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Abstract. The Artificial Benchmark for Community Detection (ABCD)
graph is a random graph model with community structure and power-law
distribution for both degrees and community sizes. The model generates
graphs similar to the well-known LFR model but is faster and more
interpretable. In this paper, we use the underlying ingredients of the
ABCD model, and its generalization to include outliers (ABCD+o),
and introduce another variant for overlapping communities, ABCD+o2.
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1 Introduction

One of the most important features of real-world networks is their community structure,
as it reveals the internal organization of nodes. In social networks, communities may
represent groups by interest; in citation networks, they correspond to related papers;
in the Web graph, communities are formed by pages on related topics, etc. Identifying
communities in a network is therefore valuable as it helps us understand the structure
of the network.

Detecting communities is quite a challenging task. In fact, there is no definition
of community that researchers and practitioners agree on. Still, it is widely accepted
that a community should induce a graph that is denser than the global density of the
network [10]. Numerous community detection algorithms have been developed over
the years, using various techniques such as optimizing modularity, removing high-
betweenness edges, detecting dense subgraphs, and statistical inference. We direct the
interested reader to the survey [8] or one of the numerous books on network science
such as [15].

Most community detection algorithms aim to find a partition of the set of nodes,
that is, a collection of pairwise disjoint communities with the property that each node
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belongs to exactly one of them. This is a natural assumption for many scenarios.
For example, most of the employees on LinkedIn work for a single employer. On the
other hand, users of Instagram can belong to many social groups associated with their
workplace, friends, sports, etc. Researchers might be part of many research groups.
A large fraction of proteins belong to several protein complexes simultaneously. As a
result, many real-world networks are better modelled as a collection of overlapping
communities [22].

In the context of overlapping communities, one can distinguish two forms of over-
lap. In crisp overlap, nodes belong to communities with equal strength, whereas in
fuzzy overlap, each node may belong to more than one community, but the strength
of its membership to each community may vary. Most existing algorithms for detect-
ing overlapping communities are crisp [11]. However, one may start with one of the
crisp algorithms and then modify their outcomes to produce fuzzy overlap. Association
scores, like the ones we recently proposed in [2], may be used to measure how strongly
a node belongs to a community.

Unfortunately, there are very few datasets with ground-truth communities properly
identified and labelled. As a result, there is a need for synthetic random graph mod-
els with community structure that resemble real-world networks to benchmark and
tune clustering algorithms that are unsupervised by nature. The highly popular LFR
(Lancichinetti, Fortunato, Radicchi) model [20,19] generates networks with communi-
ties and, at the same time, allows for heterogeneity in the distributions of both node
degrees and of community sizes. It became a standard and extensively used method
for generating artificial networks.

A similar synthetic network to LFR, the Artificial Benchmark for Community
Detection (ABCD) [14] was recently introduced and implemented5, along with a
faster and multithreaded implementation6 (ABCDe) [12]. Undirected variants of LFR
and ABCD produce graphs with comparable properties, but ABCD (and especially
ABCDe) is faster than LFR and can be easily tuned to allow the user to make a
smooth transition between the two extremes: pure (disjoint) communities and ran-
dom graphs with no community structure. Moreover, ABCD is easier to analyze
theoretically—for example, in [13] various theoretical asymptotic properties of the are
investigated, including the modularity function that, despite some known issues such
as the “resolution limit” reported in [9], is an important graph property of networks
in the context of community detection. In [3], some interesting and desired self-similar
behaviour of the ABCD model is analyzed; namely, that the degree distribution of
ground-truth communities is asymptotically the same as the degree distribution of
the whole graph (appropriately normalized based on their sizes). Finally, the build-
ing blocks in the model are flexible and may be adjusted to satisfy different needs.
Indeed, the original ABCD model was recently adjusted to include potential outliers
(ABCD+o) [16] and extended to hypergraphs (h–ABCD) [17]7. For these reasons
ABCD is gaining recognition as a benchmark for community detection algorithms.
For example, [1] used the Adjusted Mutual Information (AMI) between the par-
titions returned by various algorithms and the ground-truth partitions of ABCD and
LFR graphs to compare 30 community detection algorithms, and mention that while
being directly comparable to LFR, ABCD offers additional benefits, including higher
scalability and better control for adjusting an analogous mixing parameter.

5 https://github.com/bkamins/ABCDGraphGenerator.jl/
6 https://github.com/tolcz/ABCDeGraphGenerator.jl/
7 https://github.com/bkamins/ABCDHypergraphGenerator.jl

https://github.com/bkamins/ABCDGraphGenerator.jl/
https://github.com/tolcz/ABCDeGraphGenerator.jl/
https://github.com/bkamins/ABCDHypergraphGenerator.jl


The ABCD+o2 Model 3

In this paper we extend the ABCD+o model further to allow for overlapping
communities (ABCD+o2). The LFR model has been extended in a similar way [19],
and in this model the nodes are assigned to communities based on the construction of
a random bipartite graph between nodes and communities that results in (a) a small
amount of overlap between almost every pair of communities, and (b) rarely any pair
of communities with a large overlap. In ABCD+o2, we instead generate overlapping
communities based on a hidden, low-dimensional geometric layer which tends to yield
fewer and larger overlaps. Furthermore, the ancillary benefits of the ABCD model
(an intuitive noise parameter, a fast implementation, and theoretical analysis) are still
present, so this extension makes ABCD+o2an attractive option for benchmarking
community detection algorithms.

The rest of the paper is organized as follows. In Section 2 we present the ABCD+o2

model, with a full description of generating a graph in Section 2.5. Next, in Section 3
we show the properties of the model and test theoretical expectations versus simulated
results. Then, in Section 4 we use the model to benchmark various community detection
algorithms and compare their quality under different levels of noise and overlap. Finally,
some concluding remarks are given in Section 5.

2 ABCD+o2 — ABCD with Overlapping Communities
and Outliers

As mentioned in the introduction, the original ABCD model was extended to include
outliers resulting in the ABCD+o model. For our current needs, we extend ABCD+o
further to allow for non-outlier nodes to belong to multiple communities, resulting in
the ABCD+o2 model, ABCD with overlapping communities and outliers.

2.1 Notation

For a given n ∈ N := {1, 2, . . .}, we use [n] to denote the set consisting of the first n
natural numbers, that is, [n] := {1, 2, . . . , n}.

Power-law distributions will be used to generate both the degree sequence and
community sizes so let us formally define it. For given parameters γ ∈ (0,∞), δ,∆ ∈ N
with δ ≤ ∆, we define a truncated power-law distribution P (γ, δ,∆) as follows. For
X ∼ P (γ, δ,∆) and for k ∈ N with δ ≤ k ≤ ∆,

P (X = k) =

∫ k+1

k
x−γ dx∫∆+1

δ
x−γ dx

. (1)

2.2 The Configuration Model

The well-known configuration model is an important ingredient of all variants of the
ABCD models, so let us formally define it here. Suppose that our goal is to create
a graph on n nodes with a given degree distribution d := (di, i ∈ [n]), where d is a
sequence of non-negative integers such that m :=

∑
i∈[n] di is even. We define a random

multi-graph CM(d) with a given degree sequence known as the configuration model
(sometimes called the pairing model), which was first introduced by Bollobás [5].
(See [4,24,25] for related models and results.)
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We start by labelling nodes as [n] and, for each i ∈ [n], endowing node i with di
half-edges. We then iteratively choose two unpaired half-edges uniformly at random
(from the set of pairs of remaining half-edges) and pair them together to form an
edge. We iterate until all half-edges have been paired. This process yields a graph
Gn ∼ CM(d) on n nodes, where Gn is allowed self-loops and multi-edges and thus Gn

is a multi-graph.

2.3 Parameters of the ABCD+o2 Model

The following ten parameters govern the ABCD+o2 model.

Parameter Range Description
n N Number of nodes
s0 N Number of outliers
η [1,∞) Average number of communities a non-outlier node is part of
γ (2, 3) Power-law degree distribution with exponent γ
δ N Min degree as least δ
∆ N \ [δ − 1] Max degree at most ∆

β (1, 2) Power-law community size distribution with exponent β
s N \ [δ] Min community size at least s
S N \ [s− 1] Max community size at most S

ξ [0, 1] Level of noise

Note that the ranges for γ and β can be relaxed and, more generally, any valid sequences
for degrees and community sizes can be given as input to the model. However, the ranges
γ ∈ (2, 3) and β ∈ (1, 2) were used in all previous theoretical work on the ABCD and
ABCD+o models, and are suggested parameters based on the behaviour of real-world
networks (see [14] for more details).

2.4 Big Picture

The ABCD+o2 model generates a random graph on n nodes with degree sequence
(di, i ∈ [n]) and community size sequence (si, i ∈ [L]) following power laws with expo-
nents γ and, respectively, β.

There are s0 outliers and n̂ = n−s0 non-outliers. Outliers will form their own aux-
iliary “community” C0. Non-outliers will span a family of L communities (Cj , j ∈ [L])
with each non-outlier belonging to at least one of the communities. These communities
will overlap (unless η = 1) so that non-outliers will belong to η communities, on aver-
age. The non-outliers, with their respective degrees, populate (Cj , j ∈ [L]) randomly
with the caveat that high degree nodes cannot enter small communities.

Parameter ξ ∈ [0, 1] dictates the amount of noise in the network. Each non-outlier
node i has its degree di split into two parts: community degree yi and background degree
zi (di = yi + zi). The goal is to get yi ≈ (1 − ξ)di and zi ≈ ξdi. However, yi and zi
must be non-negative integers, and yi must be split into ηi non-negative integers, one
for each community. Moreover, the sum of degrees assigned to each community must
be even. We achieve the first requirement by using an appropriate random rounding
of (1− ξ)di/ηi, and achieve the second requirement by making a few ±1 adjustments
at the end. Note that the neighbours of outliers are sampled from the entire graph,
ignoring the underlying community structure, meaning yi = 0 and zi = di if i is an
outlier.
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Once nodes are assigned to communities and their degrees are split, the edges
of each community are then independently generated by the configuration model on
the corresponding community degree sequences. After that, the background graph is
generated by the configuration model on the degree sequence (zi, i ∈ [n]). The final
ABCD+o2 model, after an additional clean-up phase handling possible self-loops and
duplicate edges, is the union of the community graphs and the background graph.

2.5 The ABCD+o2 Construction

The following 6-phase construction process generates the ABCD+o2 synthetic net-
works.

Phase 1: creating the degree distribution This phase is the same as in the
original ABCD model and its generalization, ABCD+o. The degree distribution of
ABCD+o2 can be injected into the model as an input. However, by default, it is a
distribution that satisfies (a) a power-law with parameter γ, (b) a minimum value of
at least δ, and (c) a maximum value of at most ∆.

To achieve the desired degree sequence, degrees are sampled i.i.d. from the dis-
tribution P (γ, δ,∆). Let dn = (di, i ∈ [n]) be the generated degree sequence of Gn

with d1 ≥ · · · ≥ dn. Finally, to ensure that
∑

i∈[n] di is even, we decrease d1 by 1 if
necessary; we relabel as needed to ensure that d1 ≥ d2 ≥ · · · ≥ dn.

Phase 2: assigning nodes as outliers This phase is also the same as in the
ABCD+o model. As mentioned in the big picture summary, the neighbours of outliers
will be sampled from the entire graph, ignoring the underlying community structure.
It feels that this part is straightforward, but one potential problem might occur when
ξ is close to zero. In the extreme case when ξ = 0, only outliers have a non-zero degree
in the background graph. In order to make sure that there exists a simple graph that
satisfies the required degree distribution, in such extreme situations all outliers must
have degrees smaller than s0.

To prepare for potential problems, the following procedure is proposed in the
ABCD+o model, which we also keep here. We have that ℓ =

∑
i∈[n] min(1, ξdi) is

a lower bound for the expected number of nodes that will have a non-zero degree in
the background graph. Moreover, since outliers have all neighbours in the background
graph, there must be at least s0 nodes of positive degree in the background graph.
Assuming that outliers are selected uniformly at random, we expect ℓ+ (n− ℓ)(s0/n)
nodes of positive degree in the background graph. (In fact, since there is a slight bias to-
ward selecting small degree nodes for outliers, we expect slightly more nodes of positive
degree in the background graph, which is good.) We introduce the following constraint:
a node i of degree di can become an outlier if

di ≤ ℓ+ s0 − ℓs0/n− 1. (2)

Finally, s0 nodes satisfying (2) are selected uniformly at random to become outliers.

Phase 3: creating overlapping communities By the end of Phase 2, we have
a degree sequence (di, i ∈ [n]) and an assignment of outliers and non-outliers. We
next assign communities to the ABCD+o2 model. It is important to keep in mind



6 Jordan Barrett et al.

that overlapping communities are created in this phase but we do not assign specific
nodes to these communities just yet. This assignment process will be handled in the
next phase, Phase 4. To make sure there is no confusion, in this phase we will be
referring to overlapping sets of elements (not nodes!) and in the next phase we will
match non-outlier nodes with elements of these sets.

The communities we create here will overlap, provided that η > 1. There are
n̂ = n − s0 elements that will eventually be matched with non-outliers and, at the
end of this phase, we would like them to belong to η ≥ 1 communities, on average.
To achieve this goal and to be compatible with the original ABCD model, each non-
outlier will belong to a single primary community and possibly some secondary
communities. In particular, this ensures that primary memberships form a partition of
non-outlier nodes. We will first generate this partition and then grow each part by a
factor of η so that the collective size of all communities is equal to ηn̂ = η(n − s0) in
expectation.

Similar to the degree distribution, the distribution of community sizes (sj , j ∈ [L])
will satisfy (a) a power-law with parameter β, (b) a minimum value of s, and (c) a
maximum value of S. Hence, the distribution of primary communities (ŝj , j ∈ [L]) needs
to satisfy power-law with the same parameter β but with a minimum value of ŝ = ⌈s/η⌉
and a maximum value of Ŝ = ⌊S/η⌋. In addition, we require

∑
j∈[L] ŝj = n̂. To satisfy

both requirements, communities are generated with sizes determined independently by
the distribution P

(
β, ŝ, Ŝ

)
until their collective size is at least n̂. If, at this point,

the sum is n̂ + a with a > 0 then we perform one of two actions: if the last added
community has size at least a + s, then we reduce its size by a. Otherwise (that is, if
its size is c < a+ s), then we delete this community, select c− a old communities and
increase each of their sizes by 1.

Let L be the random variable counting the number of communities (ignoring the
auxiliary “community” C0 consisting of outliers). Each primary community of size ŝj
will grow to size sj = ⌊ηŝj⌉. For a ∈ Z and b ∈ [0, 1) define the random variable ⌊a+ b⌉
as

⌊a+ b⌉ =
{
a with probability 1− b, and
a+ 1 with probability b .

(Note that E [⌊a+ b⌉] = a(1− b) + (a+ 1)b = a+ b.) As a result,

E

∑
j∈[L]

sj

 =
∑
j∈[L]

E [sj ] = η
∑
j∈[L]

ŝj = ηn̂ = η(n− s0),

as desired.
For communities to overlap in a natural way, we first create a hidden reference

layer that will guide the process of assigning elements to specific, overlapping com-
munities. One may think of this auxiliary layer as various latent properties of objects
associated with nodes (such as people’s age, education, geographic location, beliefs,
etc.) shaping communities (such as communities in social media). In this reference
layer, each of the n̂ elements is assigned a random vector in R2 that is taken indepen-
dently and uniformly at random from the ball of radius 1 centred at 0 = (0, 0).

Recall that the sequence (ŝj , j ∈ L) of primary community sizes is already gener-
ated. Let R be the set of n̂ elements. We assign these elements to communities, dealing
with one primary community at a time, in a random order. When a primary commu-
nity Ĉj is about to be formed, we first select an element from R that is at the furthest
distance from the center 0 (in the reference layer). This element, together with its
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ŝj − 1 nearest neighbours in R, are put to Ĉj . We remove Ĉj from R and move on
to generating the next primary community. Once all elements are assigned to primary
communities, we get a partition; each element belongs to a single community which we
call its primary community.

Now it is time to grow each primary community of size ŝj so that its final size is
sj . We can grow communities in any order, as the order will not matter. As before, let
R be the set of all n̂ elements (in the reference layer). For a given primary community
Ĉj of size ŝj , we first compute the center of mass of elements assigned to this primary
community, xj ∈ R2. Then, we investigate elements in R in the order of increasing
distances from xj . If some element v ∈ R is not already a primary member of this
community, we assign this community to v as its secondary community. We stop
the procedure once the number of members of this community (both primary and
secondary) is exactly sj . We will use Cj ⊇ Ĉj to denote this community, |Cj | = sj ≥
ŝj = |Ĉj |.

Note that each element belongs to exactly one primary community but can be part
of many (or none) secondary communities. In Figure 1 we show an example of the
reference layer on n̂ = 150 elements and three communities. Each of the three primary
communities in this example consists of 50 elements before growing by a factor of
η = 1.5, attracting an additional 25 elements as its secondary members.

Fig. 1. Example of the reference layer on n̂ = 150 elements consisting of 3 overlapping
communities with equal sizes and η = 1.5.
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Phase 4: assigning degrees to nodes At this point in the construction of
ABCD+o2 we have a degree sequence (di, i ∈ [n]), an assignment of outliers to degrees
in the sequence, and a collection of overlapping communities containing “elements”, each
element having a primary community and some number of secondary communities. Let
d̂n̂ be the subsequence (of length n̂) of (di, i ∈ [n]) corresponding to the non-outliers.
We are now ready to assign degrees in d̂n̂ to the community elements. Each element
j ∈ [n̂], that will eventually get node i of degree di assigned, is expected to have ξdi
neighbours in the background graph and the remaining (1−ξ)di neighbours split evenly
between ηj ≥ 1 communities. Note that, although each element has a distinct primary
community, its degree will be split with no preference given to said primary community.

Similarly to the potential problem with outliers, we need to make sure that non-
outliers of a large degree do not join small communities. Although, for a node j ∈ [n̂],
we know the expected fraction of j’s neighbours belonging to community Ck, k ∈ [L],
this is in fact a lower bound as some neighbours of j from the background graph might
be in Ck by chance. To make enough room in the community graph, a small correction
(typically negligible in practice) is introduced in both ABCD and ABCD+o that is
guided by the parameter ϕ (typically ϕ is very close to 1). For consistency, we keep it
in the ABCD+o2 model as well.

We iteratively assign degrees to elements as follows. Recall that the degree sequence
d̂n̂ is sorted with d̂1 being the maximum degree. Starting with i = 1, let Ui be the
collection of unassigned elements at step i. At step i, choose an element j uniformly at
random from the set of elements in Ui that satisfy

d̂i ≤
ηj

1− ξϕ
·min

{
|Ck| − 1 : j ∈ Ck

}
, (3)

where ηj is the number of communities element j belongs to and

ϕ = 1−
∑
k∈[L]

(
ŝk
n̂

)2
n̂ξ

n̂ξ + s0
,

and assign this element j to the ith node in the subsequence d̂n̂ that is of degree d̂i;
we have that Ui+1 = Ui \ {j}.

Recall that, eventually, degree di of node i belonging to ηi communities will be
split into the background degree (approximately ξdi) and the community degree that
will be further split into ηi parts (approximately (1− ξ)di/ηi each). This explains the
condition (3): (1− ξ)di/ηi has to be smaller than the smallest community i is part of.
Indeed, we bound the degrees assignable to element j in the community Ck to ensure
that there are enough elements in Ck \ {j} for j to pair with, preventing guaranteed
self-loops or guaranteed multi-edges during the next phase of the construction. Element
j could possibly belong to multiple communities, but the bottleneck is clearly with the
smallest one that is of size min{|Ck| : j ∈ Ck}. This strategy guarantees that the
assignment is selected uniformly at random from the set of all admissible assignments.
The details are quite involved and not overly important for our present discussion. Thus,
we point the reader to [16,13,14] for a full explanation of the assignment process.

Phase 5: creating edges At this point there are n nodes with labels from [n];
n̂ = n− s0 of them are non-outliers and the remaining ones are outliers. There is also
a family of overlapping communities with each non-outlier node i ∈ [n] belonging to
ηi ≥ 1 communities. Finally, each node i ∈ [n] (either outlier or non-outlier) is assigned
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a degree di which we interpret as a set of di unpaired half-edges. The last step is to
form the edges.

For each non-outlier i ∈ [n] we split its di half-edges into community half-edges
and background half-edges. To this end, define Yi := ⌊(1− ξ)di⌉ and Zi := di − Yi

(note that Yi and Zi are random variables with E [Yi] = (1 − ξ)di and E [Zi] = ξdi)
and, for all non-outliers i ∈ [n], split the di half-edges of i into Yi community half-
edges and Zi background half-edges. Community half-edges are further split into ηi
communities non-outlier node i belongs to, as evenly as possible. Specifically, for the
communities containing node i, Yi − ηi⌊Yi/ηi⌋ communities (chosen randomly) each
receive ⌊Yi/ηi⌋ + 1 half-edges and the remaining communities each receive ⌊Yi/ηi⌋
half-edges. On the other hand, if i ∈ [n] is an outlier then we set Zi = di.

Once the assignment of degrees is complete, for each j ∈ [L], we independently
construct the community graph Gn,j as per the configuration model on node set Cj

and the corresponding degree sequence. In the event that the sum of degrees in a
community is odd, we pick a maximum degree node i in said community and decrease
its community degree by one while increasing its background graph degree by one.
Finally, construct the background graph Gn,0 as per the configuration model on node
set [n] and degree sequence (Zi, i ∈ [n]). Let Gn =

⋃
0≤j≤n Gn,j be the union of all

graphs generated in this phase.

Phase 6: rewiring self-loops and multi-edges Note that, although we are
calling Gn,0, Gn,1, . . . , Gn,L graphs, they are in fact multi-graphs at the end of phase 5.
To ensure that Gn is simple, we perform a series of rewirings in Gn. A rewiring takes two
edges as input, splits them into four half-edges, and creates two new edges distinct from
the input. We first rewire each community graph Gn,j (j ∈ [L]), and the background
graph Gn,0, independently as follows.

1. For each edge e ∈ E(Gn,j) that is a loop, we add e to a recycle list that is assigned
to Gn,j . Similarly, if e ∈ E(Gn,j) contributes to a multi-edge, we put all but one
copies of this edge to the recycle list.

2. We shuffle the recycle list and, for each edge e in the list, we choose another edge
e′ uniformly from E(Gn,j) \ {e} (not necessarily in the list) and attempt to rewire
these two edges. We save the result only if the rewiring does not lead to any further
self-loops or multi-edges, otherwise we give up. In either case, we then move to the
next edge in the recycle list.

3. After we attempt to rewire every edge in the recycle list, we check to see if the new
recycle list is smaller. If yes, we repeat step 2 with the new list. If no, we give up
and move all of the “bad” edges from the community graph to a collective global
recycle list.

As a result, after ignoring edges in the global recycle list, all community graphs
are simple and the background graph is simple. However, as is the case in the original
ABCD model, an edge in the background graph can form a multi-edge with an edge
in a community graph. Another problem that might occur, specific to ABCD+o2

model, is that an edge from one community can form a multi-edge with an edge from a
different but overlapping community. All of these problematic edges are added to the
global recycle list. We merge all community graphs with the background graph. Finally,
the global recycle list is transformed into a list of half-edges and new edges are created
from it. We follow the same procedure as for the community graphs. However, we do
not “give up” recycling and follow the process until all required edges are created. As
the background graph is sparse, this final rewiring is very fast in practice.
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3 Properties of the ABCD+o2 Model

In this section, we present the results of some experiments highlighting properties of
the ABCD+o2 model.

Degree distribution and community size distribution In the first exper-
iment, we generate ABCD+o2 graphs with three degree sequences and with n =
100,000. The minimum and the maximum degrees are fixed to be δ = 5, ∆ = 316 ≈

√
n,

but the power-law exponents vary: γ ∈ {2.2, 2.5, 2.8}. For a given integer k, let f(k)
be the experimental cumulative degree distribution, that is, f(k) is the fraction of
nodes of degree at least k. For a given set of parameters, the theoretical cumulative
degree distribution is given by (1). We show that the experimental degree distributions
are very close to the desired, theoretical, ones—see Figure 2 (Left) for the cumulative
degree distributions of the three sequences.

Fig. 2. Left: Empirical (dots) and theoretical (dashes) cumulative degree distributions
for three degree sequences: n = 100 000, δ = 5,∆ = 316. Right: Empirical (dots) and
theoretical (dashes) cumulative community sizes distributions for three sizes sequences:
n = 100 000, s = 10, S = 1000.

Similarly, we generate three sequences of community sizes with n = 100,000. The
minimum and the maximum community size is fixed to be s = 10 and S = 1000 for
the three sequences, but the power-law exponents vary: β ∈ {1.2, 1.5, 1.8}. We show
that the experimental sequences are also very close to the desired ones—see Figure 2
(Right) for the cumulative community sizes distributions.

Overlapping of communities The ABCD+o2 model generates random graphs
in which non-outlier nodes belong to η communities, on average. Let ρk be the fraction
of non-outliers that belong to exactly k communities. The sequence (ρk)k≥1 depends
on the structure of the underlying hidden layer. To show one example, we generated
five ABCD+o2 graphs with varying overlap parameter η ∈ {1, 1.5, 2, 2.5, 3}. Each of
these graphs consists of n = 10,000 nodes, including s0 = 250 outliers, node degrees
in range [10, 100] with power law exponent γ = 2.5, and community sizes in range
[50, 1170] with power law exponent β = 1.5. The corresponding sequences (ρk)k≥1 are
presented in Figure 3 (left). In the case when η = 3, we also give the number and size
of the non-empty overlaps between 2, 3 or 4 communities—see Figure 3 (right).
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Fig. 3. Distribution of the number of community memberships for non-outlier nodes
on ABCD+o2graphs with n = 10,000 and varying η (left), and distribution of overlap
sizes in the non-empty intersections between 2, 3 or 4 communities (right).

Community association strength The ABCD+o2 model aims to generate
graphs in which nodes are much more associated with the communities they belong to
than with other communities. The next experiment suggests that this goal is achieved.

In the coming experiment, we use three measures of community association strength:
Internal Edge Fraction (IEF), Normalized Internal Edge Fraction (NIEF), and P-score
(P). For node i and community C, IEF(i, C) is the fraction of i’s edges with the other
end-point in C, NIEF(i, C) = IEF(i, C)−E [IEF(i, C)], where expectation is taken with
respect to the Chung-Lu null model, and P (i, C) is based on the classic p-value test,
i.e., based on the probability that the IEF(i, C) score was achieved randomly (again,
using Chung-Lu as a null model). We point the interested reader to [2] for a more
thorough discussion of these three measures.

For the experiment, we generate two ABCD+o2 graphs, one with a low level
of noise (ξ = 0.35) and the other with a high level of noise (ξ = 0.65). For both
cases, we computed the following. For each of the three community association strength
measures, and for each value of K ∈ N, we investigate all nodes that belong to at least K
communities and check what fraction of them have their K’th top ranked community
(with respect to a given association strength) align with one of their ground-truth
communities. The results are presented in Figure 4. The results suggest that each of
the measures can accurately predict 1 or 2 communities a node is a member of, and
with a low noise parameter, the prediction accuracy remains high as the number of
communities increases.

4 Benchmarking Community Detection Algorithms

The main purpose of having synthetic models with ground-truth community struc-
ture is to test, tune, and benchmark community detection algorithms. To showcase
ABCD+o2 in this light, we use the model to evaluate the performance of five com-
munity detection algorithms. The algorithms are as follows.

Leiden [23]: a greedy algorithm that attempts to optimize the modularity function.
Note that this algorithm returns a partition, and we use it merely as a benchmark to
compare with algorithms that attempt to find overlapping communities.
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Fig. 4. The top-K CAS scores for nodes with K community memberships or more. For
each score and each K, we show the proportion of true communities respectively for
low noise ABCD+o2graphs (left) and high noise (right).

Clique Percolation [6]: an algorithm, based on a positive integer k, that finds all
k-cliques and declares two such cliques adjacent if they share k − 1 nodes. Then, the
connected collections of cliques yield a collection of overlapping communities. In our
experiment, we choose k = 3.

Edge Clustering [18]: an edge-partitioning algorithm that translates to overlapping
clusters of nodes. Here, pairs of edges are measured based on similarity of neighbour-
hoods, and these similarity measures dictate the order in which edge-communities
merge, starting from each edge in its own community. As edge-communities merge, the
modularity is tracked on the line-graph, and the maximum modularity attained yields
the edge-communities, which in turn yields overlapping node-communities.

Ego-Split [7]: a method which finds overlapping clusters in a graph G by applying a
partitioning algorithm such as Leiden to an auxiliary graph G′ and then mapping the
resulting partition onto G. The auxiliary graph G′ is constructed from G by creating
multiple copies, or “egos”, of each node based on its neighbourhood.

Ego-Split+CAS: the same algorithm as Ego-Split, but with a post-processing step
that re-assigns nodes to communities based on the NIEF measure.

This is by no means an exhaustive list of community detection algorithms. We wish
only to showcase the usefulness of ABCD+o2 in comparing the quality of detection
algorithms. The measure we use to determine the quality of a collection of communi-
ties is the overlapping Normalized Mutual Information (oNMI) measure: a similarity
measure for two collections of subsets X ,Y of a set S [21].

The parameters of ABCD+o2 with the most influence on the quality of detection
algorithms are ξ (the level of noise) and η (the average number of communities a
non-outlier is part of). Thus, we perform two versions of this experiment, one which
varies ξ ∈ {0.15, 0.25, . . . , 0.65} and fixes η = 2 , and the other which varies η ∈
{1, 1.5, 2, 2.5, 3} and fixes ξ = 0.15. Figure 5 presents the results of the experiment. We
see that Ego-Split+CAS performs the best overall, except when η = 1 in which case
Leiden performs better. We also see a general trend of all algorithms performing worse
as the graph gets noisier, either by increasing ξ or η. From numerous and varying tests,
we have found in general that increasing η is far more damming to detection algorithms
than increasing ξ.
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Fig. 5. The quality of five clustering algorithms on ABCD+o2 graphs with 10,000
nodes including 250 outlier nodes. In the left plot, we fix η = 2.0 and vary ξ. In the
right plot, we fix ξ = 0.15 and vary η.

5 Conclusion

We presented ABCD+o2: a generalization of the ABCD+o model that allows for
overlapping communities. We then tested properties of this new model, emphasizing
properties based on the new overlap parameter η. Finally, we showcased the model’s
ability to benchmark community detection algorithms and compare their quality.

This paper acts as a first step in our study of the ABCD+o2 model. In future
work, we will study more properties of the model and compare our findings with (i) real
networks containing overlapping ground-truth communities, and (ii) the overlapping
LFR model. In particular, we believe that the nature of community overlap (based
on the hidden, geometric reference layer) is more natural and realistic in ABCD+o2

than in LFR and we will explore this conjecture further.
We are interested in theoretical results of the ABCD+o2 model that generalize

results of the ABCD and ABCD+o models. In [13] the modularity was studied and it
was found that the maximum modularity came from the ground truth communities un-
til a certain level of noise, after which a higher modularity could be attained. A similar
behaviour should be seen with ABCD+o2 and its overlap parameter η. Additionally,
in [3] it was shown that ABCD graphs exhibit self-similar behaviour, namely, the
degree distributions of communities are asymptotically the same as the degree distri-
bution of the whole graph (up to an appropriate normalization). We suspect that this
self-similar property persists in ABCD+o2.

Finally, we are interested in modifying the ABCD+o2 model in various ways.
On the one hand, the underlying geometry is the key ingredient in forming overlaps
between communities, and changing this geometry will surely change the behaviour of
the overlap. Moreover, certain metric spaces may yield ABCD+o2 graphs with more
realistic properties. On the other hand, the assignment of degrees to nodes can be
tweaked, say, to bias large degrees towards nodes that are members of a large number
of communities. In [26] it was shown that real networks tend to have a higher density
of edges in the intersections of communities than in the communities themselves. We
hope that by tweaking the degree-to-node assignment process in ABCD+o2 we can
find this same density result.
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