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Abstract

Many real-world and artificial systems and processes can be represented as graphs. Some examples
of such systems include social networks, financial transactions, supply chains, and molecular structures.
In many of these cases, one needs to consider a collection of graphs, rather than a single network.
This could be a collection of distinct but related graphs, such as different protein structures or graphs
resulting from dynamic processes on the same network. Examples of the latter include the evolution of
social networks, community-induced graphs, or ego-nets around various nodes. A significant challenge
commonly encountered is the absence of ground-truth labels for graphs or nodes, necessitating the use of
unsupervised techniques to analyze such systems. Moreover, even when ground-truth labels are available,
many existing graph machine learning methods depend on complex deep learning models, complicating
model explainability and interpretability. To address some of these challenges, we have introduced
NEExT1 (Network Embedding Exploration Tool) for embedding collections of graphs via user-defined
node features. The advantages of the framework are twofold: (i) the ability to easily define your own
interpretable node-based features in view of the task at hand, and (ii) fast embedding of graphs provided
by the Vectorizers2 library. In this paper, we demonstrate the usefulness of NEExT on collections
of synthetic and real-world graphs. For supervised tasks, we demonstrate that performance in graph
classification tasks could be achieved similarly to other state-of-the-art techniques while maintaining
model interpretability. Furthermore, our framework can also be used to generate high-quality embeddings
in an unsupervised way, where target variables are not available.

1 Introduction

Complex systems can often be modeled as networks that represent both the individual properties of each
component and the relationships between them. Examples of such systems include social networks, financial
transaction networks, biological systems such as proteins or ecosystems, and many more. Although such
systems are often easy to think about as individual static networks, in reality they often present themselves
as collections of networks. This can be either an intrinsic property of the system, such as a collection of
protein molecules, or it can be produced as a function of some dynamics. For example, the collection could
represent snapshots of a social network evolving over time, or collection of subnetworks created from ego-nets
of nodes in the same graph. Representing complex systems as networks or collections of networks is only the
first step in the workflow to analyze and study complex systems.

Practitioners in the field of network science are often interested in performing predictive type analysis on
complex networks. Such analysis could include building classification or regression models of graphs, when
ground truth labels are available, or performing analysis using unsupervised techniques, when the labels are
not present. In many of such cases, representing graphs as continuous vectors, called embeddings, can enable
one to use many traditional machine learning algorithms that take as input structured continuous vectors of
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integers or floating values. Embedding algorithms can be designed to capture representations at various levels
such as node embeddings, edge embeddings, subgraph embeddings, or embeddings of the entire graph. Node
embedding is a transformation of the nodes of a network into a set of vectors [1]. Due to their spectacular
successes in various applications, they are becoming increasingly popular in the ML community. There are
more than 100 algorithms available to use and frameworks to evaluate them (such as [12]). Independently,
many analytic tasks (such as classification, clustering, and regression) in various domains, including social
networks, cybersecurity, bioinformatics, and chemoinformatics, require representing graphs as fixed-length
feature vectors [1]. For example, embeddings of graphs representing program calls could be used to detect
malware [23], embeddings of graphs representing chemical compounds could be used to predict properties of
the associated compounds, such as solubility and anticancer activity [33, 24].

Historically, graph kernels have been considered to be a standard way to handle the above graph analytics
tasks. In this approach, the similarity (kernel value) between pairs of graphs is computed by recursively
decomposing them into simpler substructures (such as random walks, shortest paths, and graphlets) and
defining similarity (kernel) between these substructures. After that, some standard kernel methods, such as
Support Vector Machines (SVMs), can be used to classify or cluster graphs. Note that many algorithms of
this nature do not explicitly produce graph embeddings, and so they cannot be immediately used for general
ML tasks.

To overcome this limitation, another powerful technique was recently introduced in the literature [28, 19].
We start by extracting features of the nodes of a graph G through some node embedding algorithm. This
cloud of n points, corresponding to vectors of features of n nodes of G, can be easily normalized so that it can
be viewed as the probability distribution in a metric space equipped with a distance, such as the Euclidean
distance. Then, the Wasserstein distance, known in the literature under many different names including the
Monge–Kantorovich–Rubinstein distance, Kantorovich distance, Mallows distance, earth-mover’s distance,
or optimal transport distance [25], can be used to measure the distance between two graphs by computing
the distance between the two corresponding probability distributions. The Wasserstein distance is a metric
and is linked to the optimal transport problem [31] which aims to find an optimal way to transport the
probability mass associated with one graph to the one associated with another one. As already mentioned,
this distance is sometimes referred to as the earth mover’s distance since in the 3-dimensional case one can
think of it as moving piles of dirt in an optimal way. Finally, some algorithm is used to embed graphs
into k-dimensional space of vectors such that the Wasserstein distance between graphs matches the distance
between the corresponding vectors as much as possible.

In this paper, we introduce a framework that builds on ideas from [28, 19]. In addition to providing an
efficient and user-friendly exploratory network analysis tool, our main contribution can be summarized as
follows.

• The framework not only utilizes a number of standard classical and structural node embeddings but
allows to include hand-crafted, user-defined feature vectors that, for example, measure the distribution
of power (by including Pagerank or some other centrality measures) or expansion of ego-nets around
nodes. This approach has a few immediate benefits: it is much faster to compute such features than
to embed all nodes, the results are interpretable and more robust.

• The framework utilizes various techniques and metrics for approximating the distances between graphs
such as Wasserstein distance and Sinkhorn algorithms, in addition to a computationally efficient
approximate Wasserstein vectorization approach. These tools are available and maintained in the
Vectorizers package.

• For supervised learning (when labels for graphs are available), the framework selects (in an automated
way) a subset of available node features for the best outcome of a given ML supervised task at hand such
as classification or regression. The explainable nature of our features in addition to this feature selection
technique will provide us with information on which features are most important and predictive for a
given task.

• For unsupervised learning, the framework selects (again, in an automated way) a subset of available
node features via feature selection algorithm using the largest variance type of criteria.
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• The framework is designed to be scalable for large graph datasets by leveraging fast embedding algo-
rithms. In addition, we have integrated graph sampling to further extend the efficiency and scalability
of our framework.

This paper details NEExT’s architecture and showcases its efficiency and versatility in extracting mean-
ingful insights from a collection of complex synthetic and real-world networks. This is demonstrated using
a collection of supervised as well as unsupervised experiments. All the experiments can be found within
the experiments folder in the GitHub repository for the NEExT framework 3. The paper is structured as
follows:

• In Section 2, we outline and explain in detail various components of the NEExT framework. This in-
cludes the data pre-processing, node-feature generation, embedding algorithms and various techniques
used for computing feature importance.

• In Section 3 we use this framework to perform numerous experiments on both synthetic and real-world
networks. In the synthetic network experimentation section, we focus mainly on outlining various
properties and functionality of the network. Meanwhile, in the real-world experimentation, we focus
on highlighting the value of the framework from the perspective of industry practitioner. In addition,
we introduce a sampling technique for improving computational efficiency of the framework and show
the impact of sampling on embedding quality and downstream machine learning tasks.

• Lastly, in Section 4, we provide a summary of our work and highlight some potential future research
directions.

Finally, we would like to point out that this paper is the extended version of the proceeding paper presented
at the International Workshop on Algorithms and Models for the Web-Graph in 2024 [10].

2 Network Embedding Exploration Tool (NEExT)

Suppose that we have a collection of m graphs, G1, G2, . . . , Gm, that we wish to analyze. The graphs (Gi)
in the dataset may not have comparable properties such as degree distributions, densities, structure, etc. In
particular, they can have different number of nodes, and they usually do. Our tool creates an embedding of
this collection of graphs by assigning to each of the m graphs a d-dimensional vector.

Our approach consists of the following 3 steps (details are provided in the following subsections):

1. Pre-process the collection of graphs (Subsection 2.1).

2. For each graph Gi with ni nodes, build k-dimensional vector representations for all the nodes (default
option) or for some random subset of the nodes (faster but approximated option) (Subsection 2.2).

3. Given m families of k-dimensional vectors, one family for each graph, compute d-dimensional embed-
ding of the graphs using the Vectorizers package (Subsection 2.3).

In the step 2 above, we assumed that a set of k node features is already identified and it is used to create
k-dimensional vectors. This selection process has flexibility and there are two possible modes the tool can
be used in.

(a) Supervised mode in which features are selected to create a specific embedding, tuned for a given Machine
Learning task at hand (Subsection 2.4).

(b) Unsupervised mode in which features are selected to provide a universal, all-purpose embedding (Sub-
section 2.5).

3https://github.com/ashdehghan/NEExT
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2.1 Pre-processing

In the pre-processing step, NEExT loads each graph into a GraphCollection object, assigning to each
graph appropriate details such as graph labels, graph statistics, etc. In this step, we can also do some
preprocessing and data cleaning such as making sure that graphs are connected by replacing each graph with
its largest connected component or even its k-core (for some chosen value of k). The GraphCollection
provides a unified and convenient way of extracting graph statistics and manipulating graphs.

2.2 Vectorizing the Nodes

In this step, we compute node level features on each graph. Several methods to obtain vector representations
for the nodes of each graph are available in the framework. However, one advantage of NEExT is that it is
easy to add other vector representations for the nodes, which can be interpretable and designed specifically
for the types of graphs one wants to analyze and down-stream Machine Learning task using the generated
graph embedding. In particular, any classical or structural node embedding can be used such as Node2Vec
or Struct2Vec. It is also possible to inject some external features associated with the nodes, that could be
completely independent from the graph structure. For example, nodes can be associated with users of some
social media and external features can encapsulate the text a given user generates on this social platform or
the number of likes they gave to other users. Lastly, users could also define custom metrics and algorithms,
which can easily be side-loaded into NEExT, and be used to compute node features.

Below, we describe the features that are currently available in NEExT that we used for the experiments
presented in this paper.

LSME. One of the built-in structural embedding algorithms is called Local Signature Matrix Embed-
ding (LSME)4. This technique uses a random-walk algorithm to capture local structural properties of
nodes. The algorithm returns a k-dimensional vector for each node ni, where each element measures the
transition probability between various neighbourhoods around a given node ni.

Centrality measures. We consider various commonly used centrality measures such as PageRank, Close-
ness Centrality, Degree Centrality, Eigenvector Centrality and Load Centrality. Details for those
measures can be found in, for example, [15].

Self-Walk. This algorithm measures the number of walks of length k that start from a given node and
end back at the same node. This can be computed by raising the adjacency matrix to the power of k and
then extracting the diagonal elements of the matrix. This feature is yet another metric for measuring the
structural property of the graph.

Expansion properties. This is an example of a hand-crafted node feature that aims to capture expansion
property of a graph. For each node v, let m̂i be the number of neighbours at distance i from v, for
i ∈ {1, 2, . . . , k}. The goal is to embed nodes of possibly different degrees that expand in a similar way close
to each other. To that end, we consider the following feature vector for a node v:

E(v) =

(
m̂1

1 · d̄
,

m̂2

m̂1 · d̄
, . . . ,

m̂k

m̂k−1 · d̄

)
,

where d̄ = 1
N

∑
v∈V deg(v) = 2|E|

N is the average degree. For good expanders, one would get a collection of
vectors that are close to (1, 1, . . . , 1).

LSME and expansion naturally produce k dimensional vectors. For other features (such as 1-dimensional
centrality measures described above), one can compute them recursively up to some maximum value k
(resulting a k dimensional feature vector) by averaging their values for neighbours up to j hops away for
1 ≤ j ≤ k. Moreover, features can be concatenated to obtained even higher dimensional representations, if
needed.

4https://github.com/ashdehghan/LSME
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2.3 Embedding of the Graphs

Recall that at this step of the process we have a collection of graphs Gi (1 ≤ i ≤ m) with respectively ni

nodes, and a k-dimensional vector representation for each node, in each graph. Then, each graph can be
seen as a distribution of points over k-dimensional space, and we can use some measure of distance between
distributions to embed the graphs in some vector space.

One possible candidate is the well-known total variation distance (see, for example, [30]). Although
powerful for many theoretical applications, it has practical limitations. It only considers the maximum
disagreement between the measures, and does not take into account the underlying metric space of the
measures. Another possible candidate is Kullback-Leibler (KL) divergence, or relative entropy [20]. However,
KL-divergence is not symmetric and does not satisfy the triangle inequality. Although it encapsulates a notion
of a “distance”, it is not a metric. In addition, similarly to the total variation distance, it does not take the
underlying metric space of the measures into account.

We decided to use the Wasserstein distance, which is obtained by finding the optimal transport plan
between distributions. This measure is also known as the earth mover’s distance between distributions (i.e.
measure the amount of “work” to move mass from one distribution to the other); see, for example, [28]. This
distance is symmetric and can be shown to satisfy the triangle inequality [6]. Embedding graphs this way
is similar to the context of document embedding5, where each word is represented by a vector (obtained via
some word embedding algorithm), and each document is a “bag of word vectors”.

Finding an optimal transport plan to calculate the Wasserstein distance between two discrete distribu-
tions can be formulated as a linear program, and solved in polynomial time by the Simplex algorithm [8].
Unfortunately, given m graphs, computing all such distances requires estimating Θ(m2) pairwise distances,
which has a high computational cost. One solution to this issue is to define some reference distribution (for
example via averaging the vectors), and find the optimal transport plan from each graph’s “bag of vectors” to
this reference distribution. This reduces the number of optimal transport calculations from

(
m
2

)
to m. This is

know as linear optimal transport (LOT) [31], which is used, for example, in [19]. We use the implementation
of this approach from the easy to use Vectorizers Python package, which solves the LOT and computes
embeddings by computing the SVD (Singular Value Decomposition) of the optimal transport plans.

Computing the Wasserstein distances, even using a reference distribution, can still be prohibitive for some
large problems. We therefore consider two faster methods which are also implemented in Vectorizers. The
first one uses the Sinkhorn distance which is based on entropic regularization of the transport plans; see [7].
The other one, ApproximateWasserstein, also solves the LOT but using a single-point reference distribution
obtained via averaging, as described in [2]. Embeddings are obtained using SVD with scaling according to
the singular values.

As a rule of thumb, when k ≪ m, one can use the Wasserstein or Sinkhorn approach while for larger k,
the ApproximateWasserstein can be used for better performance.

2.4 Supervised Mode

There are many different types of node features that one can use to create vectors associated with nodes
of a graph in step 2 of the process. The quality of the produced embedding depends on which features are
included. Unfortunately, there is no reason to expect that some specific collection of features produces a
high-quality embedding for all possible graphs and all possible down-stream tasks. The choice depends on
both the family of networks that one wishes to analyze and a given task at hand. In general, including all
available features is typically not a good idea.

In the supervised mode, we assume that some of our graphs are labeled. Then, the framework can aim
to create a specific embedding using a carefully selected family of node features (of course, without using
the labels) with the goal for the embedding to have a strong predictive power of the labels. Since checking
all possible subsets of features is impossible in practice, we propose the following two natural algorithms,
greedy and fast, that we describe independently below.

5https://vectorizers.readthedocs.io
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Greedy Selection of Features

Recall that in step 2 of the framework, for each graph Gi with ni nodes, there are k-dimensional vector
representations for all the nodes of Gi. Each of these k dimensions is associated with one of the node
features which we denote as f1, f2, . . . , fk.

The main idea behind the first algorithm is to find a permutation of the features for which the order
is determined in a greedy fashion by selecting features with the highest incremental contribution to the
accuracy (or other cost functions, such as recall or precision) of a classifier that is built using embeddings
that, in turn, use the selected features. The algorithm works in the following way:

1. Let F = {f1, f2, . . . , fk} (F is a family of available features), F0 = ∅, and i = 0.

2. There are i features already included in Fi (the subset of features from the previous iteration). Consider
k− i subsets of size i+1 of features from F that contain Fi. In other words, for each feature fj ∈ F \Fi

(feature that is not included in Fi yet), consider a subset of features Fi ∪ {fj} (that is, complement
Fi, with each of the remaining features, independently).

3. For each of the k − i subsets of features of size i + 1, independently generate an embedding using
the selected features. By default, the Approximate Wasserstein method is used as the goal at this
point is to have a quick way of evaluating different subsets of features, not to generate a high-quality
embedding on them. As a result, the dimension of the generated embeddings is always equal to the
number of features used, namely, i + 1.

4. For each of the k−i generated embeddings, we train several XGBoost 6 classifier models (50 by default,
starting from different random seeds). The performance of the models is measured using the accuracy
metric and for each of the k − i subsets of features S ⊆ F explored, the average accuracy a(S) is
computed. Note that for the XGBoost models, data is split into 70/30, where 70% of the data is used
for training and 30% of the data is used for testing the model.

5. Let Fi+1 be a subset S of features with the largest associated value of a(S) (out of the k − i subsets
tested in the previous step). Note that it might happen that a(Fi+1) < a(Fi), that it, the performance
might go up or down in comparison to the previous iteration.
(In other words, to summarize steps 2–5, the feature fj ∈ F \Fi with the largest incremental accuracy
is selected as the most predictive feature and is then added to Fi to create Fi+1.)

6. If i + 1 < k, then we increase i and go back to step 2.

7. Otherwise (that is, when i + 1 = k), the process is almost finished. A list of k features is sorted with
respect to their incremental accuracy. There are k potential subsets of features that were evaluated
during the process. We select the subset F̂ with the largest value of the corresponding a(S) and use it
to produce the final embedding, this time using more accurate version of the Wasserstein distance.

We label the above process the Greedy feature selection method, since at every step it selects the feature
with highest incremental contribution to the model.

Fast Selection of Features

Similar to the greedy algorithm, the main purpose of the Fast Selection Method is to find an ordered set of
features with highest to lowest predictive power, for a given predictive task. The main challenge with the
Greedy method is that it is computationally expensive to iterate through the features and compute their
incremental contribution to the classifier. In the Fast method, we bypass the iterative approach and use the
feature importance functionality of the classifier (decision tree method), to identify the set of features with
the most predictive power. One thing to note is that the main difference between doing feature importance
analysis in a regular machine learning task and the technique described here is that in a typical feature
importance analysis, the features used by the classifier are the features we care to analyze. However, in
our case, the features we are interested are the features computed on the graphs. The graph features are
embedded into an embedding space, and the embedding vectors are used to train a model.

6https://xgboost.readthedocs.io/en/stable/
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1. Let F = {f1, f2, . . . , fk} represent a family of features we have computed for a given dataset.

2. Each feature fi is embedded into a single dimensional embedding vector ei, resulting in a set of
E = {e1, e2, . . . , ek} embedding vectors.

3. We treat the embedding set E = {e1, e2, . . . , ek} as the features for the machine learning task, and
train a Random Forest Classifier using the embeddings as features.

4. An ordered set of features can then be extracted from the classifier, which then directly maps to the
graph features computed on the dataset.

The Fast method allows us to map feature importance from the embedding space directly to the feature
computed on the graphs, since each feature is embedded into a single embedding vector, and therefore there
is a one-to-one mapping between features computed on the graph and the embedding vectors used as features
by the classifier. This allows us to compute the feature importance in one-shot, rather than computing them
iteratively as we do using the Greedy method. It is important to note that the Greedy and the Fast
method are not equivalent. In the Greedy method, k features are embedded into k dimensional embedding
vectors, which means that embeddings have more expressive power. On the other hand, in the Fast method,
each feature is mapped onto a single dimensional embedding vector, and the embeddings are then combined,
after the embedding are generated. Lastly, the order of the features in the Fast method is taken directly
from the output of the Random Forest Classifiers and we do not perform any additional feature sorting
(using the Greedy or other methods) afterwards. We do want to note that an alternative approach is to use
the Fast method to construct a smaller subset of features and then use the Greedy method on the smaller
subset, which would reduce computational complexity.

2.5 Unsupervised Mode

Both the Greedy and the Fast methods assume that we have target or labelled data for the graphs we
are analyzing. This is, however, not the case in every scenario. In fact, acquiring ground truth labels
for datasets is often challenging, and most real-world datasets are often without labels or are only partially
labelled. To tackle scenarios where labels are not available, we have introduced an Unsupervised algorithm
for identifying a diverse selection of features with good general predictive power. Since the actual predictive
power of a feature (or embedding) will depend on the task at hand, we have to rely on statistical properties
of the features to identify potentially predictive features. Here, we outline the general idea behind the
Unsupervised algorithm:

1. From each graph Gi in the graph collection, we randomly sample M nodes.

2. We compute the family F = {f1, f2, . . . , fk} of node-features on the selected M nodes, for each graph
Gi.

3. We then compare the node-feature distributions across a random sample of graphs in the graph col-
lection, for each feature fi, and compute Wasserstein distance between the node-feature distributions.
This allows us to approximate the variability of a given feature across the graphs.

4. Once the above metrics are computed, we select the feature with the highest variance in Wasserstein
distance across the graphs. This feature is the most predictive unsupervised feature and will be used
as the seed feature. The intuition here is that the values of the selected feature is diverse across graphs,
which could be used to build predictive models of whatever label we have for the graphs.

5. The second feature is selected by identifying the feature with second highest variance, while also
considering correlation with any already selected feature. The goal here is to selected the second
highly variable feature across graphs, that does not have strong correlation with the first feature.

6. This process is repeated until all features are sorted in this manner.
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The fundamental idea behind the Unsupervised algorithm is similar to that of the Principal Component
Analysis (PCA), but instead of transforming the features into a new coordinate system (principal compo-
nents), we identify features with the highest variance as measured by the Wasserstein distance measured
between their distributions. The main objective here is to identify an ordered set of features with highest
potential predictive power across diverse set of tasks. One could use this algorithm in scenarios where la-
belled data is not available or one wishes to create a general-purpose embedding performing reasonably well
for diverse ML tasks.

3 Experiments

In this section, we illustrate the use of our framework by experimenting with synthetic as well as real-life
networks. The goal is to explore various capabilities of the framework for both unsupervised and supervised
applications. In the first subsection, we use the Artificial Benchmark for Community Detection (ABCD)
framework [14], to generate synthetic graphs. The ABCD framework is a random graph model framework
with community structure and power-law distribution for both degrees and community sizes. The goal here
is to explore and highlight various properties of our framework in a controlled environment and showcase its
use from a practitioner’s point of view. Therefore, we consider idealized and synthetically generated cases,
while considering more real-world scenarios in the following subsection.

3.1 Synthetic Graphs

The ABCD model, an alternative approach to the LFR model [21], allows us to generate random graphs with
control over power-law distribution of both node degrees and of community sizes, fraction of outlier nodes,
level of noise, and other parameters. We leverage the Julia implementation7 to generate the synthetic graphs
used in this subsection, with a Python version8 also available. Moreover, there exists a faster implementation9

that uses multiple threads (ABCDe) [18] which can be used to generate huge graphs.
Undirected variant of LFR and ABCD produce graphs with comparable properties but ABCD/ABCDe

is faster than LFR and can be easily tuned to allow the user to make a smooth transition between the two
extremes: pure (disjoint) communities and random graph with no community structure. Moreover, it is eas-
ier to analyze theoretically—for example, in [13, 4] various theoretical asymptotic properties of the ABCD
model are investigated including the modularity function and self-similarities of the ground-truth commu-
nities. More importantly, the model is extremely flexible and allows to include outliers [16] (ABCD+o) or
to generate hypergraphs [17] (h–ABCD).

To explore various properties of our framework, we designed three experiments on synthetic networks.
We discuss various aspects of the framework but here is the main take-home message. In the first experiment
we show that the level of noise is captured by graph embeddings using a variety of features, and explore how
dimension of node features affect the quality of the generated embeddings. The second experiment verifies
that our methodology is able to capture structural properties of graphs and embed similar graphs close to
each other regardless of their sizes. Lastly, the third experiment shows that for a given problem at hand
(in this case, detecting the number of outliers), we can use our framework to identify most predictive set of
features.

The parameters used in each experiment are outlined in Table 1. The number of nodes is equal to n.
The degree distribution follows power-law with exponent γ, minimum δ and maximum ∆. The distribution
of community sizes follows power-law with exponent β, minimum c and maximum C. The level of noise
is controlled by ξ and represents the fraction of edges in the background graph, where the community
structure is ignored. Finally, the number of outliers is equal to o. Here, (150 x 10) means that 150 graphs
were independently generated with 10 outliers in each of them.

7https://github.com/bkamins/ABCDGraphGenerator.jl
8https://pypi.org/project/abcd-graph
9https://github.com/tolcz/ABCDeGraphGenerator.jl/

8

https://github.com/bkamins/ABCDGraphGenerator.jl
https://pypi.org/project/abcd-graph
https://github.com/tolcz/ABCDeGraphGenerator.jl/


Parameter Experiment 1 Experiment 2 Experiment 3

n 200 {200, 250, . . . , 400} 200
γ 3 3 3
δ 5 5 5
∆ 10 10 10
β 2 2 2
c 10 10 10
C 20 20 20
ξ {0.1, 0.101, . . . , 0.9} {0.1, 0.2, . . . , 0.5} 0.2
o 0 0 (150 x 10) + (150 x 50)

Table 1: ABCD/ABCD+o Synthetic Graph Parameters.

3.1.1 Experiment 1 – Varying Level of Noise.

In the first experiment, we explore the effect of noise that is controlled by parameter ξ in the ABCD model.
We designed this experiment to mimic a dynamic property of a graph in which an incremental change in a
property of a parameter in the graph results in the change in underlying graph structure. In a real world
network, this could resemble the change in the polarization (or the fragmentation) of a network in which
the boundaries between communities slowly vanish as the amount of noise increases. A good embedding of
graphs representing different snapshots of such evolving network should capture this dynamic. This is what
we aim to verify in this experiment. Of course, we have to note that our synthetic experiment is an idealized
version of such dynamic system and real-world scenarios will be more involved.

We construct 801 graphs, with ξ ranging from 0.1 to 0.9 in steps of 0.001. Recall that in the ABCD
model, ξ controls the fraction of edges that fall into the background graph (almost all of these edges are
between nodes from different communities). A sample of four graphs from the 801 generated ones are shown
in Figure 1. Note that these graphs are shown for illustration purposes. We then use ξ values as a label for
each graph to be used for a regression task.

More details will follow but here are high-level steps of this experiment:

• Generate a collection of graphs with varying level of noise controlled by ξ.

• Generate feature vectors of size k = 2 to k = 8 for each graph.

• Use some combination of the features vectors to construct graph embeddings of dimension d = 2.

• Use the graph embedding vectors as features for a regression task to predict the ξ values for each graph.

Figure 1: Examples of graphs generated using the ABCD synthetic graph for Experiment 1, as detailed in
Table 1, for ξ ∈ {0.1, 0.2, 0.35, 0.8}. Ground-truth communities are represented with different colours.
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Once the graph collection is generated and loaded into our framework, we can compute various graph
properties on each graph in the collection. For this experiment, we compute the following graph features:
Expansion, LSME, PageRank, Closeness Centrality, Degree Centrality, and Eigenvector Cen-
trality. For each feature, we construct a k dimensional vector. For example, for PageRank as a feature
with k = 3, for each node v we calculate the PageRank value of v as well as the average PageRank values
of neighbours at distance i from v, where i ∈ {1, 2, . . . , k − 1}. We also construct larger feature vectors by
concatenating the vectors from multiple features. For example, a feature vector of Expansion + LSME
with k = 3 is a concatenation of a 3 dimensional LSME feature vector and 3 dimensional Expansion feature
vector, resulting in a 6 dimensional global feature vector. In total, 8 different combinations of features were
selected for experiments.

Having defined the feature generation process, we construct features of lengths k from 2 to 8 based on
the above list. We then use the approximate Wasserstein technique to embed each graph in the collection
into a two dimensional embedding. We chose embedding dimension d = 2, since the approximate technique
has an upper limit of k for the dimension of the embedded space and the smallest feature vector size is of
dimension k = 2. Moreover, since our graph embeddings are used in a downstream supervised regression
task, we wanted to keep the dimensionality of the embeddings the same to standardize the comparison of
the models.

In Figure 2 we show the three 2-dimensional embeddings of graphs that were built using the Expansion,
LSME and, respectively, PageRank features. In all three cases, the underlying feature vectors have length
k = 5. Each data point (graph embedding) is then coloured based on the level of noise (that is, parameter
ξ used in the ABCD model). It is clear that in all three cases there is a relation between the value of ξ
and the graph embedding vector. To explore this relationship further, we use a regression model for graph
embeddings that are built using various graph features.

Figure 2: Two dimensional graph embeddings built using the approximate Wasserstein technique and graph
features built using the Expansion, LSME, and PageRank node features. The dimension for all the above
node embeddings is set to 5.

Using the two dimensional embeddings of the graphs, we train regression models using XGBoost to
predict the value of ξ for the unlabeled graphs. In our experiment, the train/test split is set to 70/30 and we
repeat each experiment 100 times to arrive at the average mean-absolute-error and the standard deviation
over the runs, shown as error bars in Figure 3. Here, the x-axis corresponds to k, the length of feature
vectors computed for nodes of each graph, and different colours correspond to combination of various types
of features.

We start by highlighting the fact that the overall performance of the models increases (the mean-absolute-
error decreases) as the length of the underlying feature vectors increases. This is expected, since increase in
k corresponds to a larger window for capturing structural properties of the underlying graph. We show that
this trend continues until the length of the feature vectors reaches the diameter of the graphs. At this length
scale, the feature vectors are capturing global structural properties of the graph. We note that the diameter
for our synthetic graphs is relatively small, since we consider graphs of size n = 200 that are relatively good
expanders. Moreover, we note that models built on combination of features perform the best, since each
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feature captures a different structural property of the graph.
Finally, let us note that in this experiment we were not fine-tuning the XGBoost models to achieve the

best performance, but rather to illustrate the predictive power of various graph features and associated graph
embeddings. Later in this paper we focus on using our framework to determine feature with most predictive
power. To get an embedding with a strong predictive power, one should use one of the built-in supervised
modes, using greedy or fast selection of features.

Figure 3: Mean-absolute-error measured for a regression model built to predict ξ in Experiment 1, as defined
in Table 1. The x-axis is the length of the feature vectors computed on each graph. The final graph
embedding is uniformly set to d = 2.

3.1.2 Experiment 2 – Varying Network Size.

In the second experiment, we explore the ability of our framework to capture structural similarities in
collections of graphs. In real systems, it is often important to identify structurally similar graphs, regardless
of the size of the network. This is often seen in self-similar systems, such as social networks, where particular
property presents itself at different scales [26, 4]. To study this effect, we use the ABCD model to generate
structurally similar networks of various sizes. We achieve this goal by tuning two parameters: the level of
noise (ξ) and the number of nodes in each graph (n). As highlighted in Table 1, we build a collection of 25
graphs with ξ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and n ∈ {200, 250, 300, 350, 400}. As it was done in Experiment 1, we
compute node features for each graph and use the approximate Wasserstein technique to build an embedding
vector for each graph. We fix the feature vector size to k = 4 and graph embedding size to d = 4. To visualize
the final embeddings, we use UMAP10 [22] to map the final graph embedding into two dimensions.

In Figure 4, we show the two dimensional representations of the graph embeddings, coloured and an-
notated using ξ and n, respectively. In the first chart (left), the underlying feature vector was computed
using the LSME structural embedding algorithm. This technique captures structural properties of nodes
within each graph. Using LSME as features, the graph embeddings captures similarities between structural
properties of each graph. This can be seen in the final two dimension representation of the embeddings,
since graphs with similar structure (ξ value, colour-coded) are clustered together. It is interesting to observe
that the quality of the clusters (tightness) decreases as the noise (ξ) increases.

Similar behaviour is also captured by a more simple structural feature, Closeness Centrality. We can
see in the middle chart in Figure 4 that Closeness Centrality also groups graphs with similar properties

10https://umap-learn.readthedocs.io/en/latest/
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Figure 4: Two dimensional representations of the approximate Wasserstein graph embeddings built using
LSME, Closeness Centrality, and Degree Centrality graph features. Colours correspond to different
values of noise (ξ) and the size of the underlying graphs (n) are shown inside each data point.

together, but with lower quality compared to LSME. The decrease in clustering quality as a function of
the level of noise is more evident in this case. The important observation in these cases points at the fact
that the approximate Wasserstein technique using LSME or Closeness Centrality preserves structural
properties of the embedded graphs such as level of noise.

On the other hand, embeddings using Degree Centrality tend to group together graphs of similar sizes
(see the right chart in Figure 4). This shows, not surprisingly, that different combinations of node features
affect the generated graph embeddings. This is a good and desired property for various reasons. First, in
a supervised setting, it allows us to select the right combination of features depending on the problem at
hand. As a result, the framework is able to not only create good quality embeddings but it also sheds a light
on which node features have the most predictive power. This distinguishes it from many other embedding
methods that are not explainable. Finally, in an unsupervised scenario, the framework can select a diverse
group of features and create good “all-purpose” embeddings.

3.1.3 Experiment 3 – Outlier Detection.

In this experiment, we control the fraction of outlier nodes in the graph where an outlier is a node that does
not belong to any community. We construct two sets of graphs. In the first one, 5% of nodes are outliers
and in the second group there are more outliers, namely, 25%. For each group, we generate 150 graphs. It
is important to note that, since the ABCD+o model is a randomized graph generator, each graph in their
respective groups are different due to a random nature of the model. This is achieved by setting different
random seeds while generating the graphs.

We compute various graph features on each subgraph and use them to construct graph embeddings using
the approximate Wasserstein techniques. Here, we consider 9 different combinations of features, as defined
in Table 2. Each feature type has a dimension of k = 4 and we combine different features by concatenating
their feature vectors. We note that in this experiment, we train binary classifiers using XGBoost classifier
with 70/30 train/test split, and repeat each experiment 100 times to collect enough statistics for model
performance.

We analyze the performance of binary classifiers (measured using accuracy) trained on graph embedding
vectors built using different combinations of feature vectors (M-0 to M-8 as in Table 2). In Figure 5 (left),
we show the model accuracy for each feature set. Focusing on single feature models (M-0 to M-5), we can see
that graph embeddings built on top of Closeness Centrality (M-4) perform the best, while models built
using Eigenvector Centrality (M-5) perform poorly. It is also worth mentioning that Expansion (M-0),
an easy and fast to compute node feature, does very well. The predictive power of Closeness Centrality as
a node feature comes from the fact that outlier nodes are, on average, closer to other nodes in the network,
since they do not belong to any of the communities but rather randomly connected to the entire network.
Therefore, this can be a distinctive factor for graphs with higher number of outlier nodes.
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Model Feature(s) used

M-0 Expansion
M-1 LSME
M-2 PageRank
M-3 Degree Centrality
M-4 Closeness Centrality
M-5 Eigenvector Centrality
M-6 Expansion, LSME
M-7 Expansion, LSME, PageRank
M-8 Expansion, LSME, PageRank, Degree Centrality, Closeness

Centrality, Eigenvector Centrality

Table 2: ABCD+o outlier classification model.

Figure 5: Left: Accuracy of binary-classifiers built for models M-0 to M-8. Right: two dimensional repre-
sentation of graph embedding vectors built using features in M-8.

Additionally, we consider composite models, where embeddings are generated from a combination of
feature vectors. In Figure 5 (left), models M-6, M-7, and M-8 are composite models (as defined in Table 2).
For each one these models, we run two sets of experiments. One in which we do not apply any dimensionality
reduction to the composite feature vectors, before passing them to the graph embedding layer. And, another
where we apply dimensionality reduction using UMAP, to reduce the dimension of the composite feature
vector to k = 4. We can see that in all three cases, dimensionality reduction does not have a significant
effect on the performance of the models. One thing worth highlighting is that the composite model (M-8)
built using all features with k = 4 performs the best. This hints at the fact that one could capture a wide
variety of features in the feature computation layer, then reducing the feature space using a technique such
as UMAP to allow for a better performance of a given machine learning model at hand.

Finally, in Figure 5 (right) we show a two dimensional clustering of the graph embeddings built using
M-8 features. It is clear that the two dimensional representations of graph embedding vectors form two well
separated clusters. In an unsupervised setting, one could use a technique such as DBSCAN [11] to identify
these two clusters, even if the underlying classes are not known. In this experiment however, we know that
the underlying graphs are generated using random graph technique with two outlier settings. We show the
fraction of outliers for each group as different colours in this figure.
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3.2 Real-World Networks

In this section, we explore the performance of our framework on a few collections of real-world networks.
These collections were acquired from the Benchmark Data Set provided by the department of computer
science of TU Dortmund11. A summary of these collections of networks used for our experiments is provided
in Table 3. Here, we consider five real-world collections; IMDB [33], MUTAG [9], NCI1 [32], BZR [27],
and PROTEINS [5], with various sizes and source, each of which consists of networks that can be categorized
into two classes. Therefore, a natural type of analysis would be to investigate the performance of binary-
classifiers trained on graph embeddings generated by NEExT.

Name # of Graphs # of Classes Avg. # of Nodes/Edges

IMDB 1000 2 19.77/96.53
MUTAG 188 2 17.93/19.79
NCI1 4110 2 29.87/32.30
BZR 405 2 35.75/38.36

PROTEINS 1113 2 39.06/72.82

Table 3: Summary of real-world networks used in our experiments.

In our analysis, we first use the performance of publicly available models as a benchmark for comparing
out-of-the-box NEExT to other techniques. Our experiments seem to be promising. The main conclusion
is that the accuracy of models built using NEExT is similar to other models, even without performing any
fine-tuning.

One of the main requirements for performing effective data-science is the task of exploring the importance
and contribution of various features in a predictive task. To that end, three feature exploration capabilities
of NEExT were introduced. Below, we showcase the two supervised modes (greedy and fast selection of
features) and the unsupervised one.

3.2.1 Experiment 4 – Comparison to Other Techniques

In this exploratory stage of our project, the goal is not to seek the best performing model at all cost, but
rather provide a framework that can easily create models with reasonable performance compared to state-
of-the-art techniques, while keeping model explainability. Moreover, note that some models are trained on
additional metadata available for nodes as well as edges. We do not do it at present but it would be easy
to incorporate such additional information in our model. It is expected that after appropriate selection of
node features and fine-tuning the model, the accuracy of the corresponding models should increase.

In our experiments on the real-networks listed in Table 3, we build d = 24 dimensional graph embeddings
using the approximate Wasserstein technique on top of k = 24 dimensional node feature vectors computed
on each network. Here, we use 4-dimensional concatenated LSME, Expansion, Degree Centrality,
Closeness Centrality, Load Centrality, and Eigenvector Centrality as our node feature vectors. We
then train the XGBoost binary classifier on top of the d = 24 dimensional graph embedding feature vectors.
Similarly to the approach taken before, we keep a 70/30 train/test split, and repeat each experiment 100
times to build the statistics for our model performance. Lastly, we point out that we do not balance the
datasets in our models, to allow the classifiers to capture statistical imbalances in the underlying data
distribution.

In Figure 6 and Table 4, we show the performance of classifiers trained using NEExT and benchmark
models collected from leaderboard (LB) chart available on-line12. Note that the LB accuracies are shown as
the range of accuracies from various models submitted for each dataset. We see that the accuracy of models
built using NEExT is similar to other models.

11https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
12https://paperswithcode.com/task/graph-classification
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Figure 6: Accuracy of models built using NEExT framework (blue) and publicly available models (red), for
various real-world networks. The performance of other models is collected from leaderboard chart available
on-line.

Name Accuracy Precision Recall F1-Score LB Accuracy

IMDB 0.72 ± 0.02 0.72 ± 0.03 0.72 ± 0.04 0.72 ± 0.02 0.52–0.96
MUTAG 0.85 ± 0.05 0.84 ± 0.08 0.82 ± 0.08 0.83 ± 0.08 0.58–1.00
NCI1 0.74 ± 0.01 0.75 ± 0.02 0.75 ± 0.01 0.74 ± 0.01 0.64–0.88
BZR 0.84 ± 0.03 0.77 ± 0.03 0.71 ± 0.02 0.73 ± 0.02 0.87

PROTEINS 0.71 ± 0.02 0.70 ± 0.05 0.69 ± 0.04 0.69 ± 0.03 0.70–0.85

Table 4: Summary of Real-World Networks Classification Results. Here, LB Accuracy refers to the range
of accuracy of the models from the leaderboard.

3.3 Feature Analysis and Exploration

In the previous sections, we used our framework to explore and analyze some predictive modelling use-cases
using synthetic and real-world graphs. We focused on highlighting some general capabilities of our framework,
without specific focus on identifying the most predictive features or optimizing for model performance. In
this section, following a data-science and machine learning approach, we focus on feature exploration and
optimization. The main idea here is to identify an ordered list of features, for which the order is defined by
the highest incremental contribution to the accuracy of classifier, built using embeddings of the features.

In Section 2.4, we introduced three methods, two supervised and one unsupervised, for performing feature
importance selection. These method are labelled Greedy, Fast, and Unsupervised. Here, we perform a
number experiments, using these techniques to identify the most predictive feature for a given dataset. To
provide a reference, we also include Random and Worst case scenarios for performing feature selection.
The Worst case scenario is determined by running the Greedy algorithm but where features are selected
with the lowest incremental contribution to the accuracy of the model. As we see this, in a real-word setting,
a data science practitioner is faced with the following choices when performing feature selection on a new
dataset:

• The practitioner could select a random set of features computed on a graph dataset, and build a
production model using those features.

• The practitioner could select and compute all available features.
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• The practitioner could select a subset of all features with most predictive power.

Of course each approach has its pros and cons when it comes to feature selection. A random selection
of feature could be a great first approach for quick analysis of the dataset, however it will most likely result
in poor performing model, as there is a chance that the random selection results in the selection of the
least predictive feature set, which we call worst case scenario. On the other hand, one could compute
all available features, and build a model using such feature set. This has two drawbacks. Firstly, it is
computationally expensive to compute all features on a large dataset in a production setting. Second,
adding more features is not always beneficial to the performance of machine learning models, specially due
to the curse of dimensionality [3]. The ideal situation is to include a subset of features with the most
predictive power, which provides a balance between model performance and computational cost. However,
this approach has one major drawback, which is the challenge of identifying such subset. This section is
devoted to exploration of these scenarios. To focus our attention, we select one dataset from the real-world
networks NCI1 to run our experiments on. In the following sub-section, we highlight the results of feature
selection experiments.

Feature Selection Experiments

To explore the effectiveness of feature selection algorithms of NEExT, we compare NEExT’s Greedy,
Fast and Unsupervised algorithms against Random and Worst case feature selection scenarios. All of
the above approaches are measured with reference to the case of using all features, in a model building
exercise. All the experiments are run in the following manner:

• In the first iteration of the experiment, each algorithm selects one feature. The Greedy, Fast,
Unsupervised and Worst algorithms select this feature based on the approach described in the
previous section. In the Random approach, as the name suggests, this feature is selected at random.

• The selected feature is computed on all graphs and embeddings are generated according to the given
algorithm.

• We build 50 binary classifier using XGBoost algorithm, and the average and standard deviation of the
accuracy is computed over the runs.

• We select the second feature, according to each algorithm and repeat the process until all features are
selected.

• Lastly, for the Random algorithm there is an outer loop which repeats the above process 500 times.
This is done since in each run the features are selected at random and the total number of features is
small. As a result, with non-negligible probability, a random selection could turn out to be good (or
bad). Hence, for the Random selection algorithm, the mean and standard deviation are computed
based on this outer loop to capture the expected performance of a typical subset of features of a given
size.

The results of the above procedure are shown in Figure 7, where the mean (solid lines) and standard
deviation (shaded areas) are presented for the accuracy of the binary classifiers built for each algorithm.
The x-axis in Figure 7 shows the number of node-features used for building the graph embeddings that feed
into the classifier models. For all algorithms, the performance of the classifier model often increases as we
increase the number of features. This is expected, since adding more features generally leads to the model
having more information for determining a classification boundary line. It is important to note that increase
in performance of model, as the number of features increase, is not always monotonic and one has to always
be aware of the curse of dimensionality. In most cases, there will be an optimal number of features, which
depend on many factors such as model capacity, feature diversity and complexity of the problem, just to
name a few.

The best performing algorithm is the Greedy method, shown in green. This outcome is consistent with
the desired outcome of a greedy technique. At each step, the Greedy method selects the most predictive
feature based on the incremental increase to the accuracy of the model. Although the Greedy method
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Figure 7: This figure shows the mean (solid line) and standard deviation (shaded area) of model accuracy for
the Greedy, Fast, Unsupervised, Random, and Worst algorithms. The x-axis is the number features
used in each model. For example, x = 5 means that 5 node-features were used to build embeddings that are
used in the binary classifier model.

produces the best performance, it is computationally expensive, since at each step, it searches across all
remaining features for the best performing feature. It is important to note that the Greedy method uses
only an exploitative method and may not select the absolute best set of features. A more robust algorithm
could mix both exploitation and exploration to determine the most predictive set of features. This will the
explored in future studies.

The second best performing algorithm is the Fast method, shown in red. This algorithm performs
the feature importance analysis in one step. The Fast method uses the feature importance functionality
of the Random Forest Classifier to determine the feature importance ranking link13. As described
previously, the Fast method, builds one dimensional embeddings of every node-feature, to preserve the one-
to-one mapping between node-features and embedding dimensions. Therefore, the output feature importance
of the classifier, which is an ordered set of embedding vectors, can be translated directly to the node-
features. Although this method has the advantage of computing feature importance efficiently, it also has
some disadvantages. The main drawback is that the requirement to preserve a one-to-one mapping between
node-features and embedding vectors forces us to map feature into a single dimensional embeddings. This
restricts the expresibility of the embedding algorithm, and would result in loss of predictive power, as shown
in Figure 7. One major benefit of using the Fast algorithm is that it provides you with a quick and
approximate method for learning about the predictive quality if the features, and if adding new features
would improve your model or not. As we can see, the accuracy of the model plateaus after about 10 features.
We can use this information to guide the more expensive Greedy feature search.

Both the Greedy and the Fast methods assume that we have target or labels for our graphs. This may
not always be the case, as acquiring ground truth labels in a real-world datasets can be a challenge. However,
one may still be interested in computing embeddings on graph datasets with good general predictive power
for unsupervised tasks such as clustering and outlier detection. In this case, you can not rely on the guidance

13Scikit-Learn RandomForestClassifier Feature Importance
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of improvement to accuracy for selecting features. There are two general options, one to select features at
random and second to use an unsupervised technique to guide the feature selection.

To perform feature importance selection in scenarios where labeled data is not available, we have im-
plemented an unsupervised algorithm, details of which are described in Section 2.5. The main motivation
behind this algorithm is to provide a selection of diverse set of features that could be used in unsupervised
and potentially supervised tasks. To showcase the quality of these features, we compare the performance of
the ordered selection of features identified using our Unsupervised algorithm, in a supervised task, against
the Greedy, Fast and the Random algorithms. The results of this experiment are presented in Figure 7,
where the Unsupervised algorithm is shown in blue. Of course, as expected, the Unsupervised algorithm
under-performs the more targeted Fast and Greedy methods. Indeed, supervised methods are designed
to use the labels to identify the most predictive set of features for a given task, whereas the unsupervised
method aims to select a diverse set of general-purpose predictive features. The more interesting comparison
is the comparison between the Unsupervised and Random techniques. Randomly selecting features, could
result in widely different outcomes. To provide a frame of reference, we plot the average performance of
500 simulations of randomly selecting features and training a classifier on them. The solid yellow line in
Figure 7 shows the mean accuracy of such a simulation. We can see that for the initial 1-10 features, the
Random approach greatly under-performs the Unsupervised and naturally the supervised (Greedy and
Fast) techniques. Of course, in real-world scenarios, a practitioner will not run hundreds of simulations and
may randomly select a set of features. This approach, due to chance, could result in the selection of the
set of features with the worst performance, shown in black and labeled Worst in Figure 7. Therefore, in
situations where labeled data is not available, the Unsupervised algorithm can be used as a good general
purpose feature selection technique and will result in a set of diverse features with good predictive power.

In Tables 5 and 6, we show the top five most predictive features as determined by the Greedy and Fast
methods. As we can see, there are some common features between the two methods. However, as we noted
above, the difference in how features are combined and embeddings are generated means that the list of most
predictive features will not be the same between different techniques.

Datasets Top 5 Features
BZR Page Rank 1, Self Walk 2, Lsme 4, Closeness Centrality 3, Eigen-

vector Centrality 4
IMDB Self Walk 1, Eigenvector Centrality 3, Self Walk 2, Load Central-

ity 2, Load Centrality 4
MUTAG Page Rank 1, Page Rank 4, Self Walk 3, Load Centrality 3, Lsme

4
NCI1 Page Rank 1, Load Centrality 3, Load Centrality 4, Self Walk 4,

Load Centrality 2
PROTEINS Page Rank 1, Basic Expansion 2, Lsme 4, Degree Centrality 1,

Eigenvector Centrality 2

Table 5: List of top most predictive features as selected by the Greedy method.

3.4 Sampling

One of the main challenges with applying network science techniques to real-life networks such as social
networks, is the computational complexity arising due to the large size of such systems. For example, social
networks such as Facebook have billions of users with tens of billions of interactions between those users.
Even for smaller networks, one may require real-time analysis of the networks, which make using the entire
dataset for running analysis intractable. To address the computational complexity of running analysis on
large networks we have introduced a sampling technique, which helps reduce the computational cost of
running analysis on large and medium size networks. In this section, we introduce this sampling module
and explore the impact of using sampling on various statistical properties of the networks as well as the
corresponding graph embeddings. Some asymptotic analysis of the effect of sampling was presented in [29].
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Datasets Top 5 Features
BZR Self Walk 1, Closeness Centrality 3, Lsme 4, Basic Expansion 2,

Load Centrality 2
IMDB Lsme 1, Lsme 2, Self Walk 1, Lsme 3, Lsme 4
MUTAG Eigenvector Centrality 2, Self Walk 1, Eigenvector Centrality 3,

Page Rank 4, Page Rank 3
NCI1 Load Centrality 3, Basic Expansion 3, Load Centrality 4, Eigen-

vector Centrality 4, Load Centrality 2
PROTEINS Eigenvector Centrality 1, Closeness Centrality 1, Page Rank 1,

Degree Centrality 1, Page Rank 2

Table 6: List of top most predictive features as selected by the Fast method.

3.4.1 Sampling Technique and Metrics

Here, we introduce the sampling technique used in NEExT and define metrics we use in our experiments
to analyze the impact of sampling on graph embeddings. As highlighted previously, the NEExT framework
works in two steps. First, we compute a set of node features on all nodes of every graph in the graph
collection. Secondly, we use the computed node features to build embedding vectors for each graph in the
graph collection. The major contributor to the computational cost is the first step of this process, which
computes node features on every node of every graph. The embedding generation is computationally less
costly since we use an efficient algorithm, the approximate Wasserstein vectorization algorithm.

A natural way to reduce the computational cost is to compute node features on a subset of nodes in each
graph, instead of all nodes. Since the goal is to compute node features only on a subset of nodes, sampling
nodes based on certain node features (such as node degree) would not be feasible. This is because it would
require us compute node degree on all nodes, which defeats the purpose. More importantly, the Wasserstein
distance treats all nodes equally in the associated linear optimal transport task. Therefore, we sample nodes
for each graph uniformly at random, with sampling rate r. Once we have a random subset of nodes sampled
for each graph, we compute node features on the sampled nodes and build graph embeddings using those
features. It is important to note that sampling does not impact the structure of the graphs themselves, but
only what nodes features are computed for. This means that sampling does not reduce space complexity of
the process, but only the time complexity.

Although sampling reduces computational cost of building and analyzing graph embeddings, it is im-
portant to consider the effect of sampling on the quality of embeddings generated and their effects on any
downstream tasks such as graph classification done using computed graph embeddings. To explore the
impact of sampling on the above, we perform two types of experiments:

• Experiment 5: Comparing the similarity between embeddings generated using different sampling
rates.

• Experiment 6: Analyzing the accuracy of classifiers trains on embeddings build using different sam-
pling rates.

The results and analysis of the above experiments are presented in the following subsections.

3.4.2 Experiment 5 – Effect of Sampling on Embedding Quality

We start our analysis by exploring the impact of sampling on the quality of embeddings. First, we note
that in the following experiments sampling is measured and defined as (1 − r), where r is the sample rate.
It is a metric that ranges between 0 and 1 and measures the fraction of nodes removed from each graph.
For example, 1 − r = 0, means that we are using all the nodes in the graphs to compute node features and
embedding vectors. Secondly, we define the Embedding Similarity Score in the following way:

• We compute reference graph embeddings for all the graphs in the graph collection using all the nodes.
Lets call this embedding space Ei
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• Then, for a given sample rate r, we compute node features and embeddings for all the graphs in the
graph collection using the sampled nodes. Lets call this embedding space Ej .

• The Embedding Similarity Score tells us how similar, as measured using Wasserstein distance,
are the distances between various graphs in embedding space Ei to distances in embedding space Ej .

• Distances in each embedding space is measured by selecting a reference graph Go, and measuring the
similarity distance (measured using Wasserstein distance) between the reference graph Go and a
randomly selected set of graphs within the collection s0 = Sim(Go, Gk). This provides us with a list
of similarity measures in each embedding space: SEi

= [s0, s1, ..., sk].

• The Embedding Similarity Score is then defined as S = Sim(SEi , SEj ).

We have chosen this similarity score, as it provides us with a natural way of comparing two embedding
spaces. The Embedding Similarity Score ranges between 0 and 1. This metric is measured between
embedding spaces build using sampling rate r and the original embedding space built using all the nodes
(1 − r = 0).

Figure 8: Plot of Embedding Similarity score as a function of 1−r for two synthetic datasets. Dataset Exp2
and Exp3 are datasets used in Subsections 3.1.2 and 3.1.3, respectively.

First, we measure Embedding Similarity Score for two of the synthetic datasets Exp2 and Exp3,
introduced in Subsections 3.1.2 and 3.1.3, respectively. The results of these experiments are shown in
Figure 8. Here, for any given sample rate, we compute a group of node features, labeled as FG-1 to FG-3,
and use those features to build graph embeddings for each graph in the collection. Mapping between feature
groups and features are given in Table 7.

Feature Group Node Features

FG-1 All features
FG-2 PageRank, Degree Centrality, Closeness Centrality, Load

Centrality, Eigenvector Centrality
FG-3 LSME, Expansion

Table 7: Definition of feature groups used for the experiment shown in Figure 8.

The overall qualitative trend we see in these experiments follows the expected logic that as we build
embeddings using smaller set of sampled nodes, the quality of the embeddings decreases. Here, as we
mentioned before, the quality is measured by computing the similarity between the embeddings generated
some sample rate r and embeddings generated using all the nodes in the graphs.
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Looking closer at the data, we see that quality of some feature groups decrease faster than others. For
example, in both experiments (Exp2 and Exp3), sampling has a more significant impact on embeddings
generated using feature group FG-3 (LSME and Expansion). This effect is a lot more noticeable in Exp3.
The results shown in these experiments hint at two important findings. First, the effect of sampling on the
quality of embeddings generated will depend on the underlying dataset. For example, as we show in the
right chart in Figure 8, using feature groups FG-1 and FG-2, one could remove up to 75% of the nodes,
without noticeable impact on the quality of the embeddings. The second finding highlights the fact that each
feature, as shown by comparing different feature groups, will be impacted differently by the sampling rate.
Lastly, it is important to consider the fact that there are more features in FG-1 than there are in FG-2, and
similarly, there are more features in FG-2 than there are in FG-3. This will have an impact on the quality of
the embeddings. What our results show is that if sampling is used to enhance the computational efficiency
of the process, it is important to consider the impact of sampling on each feature (feature group) and it may
be more efficient to enhance the quality by adding more features than reducing sampling rate.

3.4.3 Experiment 6 – Effect of Sampling on Models

In the above experiments, we have shown that the quality of generated embedding vectors decreases as we
remove more nodes from the underlying graphs through the sampling process. However, most practitioners
are interested in using the generated embedding vectors to build downstream machine learning models such
as graph classifiers. Therefore, it is important to investigate the impact of sampling on the quality of such
downstream models. To answer this question, we performed experiments that analyze the impact of sampling
on graph classification for graphs in the real-world dataset. Similar to the previous section, we use 1 − r as
the sampling parameter to adjust the fraction of nodes sampled in each experiment. The following outlines
the experimentation process:

• For each dataset, we choose a sampling rate (1−r) and sample nodes from each graph in the collection
accordingly.

• We compute all node features (as defined in Section 2) for the sampled nodes, for each graph. This
results in a 32 dimensional feature vector.

• The node features are used to compute 32 dimensional embedding vectors using the approximate
Wasserstein vectorization algorithm.

• The embeddings are used as features in building graph classification models, where we train 50 XGBoost
models with 70/30 train/test split.

• The accuracy of models are computed.

The results of the above experiments are shown in Figure 9. Although we know that sampling rate
impacts the quality of the underlying embeddings, the results in Figure 9 show that in these scenarios,
the quality of the classifiers built on those embeddings is not impacted. This has to do with the fact that
classifiers look for dividing boundaries between classes, and as long as this boundary can be found, a classifier
can perform well. In addition, the approximate Wasserstein vectorization algorithm measures the distance
based on the centre of the mass of the distributions, which is not impacted as greatly by the removal of
nodes. This helps dampen the effect of sampling on the quality of the generated models.

In Figure 10, we show the normalized computation time for each experiment. We normalize the average
computation time with respect to the case where all nodes are used for the experiment. As we can see,
for example, sampling only 50% of the nodes results in a computation time reduction between 5-20%. The
primary reason why sampling does not have a more significant impact on computation time is that node
features such as PageRank or some Centrality measures are global measures, which means that we need
to compute them across all nodes. Lastly, as we can see in Figure 10, computation time of datasets is
impacted differently, depending on the structure of the network. For example, BZR has the largest time
reduction as a function of sampling rate, while IMDB has the smallest. This points to the fact that some
graphs could have a small set of computationally expensive nodes (perhaps outliers), which contribute to
the computational cost while not impacting the quality of the resulting classifier models. We conclude this
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Figure 9: Accuracy of classification models built using embeddings at different sample rates (1 − r), for all
real-world datasets.

section by highlighting the fact that one could reduce the computational cost of running NEExT on large
datasets by sampling only 50-60% of nodes and arrive at roughly equal quality models. However, the exact
reduction in the computational cost will depend on the global versus local nature of the selected node features
and the structure and connectivity of the underlying graph.

4 Conclusion

In this paper, we introduced NEExT (Network Embedding Exploration Tool), a Python framework for
exploring and analyzing collections of graphs. Using synthetic and real-world datasets, we performed experi-
ments to highlight various capabilities of our framework, such as building graph embeddings and performing
feature importance analysis. We explored the computational efficiency of our framework through graph sam-
pling and computationally efficient graph embedding techniques such as the Approximate Wasserstein
algorithm. We also showed that the models and embeddings generated using our framework are explain-
able, as the underlying features are built using known and commonly used node-features. We compared the
performance classifier models created using NEExT to other cutting edge techniques across five real-world
datasets, and showed the models generated by NEExT are comparable in performance, while also being
explainable. Finally, we want to point out that although NEExT is designed to work with a collection of
graphs, one could also use our framework on single networks, by composing the collection of communities
or ego-nets around various nodes of a single graph. We hope that NEExT is a useful contribution to the
network science community.
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