different in its details
from that for matching, with some new complications, but it has the same general structure and
shares many key elements.

2. Background

We begin with a clarification. Recall that our r-offer, s-uniform semirandom hypergraph is
formed as follows: At each round t, the player is offered r uniform vertices and then chooses s− r
additional vertices to form a hyperedge. In our proofs and previous works, there are situations
where, upon seeing the offered vertices, the player decides not to build any hyperedge on them and
so does not bother choosing s− r vertices. We say that the player ignores the offer. Formally, we
can think of the player adding an arbitrary set of s− r vertices and then never using the resulting
hyperedge. This counts as a round and so, e.g., is one of the Cn steps in Theorem 1.

We now describe some of the main results in semirandom graphs, especially in how they relate
to the present work.

A prominent result on semirandom graphs concerns constructing a graph G to contain a given
spanning structure H, such as a perfect matching or Hamilton cycle [3]. It shows that for a spanner
H with maximum degree ∆, this can be done in time (3∆/2 + o(∆))n. Roughly speaking, the
construction works by fixing an arbitrary correspondence between the vertices of G and H, trying
to build in G the edges between each vertex v and its desired neighbours NH(v), and (cleverly)
patching up the vertices for which this fails. For the 2-offer 3-uniform semirandom model, this
approach fails as soon as it fixes a correspondence and thus dictates the edges desired: to construct
a given edge (u, v, w) requires an offer of some two of these vertices, and in time O(n) the chance
of this occurring is only O(1/n).

Even for graphs, a limitation of [3] is that the o(∆) term means that the coefficient of the linear
running time is unknown for any fixed ∆. It therefore does not resolve efficient constructions
for low-degree graphs of common interest, prominently including perfect matchings and Hamilton
cycles.

In the paper introducing the semirandom model, [4], it was shown that the semirandom process
on graphs is general enough to simulate several well-studied random graph models (using suitable
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strategies), including the extensively studied k-out process. Since the k-out model is essential to
the work here, let us elaborate.

In the k-out process on n vertices, each vertex independently connects to k randomly selected
vertices, resulting in a random graph with kn edges (see, for example, [20, Chapter 18]). To
capture the association between vertices and edges, it is often convenient to think of the process’s
result as a k-out random digraph with k random directed edges out of each vertex. This is easily
simulated with the semirandom process by “choosing” vertex 1 to accompany each of the first k
offered vertices (constructing a directed edge from vertex 1 to each of them), choosing vertex 2 for
the next k, etc. (Details, such as the possibility of being offered vertex 1 when trying to construct
edges out of vertex 1, are easily resolved and uninteresting.)
A linear-time semirandom construction of a perfect matching follows from this, since a.a.s. the

2-out process has a perfect matching [12]. Using the semirandom process to construct a different
sort of random graph known to have a perfect matching a.a.s. (see [21]), the upper bound can be
improved to (1 + 2/e+ o(1))n < 1.73576n [4].

In the 2-offer 3-uniform semirandom model it is equally easy to generate a random k-out hyper-
graph, i.e., a hypergraph with k random edges on (and associated with) each vertex. Simply, to
each of the first k offered pairs add vertex 1, and so on. However, as discussed in the introduc-
tion (Section 1.2), it is not known whether a random k-out hypergraph a.a.s. contains a perfect
matching, and our approach to constructing a matching (and loose Hamilton cycle) is entirely
different.

For both perfect matchings and Hamilton cycles, researchers have sought the most efficient
semirandom constructions possible. For matchings, currently the most efficient construction uses
time 1.20524n [16]. On the other hand, [4] observed that (ln(2) + o(1))n > 0.69314n is a lower
bound on the number of rounds needed to create a perfect matching (indeed, to give each vertex
nonzero degree), and this has since been improved to 0.93261n [16].

Hamilton cycles in semirandom graphs have been studied in [4, 14, 15, 11, 9], and currently the
best upper and lower bounds are 1.81701n and 1.26575n [9].

Another line of research on the semirandom model is in constructing a graph containing a given,
fixed graph H. Reminiscent of the derivation of thresholds for the presence of a fixed subgraph
in a (usual) random graph, the task is quite different from the one studied here. For one thing,
it can be accomplished in sublinear time: where H has degeneracy d, a copy can be constructed
in time just larger than n(d−1)/d [4], but cannot be constructed in time just smaller than that [1].
The construction method is different from what has been done for spanning subgraphs, and what
is done here: a copy of H is constructed vertex by vertex, in an order in which each vertex v needs
to connect to at most d previous ones, using all offered vertices to try to fulfill the role of v. The
lower bound in [1] is more complicated but uses the same general ideas. We mention this work
primarily because [1] extends these graph results to hypergraphs, providing one of the few results
for semirandom hypergraphs. However, the extension to the 1-offer model is straightforward, while
for 2 or more offers the understanding is incomplete, with the upper and lower bounds matching
only for some special cases [2].

We briefly mention a few other results. Semirandom constructions to achieve the largest possible
clique, largest possible chromatic number, and smallest possible independent set are studied in [13].
Sharp thresholds for the semirandom process and a more general class of processes were studied
in [22]. Variants of the semirandom process have also been explored. In [17], the first n vertices
offered are all distinct, as given by a random permutation; the next n vertices are given by another
permutation; and so on. In [6], a random spanning tree of Kn is presented, and the player keeps
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one of the edges. In [24], k random vertices are offered, and the player selects one of them, and
freely chooses a second vertex.

3. Outline, and lemmas on an auxiliary bipartite graph

A uniformly random k-out bipartite multigraph (or just “uniform k-out” graph) on disjoint node
sets A,B is a directed graph D in which every node in A has outedges to k nodes in B chosen
uniformly at random with replacement, and symmetrically for B. The edge directions are generally
ignored, here in particular, except as a convenient way to associate a vertex with “its” k edges
(namely, its k out-edges).

A uniform k-out auxiliary graph plays a central role in our semirandom construction. To mo-
tivate the lemmas in this section, we briefly explain the role each will play. Proper explanations
will come in later sections.

Throughout, we will refer to vertices of the auxiliary graph as “nodes”, calling vertices of the
semirandom process itself “points”, “elementary vertices”, or occasionally “vertices”. We will use
calligraphic letters in this section, for general node sets A and B and a corresponding k-out graph
D. In context, later, we will define particular node sets A and B and a corresponding k-out
graph D.

The number of nodes in the auxiliary graph is different from the number of points in the
hypergraph. We will reserve n for the latter, writing N in the lemmas below to make it easy
later to define N in terms of n. The k in the lemmas is the same as that in the main argument;
indeed, we will take k = 10 throughout.

Our semirandom constructions of both hypergraph matchings and loose Hamilton cycles will
begin by defining node sets A and B (differently for the two cases).

Phase 1 will form a uniform k-out auxiliary graph from a subset of a set of uniformly random
edges on A×B. Because the edges supplied are uniformly random, a few nodes are bound to have
too few edges, but Lemma 6 shows that we can get a uniform k-out graph D on most of the nodes
in A and B. The few nodes missing from D will correspond to points of the hypergraph we will
have to deal with specially.1

Phase 2 will deal with these points. The “actions” addressing them will have the side effect of
deleting more nodes from D, correspondingly decreasing the degrees of the remaining nodes. We
will arrange that the outdegree of a node in D is always either k or k − 1, by ensuring that each
outdegree is reduced at most once (i.e., by one action), and by at most 1. The “by at most 1” comes
from ensuring that we never delete a node with parallel inedges (Claim 7 shows that such nodes
are rare), and that we never simultaneously delete a set of nodes sharing an inneighbour (Claim 8
shows that such sets are rare). (Alternatively, “by at most constant” is immediate from the nature
of the actions used, and we could have used a larger k to end with the same outdegree bound.)
The “at most once” is achieved by “blocking” a deleted node’s inneighbour’s outneighbours from
future deletion, adding these nodes to a set Q of nodes not to be deleted; Lemma 9 is the basis
for showing that the set Q remains small. After all the actions, D still contains most of A and B.

Phase 3 will complete the hypergraph construction using D as an absorber. Walkup [25] showed
that a random 2-out bipartite graph has a perfect matching a.a.s., and Frieze [12] showed the same
without the bipartiteness condition, for 2-out graphs and multigraphs. Here, despite the fact that
D is neither exactly k-out nor uniformly random, Lemma 10 shows that almost certainly Hall’s

1In the 1-offer model we could easily build a k-out graph on all the nodes, whereupon for k ≥ 2 the auxiliary
graph a.a.s. has a perfect matching which, in turn, corresponds — according to the case — to a hypergraph perfect
matching, or a hypergraph loose Hamilton cycle. We will note these cases as we come to them in early in Section 4
and 5.
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condition is satisfied, so it has a perfect matching. The hypergraph construction will be completed
by hyperedges corresponding to the matching edges.

Throughout, we rely on McDiarmid’s form of the Azuma-Hoeffding inequality [23].

Theorem 5 (Azuma). Let X1, . . . Xn be independent random variables with Xk taking values in a
set Ak for each k. Suppose that the (measurable) function f :

∏︁
Ak → R satisfies |f(x)− f(x′)| ≤

ck whenever the vectors x and x′ differ only in the kth coordinate. Let Y be the random variable
f(X1, . . . , Xn). Then for any t > 0, Pr(|Y − EY | ≥ t) ≤ 2 exp(−2t2/

∑︁
c2k).

Lemma 6 (k-out). For all integers k > 0 and reals ϵ > 0, there exists a constant C > 0 such that
the following holds. Let A and B be disjoint nonempty sets with A ∪ B = [N ].

Let Ψ be a multiset of CN (or more) uniformly random undirected edges on A × B. Then,
a.a.s., we can delete some edges from Ψ, and orient the remaining ones, to give a directed bipartite
multigraph D on parts A′ ⊆ A and B′ ⊆ B, where |A′| ≥ (1 − ϵ) |A|, |B′| ≥ (1 − ϵ) |B|, and D is
a uniformly random k-out bipartite multigraph on A′ × B′. The algorithm for constructing D is
polynomial time.

The directedness of this graph is, as touched in on Section 2, just a convenient way to express
that each node has exactly k out-edges, whose opposite endpoints are independent.

Proof. We use a Poissonization argument. Fix δ = min
{︁
ϵ/2, 0.99 (16e2

(︁
k+3
4

)︁
)−1/2

}︁
. Let λ be the

value such that the probability that a Poisson random variable Z ∼ Po(λ) is less than k+3 is δ/4;
let us write this as Pr(Po(λ) < k + 3) = δ/4. Choose C = 2.1λ.
Assume that Po(2λN) ≤ CN ; the probability that this fails to hold is exponentially small in N .

Attend only to the first Po(2λN) edges of Ψ, ignoring the later ones.
Randomly orient these edges. By the splitting property of the Poisson distribution, the numbers

of edges out of parts A and B are both Po(λN) and they are independent.
Suppose part A has m nodes. Further split the edges out of A according to which node of A

they are directed out of. Since the edges are by hypothesis random, by the splitting property of
the Poisson, the number of edges Z(v) out of each v ∈ A is distributed as Z(v) ∼ Po(λN/m), and
the Z(v) are mutually independent over all v ∈ A.

Choose t to be the power of 2 for which 1
2
N/t < m ≤ N/t. Splitting the Poisson again, write

Z(v) as Z(v) = Z1(v) + · · ·+ Zt(v) + Z ′(v) where every Zi(v) ∼ Po(λ), Z ′(v) is also Poisson, and
all are independent. The event Z(v) < k + 3 occurs only if every Zi(v) < k + 3.

Let X be the number of nodes of A with degree less than k + 3. From the above, X =∑︁
v∈A 1(Z(v) < k + 3) ≤

∑︁
v∈A 1[(Z1(v) < k + 3) ∧ · · · ∧ (Zt(v) < k + 3)], so the event X ≥ δm

requires that, of all tm independent probability-δ/4 events, at least tδm hold. Then, Pr(X ≥
δm) ≤ Pr(Bin(tm, δ/4) ≥ tδm) ≤ Pr(Bin(N, δ/4) ≥ δN/2). With δ constant, this has probability
exponentially small in N .

Then, with exponentially small failure probability, all but a 1 − δ fraction of nodes in both A
and (by the same argument, and a union bound) in B have at least k + 3 outedges. For any node
with more than k + 3 outedges, randomly delete some to leave exactly k + 3.

Let D0 be the resulting directed bipartite graph. Let X0 be the nodes failing to have outdegree
k + 3. Let D be the k-core of D0 \ X0. D can be constructed from D0 by initialising X = X0,
successively adding to X any node with less than k outneighbours in D0 \X, or equivalently with
at least 4 outneighbours in X. When there are no more such nodes, D is the subgraph of D0

induced by A′ = A \X and B′ = B \X.
We claim that, at the end, |X ∩ A| < 2δ |A| and |X ∩ B| < 2δ |B| a.a.s. By hypothesis, δ ≤ ϵ/2,

so this condition immediately implies the lemma’s conclusion. Suppose the condition does not hold.
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At any time, let S and T be the nodes added in parts A and, respectively, B that bring X0 to X.
(I.e., S = (X∩A)\(X0∩A).) For the condition to be violated, at the end we must have |S| ≥ δ |A|
or |T | ≥ δ |B|. Consider the first moment that either event first occurs. There are two symmetric
cases, and we consider just the one where, at that moment, |S| = δ |A| (up to integrality) while
|T | < δ |B|. Note that every node in S has at least 4 outneighbours in T ∪ (X0 ∩B). This remains
true if we expand T arbitrarily (but disjoint from X0) so that |T | = δ |B|. The probability that
any such pair S, T exists is at most the expected number of such pairs, over all fixed subsets and
subject to the randomness of D. For a fixed v ∈ S, the probability v has at least 4 outneighbours
in T ∪ (X0 ∩ B) is at most

(︁
k+3
4

)︁
(|T ∪ (X0 ∩ B)| / |B|)4 =

(︁
k+3
4

)︁
(2δ)4. Then, the expected number

of pairs S, T is at most(︃
N

δN

)︃(︃
N

δN

)︃(︃(︃
k + 3

4

)︃
(2δ)4

)︃δN

≤
(︃
eN

δN

)︃2·δN (︃(︃
k + 3

4

)︃
(2δ)4

)︃δN

=

(︃
e2
(︃
k + 3

4

)︃
24δ2

)︃δN

≤ 0.99δN = o(1),

using the hypothesis on δ.
So far, we have a graph D on parts A′ and B′ of the claimed cardinalities. Our implementation

of the core process revealed only edges directed into X, so the edges in D remain completely
random. Each node in D has outdegree between k and k + 3. Reveal the outdegree of each node;
if a node has outdegree greater than k, randomly delete outedges so that it has degree exactly k.
The remaining edges are still uniformly random, and D is precisely k-out. □

Claim 7. In a uniformly random k-out digraph with parts A and B both of size Θ(N), the number
of nodes with any double inedge is at most N2/3, with failure probability of order exp(−Ω(N1/3)).

Proof. We consider double inedges to part B; the symmetric argument applies to part A. Call a
node in B “bad” if it has a multiple inedge. Consider the outedges of a node a ∈ A in sequence.
If an edge duplicates a previous one (and is the first to do so), it results in a bad B node. The
expected number of such duplications on a ∈ A is O(1/N), for a total expected O(1) duplications
over all a ∈ A. Changing an outedge of any a ∈ A changes the number of bad B nodes by at
most 1. Azuma’s inequality yields the claim. □

Claim 8. For any constants k and d, in any k-out digraph with parts A and B both of size Θ(N),
d random nodes in B have disjoint inneighbourhoods with probability 1 − O(1/N), and the same
holds for d random nodes in A.

Proof. For a given a ∈ A, if two of the d nodes in B have a as a common inneighbour, both
are in N+(a). Since |N+(a)| = k while |B| = Θ(N), this has probability O(1/N2). Taking the
union bound over all a ∈ A, the probability that any two d nodes have a common inneighbour is
O(1/N). □

Lemma 9 (expansion). For any c, k, δ > 0, let ηc,k(δ) = max
{︁

17
3
δ ln(e/δ), 21−c

c
kδ
}︁
. Let D be a

uniformly random k-out bipartite multigraph on A × B, with A ∪ B = [N ] and |A| , |B| ≥ cN .
Then, a.a.s., for every S ⊆ [N ] with |S| ≤ δN ,⃓⃓

N−
D (S)

⃓⃓
≤
∑︂
v∈S

⃓⃓
N−

D (v)
⃓⃓
≤ ηc,k(δ)N.

That is, any set of up to a δ fraction of the nodes expands to at most an ηc,k(δ) fraction. Note:

• The lemma refers to all subsets S of size at most δN simultaneously, not merely any given
subset.

• We can make ηc,k(δ) arbitrarily small by choosing δ sufficiently small.
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• The lemma implies that sets of size δN expand by a factor at most ηc,k(δ)/δ. This is false
for smaller sets: there will typically be a handful of nodes of arbitrarily high indegree.

• The proof below uses the first-moment method. A slightly smaller ηc,k(δ) can be obtained
by choosing (in the Poisson limit) a degree threshold above which there are at least δN
nodes (thus encompassing the worst-case set S), and considering the total of those nodes’
degrees (concentrated, and at least |N−(S)|).

Proof. Assume, without loss of generality, that |A| ≤ |B|. Let deg−(v) denote the indegree of v.
For any set S ∈ [N ], define the volume vol(S) :=

∑︁
v∈S deg

−(v) to be the number of edges directed
into S.
For any set S, the neighbourhood size

⃓⃓
N−

D (S)
⃓⃓
is at most vol(S); this establishes the lemma’s

first inequality. For the second, it is enough for prove the statement for sets S of size δN .

Let ρ = 1−c
c

≥ max
{︂

|A|
|B| ,

|B|
|A|

}︂
. Consider a given set S of size |S| = δN , fixed with knowledge of

A and B but not the random edges. Each edge out of B may be an inedge of S ∩ A, so

vol(S ∩ A) ∼ Bin (k |B| , |S ∩ A|/|A| ) .
The symmetric statement for vol(S ∩B) and the two volumes are independent, so vol(S) is a sum
of independent Bernoulli random variables with expectation

E(vol(S)) = k |S ∩ A| |B|
|A| + k |S ∩ B| |A|

|B| ≤ k |S|max
{︂

|A|
|B| ,

|B|
|A|

}︂
≤ ρkδN.

For convenience we may artificially add more independent Bernoulli variables to obtain a random
variable Z stochastically dominating vol(S) and with EZ = ρkδN .

Let η = ηc,k(δ). Apply the Chernoff-type inequality Pr(Z ≥ EZ + t) ≤ exp
(︂
− t2

2(EZ+t/3)

)︂
[18,

eq. (2.5) and Theorem 2.8] to Pr(Z ≥ ηN). This means taking t = ηN − EZ = (r − 1)ρkδN ,
where r = η/(ρkδ) ≥ 2 by definition of ηc,k(δ). Then,

Pr(Z ≥ ηN) ≤ exp

(︃
−(r − 1)2(EZ)2

2(1 + r−1
3
)EZ

)︃
≤ exp

(︃
−(r/2)2

2(2r
3
)
EZ
)︃

= exp
(︂
− 3

16
r · ρδkN

)︂
.

The number of choices for the set S is(︃
N

δN

)︃
≤
(︃
eN

δN

)︃δN

= exp(δN ln(e/δ)).

By the first-moment method, the probability that any set S violates the claimed condition is at
most (︃

N

δN

)︃
Pr(Z ≥ ηN) ≤ exp

(︂
δN ·

(︂
ln(e/δ)− 3

16
rρk
)︂)︂

= exp
(︂
δN ·

(︂
ln(e/δ)− 3

16

η

δ

)︂)︂
= exp(−Ω(N)) = o(1),

the penultimate equality by definition of ηc,k(δ). □

Lemma 10 (Hall). Given k ≥ 10 and ρ < 1− 2/(1 + 3/e). (Having ρ ≤ 0.049 suffices.) Let D be
a uniformly random k-out bipartite digraph on parts A and B. Consider the subgraph D′ induced
by a pair of subsets A′ ⊆ A, B′ ⊆ B, where

(i) |A′|+ |B′| ≥ (1− ρ)(|A|+ |B|),
(ii) |A′| = |B′|; and
(iii) every node in D′ has outdegree at least k − 1.

Then, a.a.s. in |A| (with probability tending to 1 as |A| → ∞) every such induced subgraph D′

contains a perfect matching.
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Note that here “a.a.s. in |A|” is equivalent to a.a.s. in |B|, |A′|, or |B′|. Also, the hypothesis
k ≥ 10 can be weakened to k ≥ 7, at the expense of a slightly more complicated proof, and likely
further.

Proof. Let n := |A′| = |B′|. If D′ does not have a perfect matching (ignoring the edge directions)
then there are Hall sets S ⊆ A′ and T ⊆ B′ such that N(S) ⊆ T and |T | = |S| − 1. Write S̄ for
A′ \ S and T̄ for B′ \ T . If S, T is a Hall pair, so is T̄ , S̄. Since |S| +

⃓⃓
T̄
⃓⃓
= n + 1, at least one

of them must be at most (n + 1)/2. By symmetry, it suffices to consider a Hall pair S, T where
S ⊆ A has cardinality s ≤ (n+ 1)/2.

Henceforth we ignore A′ and B′. We are simply interested in the existence of a Hall pair S, T
with S ⊆ A, T ⊆ B, |S| = s ≤ (n + 1)/2, and |T | = s − 1. The probability that D allows such a
pair is at most the expected number of such pairs, which is at most the number of pairs times the
probability that a fixed pair has the Hall property.

Since 2n = |A′|+ |B′| ≥ (1− ρ)(|A|+ |B|), we have that |A|+ |B| ≤ 2
1−ρ

n and thus

|A| ≤ 2
1−ρ

n− |B| ≤ 2
1−ρ

n− |B′| =
(︂

2
1−ρ

− 1
)︂
n ≤ 3

e
n;

the last inequality follows from the hypothesis on ρ and is used in the next calculation. The same
holds for B. Also, |A| and |B| are both Θ(n), and henceforth we work asymptotically in n.
For each v ∈ S, all but one of v’s outedges must be directed into T . The probability that there

is such a Hall pair S, T , then, is at most the number of choices of S ⊆ A with |S| = s, of T ⊆ B
with |T | = s− 1, and (by hypothesis (iii)) of one edge per element of S, times the probability that
such a combination has all other edges of S directed into T . The probability there is any such pair
is at most(︃

k

1

)︃s(︃
(3/e)n

s

)︃(︃
(3/e)n

s− 1

)︃(︃
s− 1

n

)︃(k−1)s

≤ ks

(︃
3n

s

)︃s(︃
3n

s− 1

)︃s−1(︃
s− 1

n

)︃(k−1)s

≤ (9k)s
(︃
s− 1

n

)︃(k−3)s+1

≤ s

n

(︄
9k

(︃
s− 1

n

)︃k−3
)︄s

. (3.1)

The sum of (3.1) over s from 2 to 10 lnn, even ignoring the power s, is O(lnn) ·O
(︂(︁

lnn
n

)︁k−2
)︂
=

o(1). For larger s, up to s = (n + 1)/2, we have (s− 1)/n < 1/2, so, since k ≥ 10, 9k( s−1
n
)k−3 ≤

9k(1
2
)k−3 < 0.8 < exp(−1/5). Each term in (3.1) is thus of order O(e−s/5) = O(e−2 lnn) =

O(n−2), for a total of O(1/n) = o(1). □

4. Matching Strategy and Analysis

We construct a hypergraph H, initially empty and eventually containing a perfect matching M,
on vertex set V = [n]; we assume that n is divisible by 3. Partition V into a set A0 of vertices
called “apexes”, and a set B0 of pairs of vertices, called “base pairs” or just “bases”, with

|A0| =
n

3
+ 4ϵDn |B0| =

n

3
− 2ϵDn, (4.1)

where ϵD is a constant chosen small enough to satisfy various claims below. The two members of
a base pair are sometimes called “partners”. Integrality is not an issue; all that needs to be exact
is that |A0|+ 2 |B0| = n.

As a warmup exercise, consider the 1-offer model, and take the set sizes to be |A0| = |B0| = n/3.
Construct a random 2-out bipartite graph as follows. Focussing on the first point a1 ∈ A0, on offer
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of any b ∈ b ∈ B0, choose as third point the partner b′ of b in b, construct the hyperedge {a1}∪b,
and correspondingly add the edge {a1,b} to the auxiliary graph. Repeat this to build a second
random auxiliary graph edge on a1, and the corresponding hyperedge; then repeat to build two
edges on a2, on a3, and so forth. Similarly, focussing on the first point b1 ∈ B0, on offer of any
a ∈ A0, build the hyperedge {a,b1} and the corresponding auxiliary graph edge (a,b1), repeating
to make two such random edges (and corresponding hyperedges) on each node in B0. This can be
completed in linear time. (It will take about 2n trials to be offered 2

3
n nodes in A0 to make the

requisite edges to B0, and about n trials to be offered 2
3
n points in nodes of B0 to make the edges

to A0, and these can even be done in parallel.) At this point the auxiliary graph is a random 2-out
graph and thus a.a.s. has a perfect matching. By construction, the corresponding hyperedges form
a hypergraph perfect matching, as desired.

In the 2-offer model we will be unable to make every node of A0 and B0 k-out, and will thus
take the 3-phase approach outlined in Section 3.

4.1. Phase 1: A robust matching structure. In this phase we construct the digraph D1

introduced above, and in tandem the corresponding hypergraph H.
For a sequence of semirandom offers, do the following. For each offer of the form {a, b}, where

a ∈ A0 and b ∈ b ∈ B0 is a member of a base pair, choose as third point the partner of b. This
defines a hyperedge {a} ∪ b, which we add to our hypergraph H, and an (undirected) auxiliary
graph edge {a,b}, which we add to a set Ψ. Semi-random offers not of the specified form are
ignored. (Recall what this means from the beginning of Section 2.)

Note that each (a,b) ∈ Ψ is uniformly random in A0 × B0, with replacement. Given ϵD and k,
let C be the corresponding value in Lemma 6. Each semirandom offer is of the desired form w.p.
(with probability) 1

3
· 2
3
+ 2

3
· 1
3
+ O(ϵD) = 4/9 + O(ϵD) > 1/3 for ϵD sufficiently small, so in 3Cn

semirandom offers, a.a.s. there are at least Cn of the stipulated form, exceeding the lemma’s CN
(since by (4.1), N is about 2

3
n).

Should this a.a.s. statement fail, we consider the entire construction to have failed. We will take
the same approach throughout, proceeding on the assumption that all the a.a.s. statements hold.

It follows from Lemma 6 that from this set Ψ of undirected edges we can a.a.s. construct a
bipartite digraph D1 on parts A1 ⊆ A0 and B1 ⊆ B0, with |A1| ≥ (1 − ϵD) |A0| and |B1| ≥
(1− ϵD) |B0|, and D1 is uniformly k-out on these node sets.

By construction, H contains the hyperedges corresponding to the edges of D1. We will discard
(or ignore) all other hyperedges in H so that there is a one-to-one correspondence between the
edges in D1 and the hyperedges in H: they are two representations of the same thing.

Let X1 = (A0 \ A1) ∪ (B0 \ B1) be the set of “failed” nodes missing from D1. By Lemma 6
and (4.1), we have

|A1| ≥ (1− ϵD) |A0| >
n

3
+ 3ϵDn (4.2)

|B1| ≥ (1− ϵD) |B0| >
n

3
− 3ϵDn (4.3)

|X1| ≤ ϵD(|A0|+ |B0|) < ϵDn. (4.4)

Let Ẋ1 be the set of all the points (hypergraph vertices) contained in X1, so Ẋ1 = (A0 ∩X1) ∪⋃︁
b∈(B0∩X1)

b. Letting ax = |A0 ∩X1| and bx = |B0 ∩X1|, note that

|Ẋ1| = ax + 2bx. (4.5)

4.2. Phase 2: Matching exceptional points. This phase will place every point of Ẋ1 into a
hyperedge to be included in the matching M, while keeping D robust enough that it will contain
a matching.
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At the beginning of this phase, A = A1, B = B1, D = D1, X = X1, and Ẋ = Ẋ1. Along
the way, A,B,D,X, Ẋ will change; e.g., points will be removed from Ẋ as they are placed in
hyperedges of M.
We first consider the operations we will perform in this phase, deferring the question of how

many semirandom offers are required.

4.2.1. Phase 2a. Here we treat all the points in X1, from apexes and base pairs alike. We will be
more precise in a moment, but roughly speaking, any time we get a semirandom offer consisting of
two points a, a′ ∈ A, we choose an arbitrary x ∈ Ẋ, defining a hyperedge e = {a, a′, x}, and add e
irrevocably to M. The failed vertex x is now in a hyperedge in M, but a and a′ must be deleted
from A and D: neither is any longer available to be combined with a base pair.

As said in the Outline (Section 3), we will ensure that, as we delete nodes from D, every node in
D retains outdegree at least k − 1. To do this, we “block” some nodes of D from future deletion;
we let Q denote the set of blocked nodes. To avoid that any single node’s deletion decreases an
inneighbour’s outdegree by 2 or more, we intialise Q to be the set of nodes with parallel inedges.
To avoid that the outdegree of any node u is decreased more than once, if ever an outneighbour
v of u is deleted, we block all other outneighbours of u from future deletion. That is, whenever
a node v is deleted from D, we add N+(N−(v)) to Q. All that remains is to ensure that in any
single action, we do not delete two nodes with a common inneighbour.

With this out of the way, we can be precise. For any semirandom offer consisting of two points
a, a′ ∈ A0, we choose an arbitrary x ∈ Ẋ, defining a hyperedge e = {a, a′, x}. We discard e unless
the following conditions both hold:

(M2a-C1) a, a′ ∈ A \Q.
(M2a-C2) N−(a) and N−(a′) are disjoint.

(Read the label as M for matching, 2a for the phase, and C for “condition”; in the next part, A is
for “action”.)

If the conditions hold, we take the following action:

(M2a-A1) Add e, irrevocably, to M.
(M2a-A2) Delete x from Ẋ and a and a′ from A (and hence also from D).
(M2a-A3) Add N+(N−({a, a′})) to Q, blocking the outneighbours of the inneighbours of the

deleted nodes.

Each such action resolves one point in Ẋ, so by (4.5), ax+2bx actions are required. Each action
deletes 2 nodes of part A and 0 nodes of part B, so at the end of this phase, |B| = b0 − bx and
|A| = (a0 − ax)− 2(ax + 2bx) = a0 − 3ax − 4bx. Also,

|A| − |B| = a0 − b0 − 3ax − 3bx = a0 − b0 − 3 |X1| (4.6)

≥ a0 − b0 − 3ϵDn = 3ϵDn > 0 (by (4.4) and (4.1)). (4.7)

Thus, A is larger than B at the end of Phase 2a.

4.2.2. Phase 2b. This phase makes the sizes of A and B exactly equal so that they can be matched
in D. Recall that at the end of Phase 2a, |A| > |B|. To even them up, we will generate hyperedges
each consisting of three vertices from A, deleting the points from A and adding the hyperedge
to M.

To be precise, each time we get a semirandom offer consisting of two vertices a, a′ ∈ A0, we
define a hyperedge e = {a, a′, a′′} for a uniformly random a′′ ∈ A \ {a, a′}. We discard the offer
unless the following conditions both hold:

(M2b-C1) a, a′, a′′ ∈ A \Q.
(M2b-C2) N−(a), N−(a′), and N−(a′′) are disjoint.
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If the conditions hold, we take the following action:

(M2b-A1) Add e, irrevocably, to M.
(M2b-A2) Delete a, a′, and a′′ from A (and hence also from D).
(M2b-A3) Add N+(N−({a, a′, a′′})) to Q, blocking the outneighbours of the inneighbours of

the deleted nodes.

From (4.6), at the beginning of Phase 2b we have |A| − |B| ≡ a0 − b0 ≡ a0 + 2b0 = n ≡ 0
(mod 3). Since each action deletes 3 vertices from A, we can make |A| = |B| exactly. The precise
number of actions needed is not critical — it is obviously O(ϵDn) — but from (4.6) and (4.1) it is

|A| − |B|
3

=
a0 − b0

3
− |X1| ≤

a0 − b0
3

= 2ϵDn. (4.8)

4.2.3. Analysis and parameter choices. How many nodes can ever be blocked? Initially, Q = Q1

consists of the nodes with double inedges. By Claim 7, |Q1| = O(n2/3), with failure probability
exponentially small in n. As usual, we will declare failure of the construction if this fails.

Recall that when an action deletes a node v from D, it adds N+(N−(v)) to Q. Phase 2a takes
ax + 2bx actions, each deleting 2 nodes from D; note that ax + 2bx ≤ 2|X1| ≤ 2ϵDn, by (4.4).
Phase 2b takes at most 2ϵDn actions, each deleting 3 nodes from D. Altogether, they delete at
most 10ϵDn nodes from D.

The number of inneighbours of these nodes is bounded by Lemma 9, which will be our focus
for the next few paragraphs. The lemma’s N is |A1| + |B1| > 2

3
n by (4.2) and (4.3), so 10ϵDn

represents at most a 15ϵD fraction of N . Thus we take the lemma’s δ — call it δD — equal to
15ϵD.

The two parts A1 and B1 are of nearly equal size, so we may take Lemma 9’s c as 1
3
. We will make

many assertions of this sort, so let us be more precise this one time. In this case, from (4.1), (4.2),
and (4.3) we have (1

3
+3ϵD)n ≤ |A1| ≤ |A0| = (1

3
+4ϵD)n and (1

3
−3ϵD)n ≤ |B1| ≤ |B0| = (1

3
−2ϵD)n.

We will choose ϵD small enough that it is obvious that each of A1 and B1 has size at least 1/3rd
that of their union. More to the point, forgetting the precise multiples of ϵD here, we will have
expressions like |A1| = (1

3
+ O(ϵD))n, and it will be clear that ϵD can be chosen sufficiently small

to satisfy the various assertions.
Continuing, by Lemma 9, the number of inneighbours is at most η1/3,k(δD)N . Each inneighbour

has k outneighbours, so the number of outneighbours is at most kη1/3,k(δD)N . Since |Q1| = o(n) =
o(N), we have that at all times |Q| ≤ k η1/3,k(δ)N + o(N). We will contrive that k η1/3,k(δD) ≤ 1

10
,

so that |Q| ≤ N
9
and |Q| / |A1| ≤ (N

9
)/(N

3
) ≤ 1

3
and symmetrically |Q| / |B1| ≤ 1

3
.

This dictates our parameter choices. We take k = 10 throughout, for purposes of Lemma 10.
Then, in Lemma 9, choosing δ = δD = 0.00015 suffices, giving k η1/3,k(δD) ≤ 1

10
as desired. (The

value of η, defined in Lemma 9, is determined by the first term in the max; the second term, 40 δ,
is smaller.) Since we set δD = 15ϵD, taking ϵD = 0.00001 suffices.

Recall that Phase 1 used 3Cn semirandom offers, with C given by Lemma 6. Now that we have
fixed ϵD = 0.00001, the proof of Lemma 6 fixes its δ = ϵD/2 (the second term in the min is much
larger). In turn, to give Pr(Po(λ) < k + 3) = δ/4 = ϵD/8 = 0.00000125, it fixes λ to be between
37 and 38, for C = 2.1λ < 80. Thus, 3Cn < 240n semirandom offers suffice for Phase 1.

Looking ahead, we will invoke Lemma 10 to prove existence of a perfect matching in D. The
lemma’s A and B are the parts A1 and B1 at the start of Phase 2, its A′ and B′ are the parts A
and B at the end of Phase 2, and its ρ is (an upper bound on) the fraction of nodes deleted, so
we take ρ = δ. With the choices above, then, ρ ≤ 0.049, satisfying the hypothesis.

Having controlled the size of Q, we are ready to consider the number of semirandom offers
needed in Phase 2.
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In Phase 2a, that the first point offered is in A0 occurs with probability just above 1/3. The
cardinality of A is nearly that of A0 and we have arranged that |Q| ≤ 1

3
|A1|, so

Pr(a ∈ A \Q) ≥ 1
3
· (1−O(ϵD)− 1

3
) > 1

5
. (4.9)

Independently (almost), the same holds for a′, so (M2a-C1) holds with probability at least
1/25.2 By Claim 8, the chance that (M2a-C2) fails to hold is O(1/n). Thus, each offer satisfies
the conditions with probability at least 1/26. Since at most 2ϵDn actions are needed (see (4.4)),
a.a.s., 27 · 2ϵDn offers suffice.
Similarly, in Phase 2b, an offer plus the added point a′′ satisfies condition (M2b-C1) with

probability more than (1/5)3 (even if we chose a′′ in [n] rather than A), and again (M2b-C2) fails
with probability O(1/n), so each offer results in action with probability at least 1/126. By (4.8),
the number of actions needed is at most 2ϵDn, so, a.a.s., 127 · 2ϵDn offers suffice.
It is clear that, with control of |Q|, each offer in Phases 2a and 2b results in action with

probability Θ(1), and thus O(n) offers suffice. Numerically, Phases 2a and 2b together require at
most (27 + 127) · 2ϵD < 0.01n offers, so 241n offers suffice for Phases 1 and 2 (thus for the whole
algorithm). We have made no effort to optimise the constants.

We use A2, B2, D2 to denote A,B,D at the end of Phase 2. At this point, all points outside
of A2, B2 appear in hyperedges of M. Since no nodes were deleted from B during Phase 2, and
applying (4.3), we have:

|A2| = |B2| = |B1| >
n

3
− 3ϵDn. (4.10)

4.3. Phase 3: Matching the bulk of the points. We complete the hypergraph matching M
with hyperedges corresponding to the edges of a perfect matching in D2; Lemma 10 proves that
a.a.s. D2 has a perfect matching.

We apply the lemma with D = D1 and D′ = D2, and accordingly A = A1, A′ = A2, and
B = B′ = B1 = B2.

We already noted in Section 4.2.3 (and confirmed in (4.10)) that hypothesis (i) is satisfied: the
fractional size difference between A1 and A2 is O(ϵD) and far less than 1/100. Hypothesis (ii), that
the two parts are of equal cardinality, is satisfied by construction; see just before (4.8). Hypothesis
(iii), that every node degree is k or k − 1, is also satisfied by construction, specifically the various
action conditions based on the blocked set Q. Thus, a.a.s. D2 contains a perfect matching.

This concludes the proof of Theorem 1.

4.4. Extension to s-uniform hypergraphs. We now establish Theorem 2. As already ex-
plained, constructing a perfect matching in the 1-offer s-uniform model can trivially be simulated
in the 2-offer s-uniform model, simulating a 2nd “offer” vertex with the extra “chosen” vertex.

Constructing a matching in the 2-offer s-uniform model cannot be done using the 2-offer 3-
uniform model as a black box, but can be done in exactly the same way. In short, in Phase 0, take
a bit more than n/s vertices as apexes A0, arbitrarily partitioning the rest into a bit fewer than
n/s “base” groups each of size s− 1, comprising B0.

2We would have independence if the offered a′ were independent of a, allowing the possibility that a′ = a (in
which case we would reject the offer). We can simulate this independence by tossing a coin and with probability 1/n
replacing the offered a′ with a. In this simulated model, (M2a-C1) and distinctness hold with probability at least
Pr(a ∈ A \Q)2 − 1/n, here simply 1/25 by absorbing the 1/n into slack in (4.9). Since the simulated substitution
of a′ for a is never advantageous, (M2a-C1) holds with probability at least 1/25 in the original model.
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4.4.1. Phase 1. In Phase 1, when offered an apex a and a point b from a base b, propose the
hyperedge a ∪ b and correspondingly an auxiliary-graph edge {a,b}, directed one way or the
other. As before, with such proposals we can construct a directed auxiliary graph D = D1,
bipartite with parts A1 and B1 comprising most of A0 and B0 respectively, with D1 a uniformly
random k-out digraph on A1 and B1. Let X = X1 = (A0 ∪ B0) \ (A1 ∪ B1) be the nodes missing
from D, and Ẋ the set of points in X.

4.4.2. Phase 2. In Phase 2a, until Ẋ is empty, when offered two points in A0, propose a hyperedge
consisting of them and any s − 2 points in Ẋ. If in a final step 0 < |Ẋ| < s − 2, supplement
the points of Ẋ with distinct unblocked points from A. Correspondingly, propose the action of
deleting the two apexes from part A of the auxiliary graph D.

As we did for matchings, we block N+(N−(v)) for any node v deleted from D. We accept a
proposed action (and accept the corresponding hyperedge for M) if the offered vertices lie in the
current set A and are not blocked. By analogy with the argument around (4.9), by controlling the
size of Ẋ1 we can ensure that the number of nodes deleted and blocked is small, ensuring in turn
that each proposed action is accepted w.p. at least (1/s · 0.98)s−2 = Ω(1). Also as for matchings,
we choose the sizes |A0| and |B0| so that, a.a.s., when Phase 2a ends, |A| ≥ |B|.
In Phase 2b, when offered 2 vertices a, a′ ∈ A0, propose a hyperedge consisting of them and

s−2 distinct points in A\{a, a′} and correspondingly propose the action of deleting these s points
from part A of D. Accept the proposal if the two offered points were in A \Q; in this case, delete
these s apexes from D, and accept the hyperedge for M.

Again, each proposed action is accepted w.p. at least (1/s · 0.98)s−2 = Ω(1). Stop when the
number of apexes is equal to the number of bases, |A| = |B|.

For the stopping condition, since at the end of Phase 2a, |A| ≥ |B|, and Phase 2b decreases the
size of A without changing B, it is clear that at some time we get |A| ≤ |B|. At this time, we get
equality if |A| ≡ |B| (mod s), and this is so. Let V = [n] be the set of all points, with |V | ≡ 0
(mod s). Let V̇ (D) be the set of points in D, i.e., the points in A and the points belonging to

bases in B. At this step, the points of V \ V̇ (D) are all in hyperedges in M, so
⃓⃓⃓
V \ V̇ (D)

⃓⃓⃓
≡ 0

(mod s). Thus, at this step,

|A| − |B| ≡ |A|+ (s− 1) |B| =
⃓⃓⃓
V̇ (D)

⃓⃓⃓
= |V | −

⃓⃓⃓
V \ V̇ (D)

⃓⃓⃓
≡ 0 (mod s). (4.11)

4.4.3. Phase 3. Finally, construct a matching in D (ignoring the edge directions). The correspond-
ing hypergraph edges complete a perfect matching in the hypergraph.

As for s = 3, it is enough to ensure that when constructing D1, |X| ≤ ϵDn for some sufficiently
small constant ϵD. The number of Phase 2 steps is O(ϵDn) (the O(·) expression hiding some
constant independent of ϵD), so the number of nodes deleted from D is also O(ϵDn). By Lemma 9,
Q remains of size at most k ηc,k(δ)(O(ϵD))n (plus O(n2/3)), and this can be made an arbitrarily
small fraction of n by choosing ϵD sufficiently small. If follows that each action is accepted w.p.
Ω(1).

5. Loose Hamilton cycles

Now we turn to the proof of Theorem 3. We will demonstrate a strategy that, within a linear
number of steps, a.a.s. produces a 3-uniform hypergraph with a loose Hamilton cycle. The vertex
set is [n] for some even n. (The number of vertices must be even if a loose Hamilton cycle exists.)
The odd points will occur twice each in the loose cycle, the even points just once, in the form

(1, a1, 3), (3, a2, 5), . . . , (n− 1, an/2, 1), (5.1)
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where we write each edge as an ordered triple to indicate the roles of the three points, and
a1, a2, . . . , an/2 is a permutation of 2, 4, . . . , n. We will not be able to get exactly such a cycle,
with the odd numbers appearing in order, but will obtain a Hamilton cycle that differs from it on
very few edges.

The approach is similar to that for generating a perfect matching in Section 4. We define apex
and base sets, each of cardinality exactly n/2:

A0 = {2, 4, . . . , n} B0 = {{1, 3} , {3, 5} , . . . {n− 1, 1}} . (5.2)

Here the bases are overlapping, in order to build a cycle like that of (5.1), where for hypergraph
matchings they were disjoint.

The next steps are structurally the same as for matchings in Section 4. As in Section 4, in the
1-offer model we could (exactly as in Section 4) make a 2-out graph on A0 and B0; it would a.a.s.
contain a perfect matching; and that auxiliary graph matching corresponds to a loose Hamilton
cycle in the hypergraph. In the 2-offer model it is not so easy.

We will construct a directed bipartite graph on A0 and B0, but it will not have a perfect matching
because a small number of nodes fail to have sufficiently high degree (and cause other nodes to “fail”
as well). We deal with the failed nodes first, and in doing so add certain hyperedges, irrevocably,
to our cycle-in-the-making C. (C plays the role that M did for hypergraph matchings.) When the
failed nodes are dealt with, most of our bipartite graph will remain, and what remains will have a
perfect matching. The matching edges correspond to hyperedges in H, and they complete C to a
loose Hamilton cycle.

5.1. Phase 1. In the first phase, we build a graph D in the same manner as we did when building
a perfect matching in Section 4.

For each offer of the form {a, b}, where a ∈ A and b ∈ b ∈ B is a member of a base pair, choose
as third point the partner of b and add {a,b} to a set Ψ. (We ignore any offers that are not of
this form.)

Ψ forms a set of edges of a bipartite graph on A0 × B0. Note that a perfect matching on this
graph would yield a loose Hamilton cycle of the form in (5.1).

For any ϵD > 0, Lemma 6 ensures, exactly as in Phase 1 of Section 4, that within O(n) steps we
can construct a directed bipartite graph D = D1 with parts A1 ⊆ A0 and B1 ⊆ B0, such that D1

is a uniformly random k-out bipartite multigraph on A1 × B1, and a.a.s. |A1| ≥ (1− ϵD) |A0| and
|B1| ≥ (1 − ϵD) |B0|. We refer to the apexes in A1 as good and those in AX = A0 \ A1 as failed,
and likewise for bases. We have

ax = |AX | ≤ ϵDn/2 bx = |BX | ≤ ϵDn/2. (5.3)

5.2. Phase 2. We introduce an additional structure, P , central to the analysis. P is a graph on
the odd points, consisting of vertex-disjoint paths. In particular, a path in P can be an isolated
vertex. Initially, the edges in P are precisely the base pairs B1. Eventually we will make P a
single path and then a Hamilton cycle. Always, the edges in P are of two types: every hyperedge
e = (b1, a, b2) ∈ H contributes a P-edge (b1, b2) (and the apexes a of these will all be distinct); and
every base pair in B is an edge in P (and later it will be possible to perfectly match all these base
pairs and the remaining apexes, in D). When P is a Hamilton cycle, this ensures that there is a
corresponding loose hypergraph cycle C as desired.

In this phase we will again use a set Q of nodes of D “blocked” from use. Initially we will set
Q = Q0 to consist of any nodes whose inedges include any double edge; recall from Claim 7 that
|Q0| = o(n). Initially, P has bx components. Let us describe the phase just enough to count the
number of nodes it will delete from each part of D, both to bound |Q| and to confirm that, going
in to Phase 3, |A| = |B|.
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In Phase 2a, each action (see Figure 1) will assign an apex in AX to a hyperedge (along with
two base points from different base pairs) and place it in C, increasing the number of paths in P
by 1, and deleting 2 base pairs from B. Phase 2a takes ax actions to resolve all the failed apexes,
resulting in a total of 2ax deletions from the set of base pairs in B, so that |B0 \B| = bx + 2ax,
and there are bx + ax components in P . The part A is unchanged, with |A0 \ A| = ax.

In Phase 2b, each action will decrease the number of components of P by 1 (see Figure 2),
deleting 2 apexes from D (committing them to hyperedges) and deleting 1 base pair from B. This
phase takes ax + bx actions to make P a cycle, in the process making |A0 \ A| = ax + 2(ax + bx)
and |B0 \B| = (bx + 2ax) + (ax + bx), both equal to 3ax + 2bx.

In the end, then, we have equal numbers of apexes and base pairs not in D, and thus also equal
numbers remaining in D.
The number of apex nodes deleted from D by the two phases is 0 + 2(ax + bx) = 2ax + 2bx, and

the number of base nodes deleted is 2ax + (ax + bx) = 3ax + bx; by (5.3) each is at most 2ϵDn.
We can make the blocked set Q arbitrarily small by choosing ϵD sufficiently small, as we now

show. For any given ϵQ > 0, let Lemma 9’s η equal ϵQ/k, and take the lemma’s corresponding δ
to determine 4ϵD (choosing ϵD smaller if required elsewhere). Let S be the set of deleted nodes.
Then, Lemma 9 ensures that the deleted set’s inneighbourhood has size |N−(S)| ≤ ηN ≤ (ϵQ/k)n.
Since D is k-out, the inneighbourhood’s outneighbourhood — which is to say, the rest of Q beyond
Q0 — has size

|Q \Q0| =
⃓⃓
N+(N−(S))

⃓⃓
≤ k(ϵQ/k)n = ϵQn.

5.2.1. Phase 2a. First we treat the failed apex nodes, those in AX , doing something analogous
to Phase 2a for matchings. In Phase 2b we will treat the failed bases, which has some extra
complexity.

Upon offer of odd points b1 and b2, we propose a hyperedge e = (b1, a, b2), where a is an arbitrary
apex in AX . If b1 and b2 belong to different paths in P then let b′1 = b1 + 2 and b′2 = b2 + 2. If
they belong to a common path P in P then, on the induced path between them, let b′1 be the
neighbour of b1 and b′2 that of b2. (In the common-path case, typically b′1 = b1±2 and (b1, b

′
1) ∈ B,

and likewise for (b2, b
′
2); more on this soon.)

We discard the hyperedge unless the following conditions all hold:

(H2a-C1) (b1, b2) is not in P (therefore not in B).
(H2a-C2) (b1, b

′
1) and (b2, b

′
2) are in B \Q.

(H2a-C3) N−(b1) ∩N−(b2) = ∅.
(The labelling here is H to connote Hamilton cycle, 2a the phase, and C a condition, with A for
action in the next group.) Several of these conditions are unnecessary, but it is probable that they
all hold (as will be shown),

If the conditions all hold, take the following action (see Figure 1).

(H2a-A1) Add (b1, a, b2) irrevocably to C, and add (b1, b2) to P .
(H2a-A2) Delete (b1, b

′
1) and (b2, b

′
2) from P , B, and D. Also, delete a from AX .

(H2a-A3) Add N+(N−({(b1, b′1), (b2, b′2)})) to Q, blocking the outneighbours of the inneigh-
bours of the deleted nodes.

The action incorporates the failed apex a into a hyperedge, at the expense of removing two good
base pairs (b1, b

′
1) and (b2, b

′
2) from D, and turning two paths in P into three (as shown in the

figure, when b1 and b2 are in distinct paths) or one into two (when b1 and b2 are in a common
path). Every pair in B should be an edge of P , and since the action deletes (b1, b

′
1) and (b2, b

′
2)

from B as well as from P , this remains the case. The action decreases the outdegree of any node
in D by at most 1: it is only (b1, b

′
1) and (b2, b

′
2) that are deleted, by condition (H2a-C2) neither
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s1 b1 b′1 t1

s2 b2 b′2 t2

(b1, a, b2)

Figure 1. Salvaging a “failed” apex a in Phase 2a. Upon offer of suitable odd
points b1 and b2, hyperedge (b1, a, b2) is introduced (dashed line) and added to C.
The good base pairs {b1, b′1} and {b2, b′2} (dotted lines) are deleted from D. (As a
failed apex, a was already absent from D.) This converts two paths in P (the figure’s
upper and lower lines) into three, or one path into two if b1 and b2 lie on a common
path (if in the figure, t1 = t2).

was in Q therefore neither has a double inedge, and by condition (H2a-C3) they have no common
inneighbour.

In any trial, the conditions are likely to be satisfied. For (H2a-C1), there is probability O(1/n)
that b1 and b2 are path neighbours. For (H2a-C2), b′1 is either b1 +2 or a P-neighbour of b1, but it
is likely that the P-neighbours of b1 are just b1± 2, because the (1/2−O(ϵD))n edges in P include
the (1/2−O(ϵD))n pairs in B. And if b′1 = b1±2, it is likely that (b1, b

′
1) ∈ B \Q, since B includes

(1/2 − O(ϵD))n pairs of this form while |Q| = O(ϵQ)n. The same holds for b′2. Finally, (H2a-C3)
follows from Claim 8. Since all of the handful of failure events have probability O(ϵD + ϵQ), so
does their union.

5.2.2. Phase 2b. We now turn to the O(ϵD)n failed bases, which has some extra complexity. Details
will follow but the basic idea is illustrated in Figure 2. If there were a previous semirandom offer of
(b, a) accepted as hyperedge (b, a, s1), with s1 an endpoint of a path P1 ∈ P whose other endpoint
is t1, then if there is a new offer (b′, a′), where (b, b′) is an edge in a path P in P , accepting the new
offer as (b′, a′, t1) allows the paths P and P1 to be merged. In this case, the hyperedges (b, a, s1)
and (b′, a′, t1) are both added irrevocably to C and (b, b′) is deleted from P , B, and D.
The operation works equally well whether b′ lies between b and t, as shown, or between b and s.

If P consists of a single path, s, . . . , b, b′, . . . , t, then a similar operation, using hyperedges (b, a, t)
and (b′, a′, s), turns P into a cycle.
This merging phase proceeds in rounds, each starting with P having ℓ components and reducing

that to ⌊(9/10)ℓ⌋ components, until the final round where P goes from a Hamilton path to a
Hamilton cycle. If any round fails, we declare failure of the whole algorithm; we will show this to
be unlikely.

We partition the n/2 odd points into ⌊n/4⌋ disjoint “cell” pairs {1, 3} , {5, 7} , {9, 11} , . . .. (If
n ≡ 2 (mod 4) there is also an odd-man-out singleton {n− 1}; it will never be used, is merely
a pesky detail, and will only be mentioned once again.) These cells are fixed for all rounds.
Hyperedges added in a round are used only within that round; except for those used in actions,
they are ignored in future rounds and can be thought of as deleted.

Algorithm for a round. We consider a round starting when P has ℓ components. For each path Pi

in P , designate one endpoint as the start si and the other as the terminal ti. (If Pi is an isolated
point, si = ti.) The round will consider up to 10f semirandom offers, with

f = f(ℓ) = n3/4ℓ1/4. (5.4)
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s b b′ t

s1 t1
(b, a, s1) (b′, a′, t1)

Figure 2. Patching together base-pair paths in Phase 2b. Suppose a previous offer
included an apex a and base point b, to which we added some path end s1 to propose
hyperedge (b, a, s1). If by coincidence the current offer includes base point b+2 and
an apex a′, then, for some the opposite path end t1, propose hyperedge (b+2, a′, t1).
Accepting this pair of proposals means adding the (dashed) path edges {b, s1} and
{b+ 2, t1} and deleting the (dotted) edge {b, b+ 2}, turning two P paths into one.
Correspondingly, we accept the two hyperedges into C, and delete the base pair
{b, b+ 2} from B.

The round terminates with success as soon as P has ⌊(9/10)ℓ⌋ components, or with failure after
10f semirandom offers or after f 2/n actions have been attempted (see below), whichever comes
first.

Consider only offers of the form (b, a), b odd (and not the pesky odd-one-out singleton, if any)
and a even, discarding others. Also discard any offer where b was offered earlier in this round.
Assume then that this is the first time b is offered. If the cell partner b′ of b also has not been offered,
complete this offer to (b, a, t) where t is a random terminal, and add (b, a, t) to H. Consider the
cell “seeded”. If the cell partner b′ was previously seen (the cell was seeded), then some hyperedge
(b′, a′, ti) is in H, in which case complete the current offer to (b, a, si). Consider the cell of b
“filled”, and “attempt action”. Attempting action means taking action (see below) if the following
conditions are satisfied:

(H2b-C1) The path Pi with endpoints si and ti has not already been merged into another
path: si and ti remain path endpoints. (Pi may have subsumed another path;
that is fine.)

(H2b-C2) (b, b′) /∈ Pi. (This condition does not apply in the final round; see below.)
(H2b-C3) (b, b′) is a good base pair in B (and therefore an edge in P).
(H2b-C4) a and a′ are distinct apexes in A.
(H2b-C5) None of (b, b′), a, nor a′ is in Q (blocked).
(H2b-C6) N−(a) ∩N−(a′) = ∅.

If these conditions are satisfied, the action is taken as follows. The action decreases the number
of components of P by 1; see Figure 2.

(H2b-A1) Add the hyperedges (b, a, si) and (b′, a′, ti) to C, and add the edges (b, si) and
(b′, ti) to P .

(H2b-A2) Delete (b, b′) from P , B, and D, and delete a and a′ from A and D.
(H2b-A3) Add N+(N−({(b, b′), a, a′})) to Q, blocking the outneighbours of the inneighbours

of the deleted nodes.

The last round is a special case. Any round starting with ℓ ≥ 10 paths ends with
⌊︁

9
10
ℓ
⌋︁
≥ 9.

The rounds starting with 2 ≤ ℓ ≤ 9 paths each decrease the number of paths by 1, so the last
round starts with ℓ = 1. Here, if b and b′ share a cell in the single path s, . . . , b, b′, . . . , t, then if
offered (b, a) we make hyperedge (b, a, t), and if offered (b′, a′) we make hyperedge (b′, a′, s). In this
case, an action makes P a Hamilton cycle. At that point, we proceed to Phase 3.
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Analysis. The conditions ensure that no node in D has its outdegree reduced by more than 1.
Also, Phase 2b completes within O(n) offers. Round 0 starts with ℓ0 = O(n) so round i starts

with ℓi ≤ ℓ0(9/10)
i, and over all rounds the total number of offers is at most∑︂
10f(ℓi) =

∑︂
10n3/4((9/10)iℓ0)

1/4 = O(n)
∑︂

((9/10)1/4)i = O(n).

It remains only to show that a.a.s., in every round, at least (1/10)ℓ actions are taken.
Note that for every i, with fi = f(ℓi),

fi ≥ f(1) = Ω(n3/4) and fi ≤ f(ℓ0) = nϵ
1/4
D ≤ n/100, (5.5)

the latter depending on having ϵD sufficiently small.
We now focus on a single round and thus refer simply to ℓ and f = f(ℓ). We will use the phrase

“overwhelmingly unlikely” for probabilities of order exp(−Ω(np)) for some constant p > 0, and
“with overwhelming probability” for the complement.

Claim 11. With probability 1 − exp(−Ω(n1/4)), 10f offers fill at least f 2/n cells, enabling f 2/n
attempted actions.

Proof. Although the offers arrive successively (and the round is terminated once (1/10)ℓ actions
are taken), consider the round’s full 10f offers. Each offer has probability asymptotically 1/2 of
being of the requisite form (b, a). Each one of that form has equal probability of b being a “left” or
“right” element of a cell, i.e., of b ≡ 1 (mod 4) or b ≡ 3 (mod 4). In 10f offers, with probability
1 − exp(−Ω(n)), there will be at least 2.4f each lefts and rights; we assume henceforth that this
is so.

We have ℓ ≤ ℓ0 ≤ O(ϵD)n and thus (for ϵD sufficiently small) 2.4f(ℓ) ≤ n/10 and thus each new
left falls into a new cell with probability at least 9/10, so the expected number of left-occupied
cells is at least 2.2f . Each of these left “balls” fell in a random cell, and changing the location
of one ball changes the number of left-occupied cells by at most 1, so by the Azuma-Hoeffding
inequality the probability of a deviation of the order of the mean is overwhelmingly unlikely: of
order

exp(−Ω(f 2/(f · 1))) = exp(−Ω(f)).

We presume henceforth that there are at least 2.1f left-occupied cells.
Likewise, the right balls are overwhelmingly likely to fall into 2.1f distinct cells, and we presume

henceforth that they do. The locations of these right-occupied cells are uniformly random. Each
has probability at least (2.1f)/(n/4) of also being left-occupied, so the expected number of filled
cells is at least 17.6f 2/n. Changing the location of one right-occupied cell changes the number of
full cells by at most 1, so by the Azuma-Hoeffding inequality the probability of a deviation on the
order of the mean is overwhelmingly unlikely, of order

exp(−Ω((f 2/n)2/(f · 1))) = exp(−Ω(f 3/n2)) = exp(−Ω(n1/4)).

This finishes the proof of the claim. □

Claim 12. When a new cell is filled, the conditions for action are satisfied with probability at least
2/10, assuming that the number of paths in P is at least (9/10)ℓ.

Proof. The location of the new cell is uniformly random over all cells, conditioned on not being
one of the cells previously filled. For a uniformly random cell X, let F be the event that X was
not previously filled, and let E be the event that X satisfies the conditions for action. We are
interested in Pr(E | F ); consider first just Pr(E).
For a random cell X, condition (H2b-C1) fails w.p. at most 1/10, or the round would already

have ended successfully. Condition (H2b-C2) fails only if the randomly selected terminal is the
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terminal of the path containing b, and the probability of this is 1/ℓ ≤ 1/2. Conditions (H2b-C3)
and (H2b-C4) fail with probability O(ϵD), because A and B contain all but an O(ϵD) fraction of
A0 and B0 respectively. Condition (H2b-C5) fails w.p. O(ϵQ) because |Q| = O(ϵQ)n throughout.
Finally, (H2b-C6) fails w.p. O(1/n) by Claim 8. In all,

Pr(E) ≥ 1− (1/10 + 1/2 +O(ϵD + ϵQ) +O(1/n)) ≥ 3/10

for appropriate choices of ϵD and ϵQ.
The algorithm terminates if the number of attempted actions — cells filled — exceeds f 2/n.

Thus, the probability that a random cell X was previously filled is Pr(F ) ≤ (f 2/n)/(n/4) =
4(f/n)2 ≤ 4/1002 by (5.5). So, Pr(F ) ≥ 0.99. It follows that Pr(E | F ) ≥ Pr(E ∩ F ) ≥
Pr(E)− Pr(F̄ ) ≥ 2/10. □

From Claim 11, with overwhelming probability at least f 2/n actions can be attempted, and if the
hypothesis of Claim 12 is satisfied, the number of these succeeding is distributed as B(f 2/n, 2/10),
and thus is overwhelmingly likely to exceed 1

10
f 2/n: using (5.5) again, the failure probability is of

order exp(−Ω(f 2/n)) = exp(−Ω(n1/2)).
This number of successful actions would far exceed ℓ: their ratio is

1
10
f 2/n

ℓ
=

n3/2ℓ1/2

10nℓ
=

1

10
(n/ℓ)1/2 ≥ 1

10
(1/ϵD)

1/2 > 1,

for ϵD sufficiently small.
It is impossible that the number of successful actions exceeds ℓ, so we conclude that, with

overwhelming probability, the hypothesis of Claim 12 must at some point fail. That is, at some
point P must fall below (9/10)ℓ, upon which the round terminates with success.

Since the failures were all overwhelmingly unlikely (of order exp(−Ω(np)) for some constant
p > 0), by the union bound, failure remains overwhelmingly unlikely even over the O(lnn) rounds.
Assuming success, Phase 2 terminates with P consisting of a single cycle. Some of its edges

correspond to hyperedges committed to C; its other edges consist of base pairs comprising one
part of D, whose other part consists of the apexes not yet committed to C. Thus D is an induced
subgraph of D1, in which every node’s degree is at most 1 smaller than it is in D1.

5.3. Phase 3. As previously stated, in this final phase we take a perfect matching between A and
B in the graph D with directions removed from its edges. And, as noted earlier, the cardinalities
of A and B match. Lemma 10 implies that this matching exists, just as in Subsection 4.3.

For each {b, b+2} ∈ B and its matching partner a ∈ A, we place the hyperedge {b, a, b+2} into
C. That hyperedge was formed in Phase 1, when the corresponding edge was added to D. That
completes the Hamilton cycle.

5.4. Extension to s-uniform hypergraphs. The linear-time 2-offer strategy to construct a
loose Hamilton cycle in a 3-uniform hypergraph extends easily to s-uniform hypergraphs.

To avoid excessive notation, consider s = 4 for example. Take base pairs {1, 4} , {4, 7} ,
{7, 10} , . . ., and apex nodes (no longer single points) {2, 3} , {5, 6} , {8, 9} , . . .. The generalisa-
tion to other s is clear. We will see that it is easy to keep each apex node set intact, so that it
behaves just like an apex point in the s = 3 case.

In Phase 1, on offer of a base point b and an apex point a contained in an apex set a ∈ A, choose
base point b + s − 1 (to give base pair b = {b, b+ s− 1}), choose all the other points in a (to
give apex a), creating an edge between b and a in D and correspondingly creating the hyperedge
{b ∪ a}. This gives an auxiliary graph D as before.

In Phase 2a, on offer of base points {b1, b2}, make hyperedge {{b1, b2} ∪ a} where a is a failed
apex node. As before, this uses up the node a and turns two paths into three.
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In Phase 2b, for an offered base point b and apex point a ∈ a ∈ A, choose some path end point
s1 and the rest of a to make candidate hyperedge {{b, s1} ∪ a}. When another such candidate
hyperedge contains b + s − 1, just as for s = 3, three paths can be turned into two, using these
two hyperedges and deleting the base {b, b+ s− 1}.

With these extensions, the mechanics is exactly as for the s = 3 case. The treatment of the
auxiliary graph D is identical. This gives the strategy for constructing a loose Hamilton cycle in
the 2-offer model for an s-uniform hypergraph.

Of course, whatever can be done in linearly many steps in the 2-offer model can also be done in
the 1-offer model. This establishes Theorem 4.
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[21] Michal Karoński, Ed Overman, and Boris Pittel. On a perfect matching in a random digraph with average

out-degree below two. Journal of Combinatorial Theory, Series B, 143, 03 2020.
[22] Calum MacRury and Erlang Surya. Sharp thresholds in adaptive random graph processes. Random Structures

& Algorithms, 64(3):741–767, 2024.
[23] Colin McDiarmid. On the method of bounded differences. In J.Editor Siemons, editor, Surveys in Combina-

torics, 1989: Invited Papers at the Twelfth British Combinatorial Conference, London Mathematical Society
Lecture Note Series, pages 148–188. Cambridge University Press, 1989.

[24] Pawel Pralat and Harjas Singh. Power of k choices in the semi-random graph process. The Electronic Journal
of Combinatorics, 31(1):#P1.11, 2024.

[25] David W Walkup. Matchings in random regular bipartite digraphs. Discrete mathematics, 31(1):59–64, 1980.

Department of Computer Science, University of Toronto, Toronto, ON, Canada
Email address: molloy@cs.toronto.edu

Department of Mathematics, Toronto Metropolitan University, Toronto, Canada
Email address: pralat@torontomu.ca

Department of Mathematics, The London School of Economics and Political Science, London,
England

Email address: g.b.sorkin@lse.ac.uk


	1. Introduction and Main Results
	1.1. The model
	1.2. Our contribution
	1.3. Our results
	1.4. Outline

	2. Background
	3. Outline, and lemmas on an auxiliary bipartite graph
	4. Matching Strategy and Analysis
	4.1. Phase 1: A robust matching structure
	4.2. Phase 2: Matching exceptional points
	4.3. Phase 3: Matching the bulk of the points
	4.4. Extension to s-uniform hypergraphs

	5. Loose Hamilton cycles
	5.1. Phase 1
	5.2. Phase 2
	5.3. Phase 3
	5.4. Extension to s-uniform hypergraphs

	Acknowledgements
	References

