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Abstract. In 1972 Tutte famously conjectured that every 4-edge-connected graph has
a nowhere-zero 3-flow; this is known to be equivalent to every 5-regular, 4-edge-connected
graph having an edge orientation in which every in-degree is either 1 or 4. Jaeger conjectured
a generalization of Tutte’s nowhere-zero 3-flow conjecture, namely, that every (4p + 1)-
regular, 4p-edge-connected graph has an edge orientation in which every in-degree is either
p or 3p + 1. Inspired by the work of Pra lat and Wormald investigating p = 1, we address
p = 2 to show that the conjecture holds asymptotically almost surely for random 9-regular
graphs. It follows that the conjecture holds for almost all 9-regular, 8-edge-connected graphs.
These results make use of the technical small subgraph conditioning method.

1. Introduction

A k-flow of an undirected graph G = (V,E) is an orientation of its edge-set together with
a function f : E → {0,±1,±2, . . . ,±(k − 1)} such that the following is satisfied for each
vertex v ∈ V : ∑

e∈D+(v)

f(e)−
∑

e∈D−(v)

f(e) = 0.

To orient a graph G = (V,E), convert each edge e = {x, y} into an ordered pair e = (x, y).
We denote the set of all edges oriented towards v as D+(v) and the set of all edges oriented
away from v as D−(v); a k-flow is said to be a nowhere-zero k-flow if f(e) 6= 0 for all e ∈ E.
We define the in-degree of v as d+(v) := |D+(v)| and the out-degree of v as d−(v) := |D−(v)|.
In 1972 Tutte famously conjectured the following (see [4, Open Problem 48], [9, Section
13.3]):

Conjecture 1. (Tutte’s nowhere-zero 3-flow conjecture) Every 4-edge-connected graph ad-
mits a nowhere-zero 3-flow.

Though Tutte’s nowhere-zero 3-flow conjecture has attracted considerable attention, it
has yet to be proven. For a significant period of time it was not known whether or not there
exists a fixed constant k such that every k-edge connected graph has a nowhere-zero 3-flow
(this is known as the weak 3-flow conjecture of Jaeger). It was proved for k ≥ c log2 n for
n-vertex graphs by Alon, Linial, and Meshulam in 1991 [1], as well as by Lai and Zhang
in 1992 [10]. The weak 3-flow conjecture was first proved in 2012 by Thomassen [15], who
showed that every 8-edge-connected graph admits a nowhere-zero 3-flow. This was improved
to k = 6 in 2011 by Lovász, Thomassen, Wu, and Zhang [11]. It is a well-known fact that a
graph admits a nowhere-zero 3-flow if and only if it has a nowhere-zero 3-flow over Z3, for
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instance see Seymour [13] for more discussion. Furthermore, it is known (see [4], [9]) that
Tutte’s conjecture has the following equivalent form:

Conjecture 2. (Tutte’s nowhere-zero 3-flow conjecture reformulated) Every 5-regular, 4-
edge-connected graph has an edge orientation in which every in-degree is either 1 or 4.

Let k ≥ 3 be an odd integer; an orientation is a modulo k-orientation if for every vertex
v ∈ V , d+(v) ≡ d−(v) (mod k). In 1988 Jaeger [8] conjectured the following for all p of
which Tutte’s nowhere-zero 3-flow conjecture is a sub-case when p = 1:

Conjecture 3. (Jaeger’s conjecture) For any integer p ≥ 1, the edges of every (4p + 1)-
regular, 4p-edge-connected graph has a modulo (2p + 1)-orientation, i.e. can be oriented so
that every in-degree is either p or 3p+ 1.

Jaeger’s conjecture was originally formulated for 4p-edge-connected graphs but it can be
reduced to the case of (4p + 1)-regular graphs (see for instance [12]). In 2019, Pra lat and
Wormald [12] used the small subgraph conditioning method to demonstrate that Jaeger’s
conjecture is asymptotically almost surely true for p = 1. In 2011, Alon and Pra lat [2]
used the expander mixing lemma to demonstrate that Jaeger’s conjecture is asymptotically
almost surely true for p which are somewhat large (though still finite). In 2018, Han, Li, Wu,
and Zhang [7] demonstrated the existence of 4p-edge-connected graphs which do not admit a
(2p+1)-orientation for p ≥ 3. A natural question is: does the conjecture hold asymptotically
almost surely for the values of p in between? The case of p = 2 is of particular interest.
In this paper, we investigate the case where p = 2 and study 9-regular, 8-edge connected
graphs by utilizing the pairing model of Bollobás (see [3]) which a.a.s. produces 9-regular, 8-
edge connected graphs. Modular 5-orientations in highly connected graphs are of particular
interest: as Han, Li, Wu, and Zhang noted in [7], if 8-edge-connected graphs in general admit
modular 5-orientations, it is implied that Tutte’s famous 5-Flow Conjecture would hold as
well. Our results are asymptotic, that is, we are holding that the probability that a random
graph on n vertices has a particular property tends to 1 as n tends to infinity.

Theorem 1.1. A random 9-regular graph Gn on n vertices a.a.s. has a modulo-5 orientation,
i.e. has an orientation in which every in-degree is either 2 or 7.

1.1. Overview of Proof of Theorem 1.1. To prove Theorem 1.1 we utilize the pairing
model wherein we work with a random graph Pn,d, in which dn points are arranged in n
groups of d points each. Each of the n groups is referred to as a vertex while the d points
composing them continue to be referred to as points. A perfect matching is then made
amongst the points with each group of d points forming a vertex of degree d. The result is a
d-regular multi-graph. The convenience of the pairing model lies in the fact that if a given
statement is true in Pn,d then it is true in the random d-regular graph on n vertices (see
Corollary 2.3 in [16]).

We are interested in orientations of the edge-set of 9-regular graphs in which every vertex
has an in-degree of either 2 or 7 (which implies an out-degree of either 7 or 2, respectively);
we call such orientations valid. Let Y = Y (n) be the number of valid orientations of a
random element of Pn,9. We will show that there are plenty of valid orientations per pairing,
on average. In order to show that pairings a.a.s. have at least one valid orientation (that is,
P(Y > 0) ∼ 1 or, alternatively P(Y = 0) ∼ 0), a standard strategy is to estimate E[Y (Y −1)]
and show that it is asymptotic to (E[Y ])2. One might be tempted to say that the conclusion



ALMOST ALL 9-REGULAR GRAPHS HAVE A MODULO-5 ORIENTATION 3

then follows immediately from Chebyshev’s inequality:

P (Y = 0) ≤ E[Y (Y − 1)]

(E[Y ])2
− 1.

Unfortunately, this proof technique fails here as there is a constant factor discrepancy in the
asymptotic ratio giving us an upper bound of 2/7 + o(1) for the failure probability instead
of o(1).

We will utilize the small subgraph conditioning method (see [16]) to prove Theorem 1.1.
This involves ensuring that a random variable Y and a sequence of random variables Xi (in
our case, as usual for this method, we will let Xi be the number of cycles of length i) satisfy
the following properties:

(a) For each k ≥ 1, Xi (i ∈ {1, 2, . . . , k}) are asymptotically independent Poisson random
variables with E[Xi] ∼ λi;

(b) For every finite sequence j1, j2, . . . , jk of non-negative integers,

E[Y [X1]j1 . . . [Xk]jk ]

E[Y ]
∼

k∏
i=1

µjii =
k∏
i=1

(λi(1 + δi))
ji

(note that [x]k = x(x− 1) · · · (x− k + 1) is the falling factorial);

(c)
∑

i λiδ
2
i <∞;

(d)

E[Y 2]

(E[Y ])2
≤ exp

(∑
i

λiδ
2
i

)
+ o(1).

If the above four properties hold, then

P(Y > 0) = exp

(
−
∑
δi=−1

λi

)
+ o(1).

The small subgraph conditioning method was used by Pra lat and Wormald to demonstrate
the truth of Jaeger’s conjecture for p = 1 [12] and it has been used to deal with similar
problems, as in [6], where Delcourt and Postle used it to demonstrate that a 4-regular graph
G a.a.s. admits an S3-decomposition, that is, G can be shown to consist of copies of three
vertices which all make an edge with another vertex.

2. Proof of Theorem 1.1

We introduce the random variable Y = Y (n) to measure the number of valid orientations
of an element of Pn,9. A vertex in a valid orientation is called an in-vertex if it has an in-
degree of 2 and is called an out-vertex otherwise. Each point contained in an edge oriented
towards an in-vertex or away from an out-vertex is called special. A point is referred to as
an in-point if the edge containing it is pointing towards it and is referred to as an out-point
otherwise. The expected number of valid orientations is computed as follows:

(1) E[Y ] =

(
n
n/2

)(
9
2

)n
(9n/2)!

M(9n)
,
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where

M(9n) =
(9n)!

(9n/2)!29n/2

is the number of perfect matchings on 9n points. Indeed, since the number of in-vertices
must match the number of out-vertices, there are

(
n
n/2

)
ways to choose in-vertices. There

are
(

9
2

)n
different ways to pick special points. Finally, there are (9n/2)! different ways to

pair in-points with out-points. After expanding the expression and using Stirling’s formula
(x! ∼

√
2πx(x/e)x) we get that

E[Y ] =
n! (9 · 4)n (9n/2)!2 29n/2

(n/2)!2 (9n)!
∼ 3

(
81

8

)n/2
.

Let us now turn our attention to estimating E[Y (Y − 1)]. Given two orientations of the
same graph, two vertices v and w can be related in one of three ways:

(i) v and w are in-vertices in both orientations;
(ii) v and w are out-vertices in both orientations;

(iii) One of v or w is an in-vertex in one orientation and the other is an out-vertex in the
other orientation.

Observe that if exactly k vertices are in-vertices in both orientations, since there are in total
n/2 in-vertices in the first orientation, n/2− k vertices are in-vertices in the first orientation
and out-vertices in the second orientation. Since there are n/2 − k vertices which are out-
vertices in the second orientation but not in the first and there are n/2 total out-vertices
in the second orientation, k vertices are out-vertices in both orientations. The remaining
n/2− k vertices are out-vertices in the second orientation and in-vertices in the second.

We use the term k211 to denote the number of vertices which are in-vertices in both
orientations and which have two special points in common. We use the term k111 to denote
the number of vertices which are in-vertices in both orientations but which have only one
special point in common. Note that k211 ≤ k and k111 ≤ k since k211 + k111 ≤ k. It follows
that there are k − k211 − k111 vertices which are in-vertices in both orientations but which
have no special points in common.

Similarly, we use the term k200 to denote the number of vertices which are out-vertices in
both orientations and have two special points in common. k100 is defined as the number of
vertices which are out-vertices in both orientations but which only have one special point in
common. Note that k200 ≤ k and k100 ≤ k since k200 + k100 ≤ k. It follows that there are
k− k200− k100 vertices which are out-vertices in both orientations but which have no special
points in common.

The term k210 is used to denote the number of vertices which are in-vertices in the first
orientation but out-vertices in the second and which have both special points in common. k110

denotes the number of points which are in-vertices in the first orientation and out-vertices in
the second but which have only one special point in common. Note that k210 ≤ n/2− k and
k110 ≤ n/2−k since k210+k110 ≤ n/2−k. It follows that there are n/2−k−k210−k110 vertices
which are in-vertices in the first orientation and out-vertices in the second orientation but
which have no special points in common.

The term k201 is used to denote the number of vertices which are out-vertices in the first
orientation but in-vertices in the second and which have both special points in common. k101

denotes the number of vertices which are out-vertices in the first orientation and in-vertices
in the second but which have only one special point in common. Note that k201 ≤ n/2 − k
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and k101 ≤ n/2− k since k201 + k101 ≤ n/2− k. It follows that there are n/2− k− k201− k101

vertices which are out-vertices in the first orientation and in-vertices in the second orientation
but which have no special points in common. To approximate the second moment we will
need to define a region that contains every possible configuration of two orientations. Let

I := I(n) = {(k, k211, k111, k210, k110, k201, k101, k200, k100) ∈ N9
0

∣∣ k ≤ n/2, k211 + k111 ≤ k,

k200 + k100 ≤ k, k210 + k110 ≤ n/2− k, k201 + k101 ≤ n/2− k},

where N0 = N∪{0}. Fixing k = (k, k211, k111, k210, k110, k201, k101, k200, k100), we can calculate
the number of configurations corresponding to this vector. Letting k011 = k − k211 − k111,
k000 = k−k200−k100, k010 = n/2−k−k210−k110, and k001 = n/2−k−k201−k101, there are

(2)
n!

k211!k111!k011!k200!k100!k000!k210!k110!k010!k201!k101!k001!

different ways to partition n vertices into twelve groups. Given a particular partition of the
n vertices, there are

(3)

(
9

2

)k211+k210+k201+k200

· (9 · 8 · 7)k111+k110+k101+k100 ·
((

9

2

)(
7

2

))k011+k010+k001+k000

different ways to assign special points. To illustrate the accuracy of this formula, consider
a k000 vertex. This vertex will consist of two out-points and seven in-points. Since two
of the in-points in the first orientation are out-points in the other and because two of its
out-points are in-points in the other orientation, the remaining five in-points that it consists
of are in-points in both orientations. Similar reasoning is applied to the other eleven groups
of vertices.

Next we will note that an (in,in)-point naturally pairs with an (out,out)-point. (Whenever
we refer to say, (in,in)-points, the first “in” refers to the first orientation and the second “in”
refers to the second orientation.) The number of (in,in)-points is

2k211 + 7k200 + k111 + k110 + k101 + 6k100 + 5k000 + 2k010 + 2k001

= 2k211 + 2k200 + k111 − k110 − k101 + k100 + 2n+ k − 2k210 − 2k201.

Likewise, the number of (out,out)-points is

(4) 2k211 + 2k200 + k111 − k110 − k101 + k100 + 2n+ k − 2k210 − 2k201.

The remaining points will be (in,out)-points and (out,in)-points. The number of (in,out)-
points is:

9n− 2(2k211 + 2k200 + k111 − k110 − k101 + k100 + 2n+ k − 2k210 − 2k201)

2
= 7n/2− (2k211 + 2k200 + k111 − k110 − k101 + k100 + k − 2k210 − 2k201)(5)

which also happens to be the number of (out,in)-points.
The set of (in,in)-points needs to be paired with the set of (out,out)-points. Similarly,

(in,out)-points need to be paired with (out,in)-points. Hence, the product of (2), (3), and
the factorials of both (4) and (5) reflect the number of configurations. Dividing this product
by the total number of matchings provides an estimate of the second-moment, which is the
expected number of pairs of valid orientations.

The second-moment is estimated as follows:
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(6) E[Y (Y − 1)] =
∑
k∈I

r(z)g(z) exp(nf(z))

where z = z(k) = k/n. The product within the sum is merely the result of applying Stirling’s
approximation (s! ∼

√
2πn(s/e)s). Note that r = O(1) for all z and r ∼ 1 if z is bounded

away from the boundary of

J := {(z, z211, z111, z210, z110, z201, z101, z200, z100) ∈ R9
0

∣∣ z ≤ 1/2, z211 + z111 ≤ z, z200

+ z100 ≤ z, z210 + z110 ≤ 1/2− z, z201 + z101 ≤ 1/2− z}.
By letting b := 2z211 + 2z200 + z111 − z110 − z101 + z100 + 2 + z − 2z210 − 2z201 and letting

h(x) := x log x with the stipulation that h(0) = 0 we get

g =
(
b(9− 2b)1/2

)
/
( √

128(πn)9(z211z111(z − z211 − z111)z200z100(z − z200 − z100)z210z110

(1− 2z − 2z210 − 2z110)z201z101(1− 2z − 2z201 − 2z101))1/2
)
.

The exponential contribution from [2] is

f1 = log n− log e

f2 = −h(z211)− h(z111)− h(z − z211 − z111)− h(z200)− h(z100)− h(z − z200 − z100)

− h(z210)− h(z110)− h(1/2− z − z210 − z110)− h(z201)− h(z101)

− h(1/2− z − z201 − z101)− log n+ log e

which correspond to the numerator and denominator, respectively. The exponential contri-
bution from [3] is

f3 = log 9 + (z111 + z100 + z110 + z101) log 8 + (1− z211 − z200 − z210 − z201) log 7

+ (1− z111 − z100 − z110 − z101) log 4

+ (1− z211 − z200 − z210 − z201 − z111 − z100 − z110 − z101) log 3.

The exponential contribution from the factorials of [4] and [5] is:

f4 = h(9/2− b) + h(b) + 9/2(log n− log e).

The exponential contribution from dividing by the total number of matchings is

f5 = −h(9) + 9/2 log 2 + h(9/2)− 9/2 log n+ 9/2 log e.

Summing f = f1 + f2 + f3 + f4 + f5 together we get

f =h(b) + h(9/2− b) + log(9 · 4 · 7 · 3)− 9/2 log 9− (z211 + z200 + z210 + z201) log 7

− (z211 + z200 + z210 + z200 + z111 + z100 + z110 + z101) log 3

+ (z111 + z100 + z110 + z101) log 2− h(z211)− h(z111)

− h(z − z211 − z111)− h(z200)− h(z100)− h(z − z200 − z100)− h(z210)− h(z110)

− h(1/2− z − z210 − z110)− h(z201)− h(z101)− h(1/2− z − z201 − z101).

Since h(0) = 0, f is continuous towards the boundary of J , which allows us to explore the
question of whether or not f has a maximum. We calculate the partial derivatives of f to
identify stationary points in the interior of J . An algebraic manipulation tool such as Maple
can be utilized towards this end.1

1The worksheets can be found on-line: https://math.torontomu.ca/~pralat/.

https://math.torontomu.ca/~pralat/
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We find that

δf

δz211

= log
( b2 · (z − z211 − z111)

7 · 3 · (9/2− b)2 · z211

)
,

δf

δz111

= log
( 2 · b · (z − z211 − z111)

3 · (9/2− b) · z111

)
.

Setting these two partial derivatives equal to one another and re-arranging gives us

z111

z211

= 14

(
9/2− b

b

)
.

Likewise, the partial derivatives for z200 and z100 are

δf

δz200

= log
( b2 · (z − z200 − z100)

7 · 3 · (9/2− b)2 · z200

)
,

δf

δz100

= log
( 2 · b · (z − z200 − z100)

3 · (9/2− b) · z100

)
.

Setting these two partial derivatives equal to one another and re-arranging gives us

z100

z200

= 14

(
9/2− b

b

)
.

Since 14
(

9/2−b
b

)
= z111

z211
= z100

z200
, it follows that z211z100 = z200z111.

The partial derivatives of f with respect to z210 and z110 are

δf

δz210

= log
( (9/2− b)2 · (1/2− z − z210 − z110)

7 · 3 · b2 · z210

)
,

δf

δz110

= log
( 2 · (9/2− b) · (1/2− z − z210 − z110)

7 · 3 · b · z110

)
.

The partial derivatives of f with respect to z201 and z101 are

δf

δz201

= log
( (9/2− b)2 · (1/2− z − z201 − z101)

7 · 3 · b2 · z201

)
,

δf

δz101

= log
( 2 · (9/2− b) · (1/2− z − z201 − z101)

7 · 3 · b · z101

)
.

Repeating the same procedure with regards to δf
δz210

, δf
δz110

, δf
δz201

, and δf
δz101

tells us that

z210z101 = z201z110.

Setting δf
δz211

= 0 gives P211 = 0, where

P211 = b2 · (z − z211 − z111)− 7 · 3 · (9/2− b)2 · z211.

If we define P111, P200, etc. similarly, and obtain P from δf
δz

, we obtain nine polynomials such
that any local maximum must be a common zero of all polynomials. We denote the resultant
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of two polynomials X and Y with respect to a variable x as R(X, Y, x). When X = Y = 0
it is necessary that R(X, Y, x) = 0. Taking the resultant of P211 and P200 with respect to
z101 gives us

R(P211, P200, z101) = 46294416(zz200 − zz211 + z211z100 − z200z111)2

= 46294416((z − z111)z200 − (z − z100)z211)2.

We can use the fact that z211z100 = z200z111 and R(P211, P200, z101) to demonstrate that
z211 = z200, which then implies that z111 = z100.

Calculating the resultant of P201 and P210 with respect to z100 gives us

R(P210, P201, z100) = 185177664(2zz201 − 2zz210 − 2z210z101 + 2z201z110 − z201 + z210),

= 740710656((−1/2 + z + z110)z201 − (−1/2 + z + z101)z210)2.

We can use the fact that z210z101 = z201z110 and R(P210, P201, z100) to demonstrate that
z210 = z201, which then implies that z110 = z101.

We will now consider the nature of possible critical points. Let z111 = z100 = c1, z211 =
z200 = c2, z110 = z101 = c3, and z210 = z201 = c4. Setting δf

δz211
= δf

δz200
= 0 implies that(

9/2− b
b

)2

=
z − c1 − c2

21c2

.

After squaring δf
δz100

= δf
δz111

= 0, it follows that(
9/2− b

b

)2

=

(
2(z − c1 − c2)

3c1

)2

.

Since (
9/2− b

b

)2

=
z − c1 − c2

21c2

=

(
2(z − c1 − c2)

3c1

)2

,

we have z =
3c21
28c2

+ c1 + c2.

From setting δf
δz210

= δf
δz110

we get

9/2− b
b

=
14c4

c3

.

After setting δf
δz110

= δf
δz101

= 0 we get

9/2− b
b

=
3c3

2(1/2− z − c4 − c3)
.

Together these imply that (
9/2− b

b

)2

=
21c4

(1/2− z − c3 − c4)
.

After squaring δf
δz110

= δf
δz101

, it follows that(
9/2− b

b

)2

=

(
3c3

2(1/2− z − c3 − c4)

)2

.



ALMOST ALL 9-REGULAR GRAPHS HAVE A MODULO-5 ORIENTATION 9

Since (
9/2− b

b

)2

=

(
3c3

2(1/2− z − c3 − c4)

)2

=
21c4

(1/2− z − c3 − c4)
,

it follows that 1/2− z =
3c23
28c4

+ c3 + c4.
We now consider another paramaterization of our variables that will hold when we are at

a critical point. This parameterization is invaluable for finding the specific values of b and z
that form a critical point for f . When δf

δz111
= δf

δz100
= 0, it follows that

c1 = 14

(
9/2− b

b

)
c2.

Likewise when δf
δz211

= δf
δz200

= 0, it follows that

b2(z − c1 − c2) = 21

(
9

2
− b
)2

c2,

which implies that

z =

((
9/2− b

b

)2

+ 14

(
9/2− b

b

)
+ 1

)
c2.

When δf
δz110

= δf
δz101

= 0,

c3 = 14

(
b

9/2− b

)
c4.

Setting δf
δz210

= δf
δz201

= 0 implies that

(9/2− b)2

(
1

2
− z − c3 − c4

)
= 21b2c4

which in turn implies that

1

2
− z =

(
21

(
b

9/2− b

)2

+ 14

(
b

9/2− b

)
+ 1

)
c4.

Since

z =

((
9/2− b

b

)2

+ 14

(
9/2− b

b

)
+ 1

)
c2,

it follows that

c4 =

1/2−
((

9/2−b
b

)2

+ 14
(

9/2−b
b

)
+ 1

)
c2

21
(

b
9/2−b

)2

+ 14
(

b
9/2−b

)
+ 1

.

c3 can be stated as

c3 = 14

(
b

9/2− b

) 1/2−
((

9/2−b
b

)2

+ 14
(

9/2−b
b

)
+ 1

)
c2

21
(

b
9/2−b

)2

+ 14
(

b
9/2−b

)
+ 1

.
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After substituting these values for c1, c2, c3, and c4 into our partials, we are left with the
task of discovering when our partials equal one another. It was found that for δf

δz211
= δf

δz200
=

δf
δz111

= δf
δz100

,

c∗2(b) = − 4b3(32b2 + 104b− 171)

5120b4 − 46080b3 + 285120b2 − 816480b− 688905

when 0 < b < 9/2.
After substituting our values for c1, c2, c3, and c4 into δf

δz
, we attain an expression for

δf
δz

as a function of b and c2. We can substitute c∗2(b) for c2 into our re-parameterized δf
δz

and then check which, if any, values of b satisfy δf
δz

= 0. These values of b are as follows:
b = b1 ≈ 0.8065779289, b = b2 = 9/4, and b = b3 ≈ 3.693422071.

It now remains to see whether these values of b satisfy

0 < c2 = c∗2(b) <
1/2((

9/2−b
b

)2

+ 14
(

9/2−b
b

)
+ 1

) .
Since c∗2(b1) ≈ −0.0001175309606 < 0, c∗2(b1) is not within the feasible region of J .

The associated upper-bound

c <
1/2((

9/2−b
b

)2

+ 14
(

9/2−b
b

)
+ 1

)
for b3 is approximately 0.09883651395. Since c∗2(b3) ≈ 0.1105793451, c∗2(b3) is also not within
the feasible region J .

We are now left with considering b = b2, which corresponds to c2 = 1/144. The upper-
bound for this value is 1/72, meaning that it is within the feasible region of f . This value
and the corresponding values for c1, c3, c4, and z imply that

ẑ = (1/4, 1/144, 7/72, 1/144, 7/72, 1/144, 7/72, 1/144, 7/72)

is the sole critical point of f in the interior of J . Note that

f(ẑ) = log
756 · 9

4

9/2 · 27/18 · 121/18

3113/12 · 71/36 · 7
72

7/18 · 7
48

7/12
≈ 2.315007612.

3. Analyzing the Boundary Points

We will now consider candidate points to be global maxima which reside on the boundary
of J . We will first consider any point on the boundary at which 0 < z < 1/2. In this case,
0 ≤ z211+z111 ≤ z, 0 ≤ z200+z100 ≤ z, 0 ≤ z110+z210 ≤ 1/2−z, and 0 ≤ z101+z201 ≤ 1/2−z.

When z111 → 0, δf
δz111

is dominated by the z111 term on its denominator, which tends to

−∞. Likewise, when z211 → 0, δf
δz211

is dominated by the z211 term on its denominator, which
also tends to −∞.

When z211 + z111 → z, the z − z211 − z111 term in the numerator of δf
δz111

will tend to ∞.

Likewise, the z − z211 − z111 term in the numerator of δf
δz211

will also tend to ∞. Thus, there
is no global maximum at these particular points.
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The same arguments also apply for z200 and z100, ensuring that no global maximum is
reached at the points where either or both of them approach 0 and where their sum ap-
proaches z.

When z110 → 0, δf
δz110

is dominated by the z110 term in its denominator, which tends to

−∞. Likewise, when z210 → 0, δf
δz210

is dominated by a z210 term in its denominator, which
also tends to −∞.

When z210 + z110 → 1/2− z, the 1/2− z − z210 − z110 term in the numerator of δf
δz110

will

tend to ∞. Likewise, the z − z210 − z110 term in the numerator of δf
δz210

will also tend to ∞.
Thus, there is no global maximum at these particular points.

The same arguments also apply for z201 and z101, ensuring that no global maximum is
reached at the points where either or both of them approach 0 and where their sum ap-
proaches 1/2− z.

It now remains to consider the points where z = 0 and z = 1/2. We first consider z = 0.

Case 1: z = 0
When z = 0, z211 = z111 = z200 = z100 = 0 as well. We can thus state f solely in terms of

the remaining variables. Substituting z = z211 = z111 = z200 = z100 = 0 gives the function
f̄(z210, z110, z201, z101) with domain [0, 1/2]4.

Setting δf̄
δz210

= δf̄
δz110

gives us

z210

z110

= − (5 + 2z110 + 2z101 + 4z210 + 4z201)

28(2− z110 − z101 − 2z210 − 2z201)
.

Likewise, setting δf̄
δz201

= δf̄
δz101

gives us

z201

z101

= − (5 + 2z110 + 2z101 + 4z210 + 4z201)

28(2− z110 − z101 − 2z210 − 2z201)
.

Together these imply that z210z101 = z201z110.
Setting δf

δz110
= δf

δz101
implies

z110

1− 2z210 − 2z110

=
z101

1− 2z201 − 2z101

which implies that z110 = z101.
Setting δf

δz210
= δf

δz201
implies

z210

1− 2z210 − 2z110

=
z201

1− 2z201 − 2z101

which implies that z210 = z201. We are thus well-justified in considering f̄(z110, z210, z110, z210)
in our search for critical points on this particular part of the boundary.

We now consider the segment 0 ≤ z110+z210 ≤ 1/2. The derivative of f̄(z110, z210, z110, z210)
with respect to z110 is

δf̄(z110, z210, z110, z210)

δz110

=
(5 + 4z110 + 8z210)(−1 + 2z210 + 2z110)

12(−1 + z110 + 2z210)z110

which is not 0 on the interior of the segment. It is only 0 when z110 + z210 = 1/2.

δf̄(z110, z210, z110, z210)

δz210

= −(5 + 4z110 + 8z210)2(−1 + 2z210 + 2z110)

168(−1 + z110 + 2z210)2z210
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is also only 0 when z110 + z210 = 1/2. Differentiating f̄(z110, 1/2− z110, z110, 1/2− z110) with
respect to z110 produces

f̄(z110, 1/2− z110, z110, 1/2− z110)

δz110

=2 log(2z110)− 2 log(9− 4z110) + 4 log 2 + 2 log 7

− 2 log z110 + 2 log(1/2− z110)

which is 0 when z110 = 19/52. Since

f(0, 0, 0, 1/2− 19/52, 19/52, 1/2− 19/52, 19/52, 0, 0) = log
133
26

19/26 · 98
13

49/13

37 · 19
52

19/26 · 227/26 7
52

7/26

≈ 1.672261141 <f(ẑ),

this point cannot be a global maximum.

Case 2: z = 1/2
What follows for z = 0 is very similar to what was argued for z = 0. When z = 1/2,

z210 = z110 = z201 = z101 = 0 as well. We can thus state f solely in terms of the remaining
variables. Substituting z210 = z110 = z201 = z101 = 0 and z = 1/2 gives the function
f̄(z211, z111, z200, z100) with domain [0, 1/2]4.

Setting δf̄
δz211

= δf̄
δz111

gives us

z211

z111

= − (5 + 2z111 + 2z100 + 4z200 + 4z211)

28(2− z111 − z100 − 2z211 − 2z200)
.

Likewise, setting δf̄
δz200

= δf̄
δz100

gives us

z200

z100

= − (5 + 2z111 + 2z100 + 4z200 + 4z211)

28(2− z111 − z100 − 2z211 − 2z200)
.

Together these imply that z211z100 = z200z111. Setting δf
δz111

= δf
δz100

implies that

z111

1− 2z211 − 2z111

=
z100

1− 2z200 − 2z100

,

which in turn implies that z111 = z100. Setting δf
δz211

= δf
δz200

implies that

z211

1− 2z211 − 2z111

=
z200

1− 2z200 − 2z100

,

which in turn implies that z211 = z200.
We are thus well-justified in considering f̄(z111, z211, z111, z211) in our search for critical

points on this particular part of the boundary. We now consider the segment 0 ≤ z111+z211 ≤
1/2. The derivative of f̄(z111, z211, z111, z211) with respect to z111 is

δf̄(z111, z211, z111, z211)

δz111

=
(5 + 4z111 + 8z211)(−1 + 2z211 + 2z111)

12(−1 + z111 + 2z211)z111

which is only zero when z211 = z111 = 1/2.
Differentiating f̄(z111, 1/2− z111, z111, 1/2− z111) with respect to z111 produces

f̄(z111, 1/2− z111, z111, 1/2− z111)

δz111

=2 log(2z111)− 2 log(9− 4z111) + 4 log 2 + 2 log 7

− 2 log z111 + 2 log(1/2− z111)
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which is 0 when z111 = 19/52. Since

f(1/2, 1/2− 19/52, 19/52, 0, 0, 0, 0, 1/2− 19/52, 19/52) = log
133
26

19/26 · 98
13

49/13

37 · 19
52

19/26 · 227/26 7
52

7/26

≈1.672261141 < f(ẑ),

this point cannot be a maximum.
The Hessian matrix of f(ẑ) is

B =
1

63



−1672 544 488 544 488 −544 −488 −544 −488

544 −9280 −320 224 112 −224 −112 −224 −112

488 −320 −1024 112 56 −112 −56 −112 −56

544 224 112 −9280 −320 −224 −112 −224 −112

488 112 56 −320 −1024 −112 −56 −112 −56

−544 −224 −112 −224 −112 −9280 −320 224 112

−488 −112 −56 −112 −56 −320 −1024 112 56

−544 −224 −112 −224 −112 224 112 −9280 −320

−488 −112 −56 −112 −56 112 56 −320 −1024



.

To calculate the signs of the eigenvalues of B, we can calculate the eigenvalues of B∗ := 63B.
The characteristic polynomial of B∗ is

(x2 + 10584x+ 10077696)3(x3 + 11136x2 + 21055680x+ 3072577536).

The eigenvalues of B∗ are

λ1 = λ2 = λ3 = −108
√

1537− 5292 ≈ −9526.09588932514,

λ4 = λ5 = λ6 = 108
√

1537− 5292 ≈ −1057.90411067487,

λ7 = −8
√

3
√

105631 sin((π − arctan((9
√

5834559781407)/26571068))/3)

− 8
√

105631 cos((π − arctan((9
√

5834559781407)/26571068))/3)− 3712 ≈ −8776.89694570535,

λ8 = 8
√

3
√

105631 sin((π − arctan((9
√

5834559781407)/26571068))/3)

− 8
√

105631 cos((π − arctan((9
√

5834559781407)/26571068))/3)− 3712 ≈ −2199.97604519778,

λ9 = 16
√

105631 cos((π − arctan((9
√

5834559781407)/26571068))/3)− 3712 ≈ −159.127009096879.

Since all of these values are negative the Hessian matrix at ẑ is negative definite, implying
that ẑ is a local maximum. The determinant of B is found to be −23665185138564661248

117649
.

We will now approximate E[Y 2]. To this end, we will set z = 1/4 + y, z2jk = 1/144 + y2jk,
and z1jk = 7/72 + y1jk. Setting y = (y, y211, y111, y200, y100, y210, y110, y201, y101) and using
Taylor’s Theorem to expand around ẑ gives us

f = log(81/8) +
yByT

2
+O(x3).

Let x = x(z) = ||y|| with || · || denoting the L2 norm. Let J0 = {z : x ≤ n−2/5}. For z ∈ J0

we have r(z)g(z) ∼ g(ẑ) and x3 = O(n−6/5) since J0 is bounded away from the boundary of
J and z ∈ J0 are close to ẑ.
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Taking all of this together gives us∑
k:k/n∈J0

r(z)g(z) exp(nf(z)) =
∑

k:k/n∈J0

r(z)g(z) exp(nf(ẑ + nyByT +O(x−3))),

∼
(

81

8

)n
g(ẑ)eO(n−1/5)

∑
k:k/n∈J0

eny
B
2
yT

,

∼
(

81

8

)n
g(ẑ)

∑
k:k/n∈J0

eny
B
2
yT

.(7)

Dividing
∑

k:k/n∈J0
eny

B
2
yT

by n9 gives us a Riemann sum as n→∞. By changing k to z = k/n

and defining w =
√
ny to rescale the region of integration we get

1

n9

∑
k:k/n∈J0

eny
B
2
yT

=
1

n9

∑
k:k/n∈J0

ew
B
2
wT

=

∫
J0

ew
B
2
wT

d9w.

Since the side-length of the scaled region is
√
n · n−2/5 = n1/10 which goes to ∞ as n → ∞

we have

∫
J0

ew
B
2
wT

d9w ∼
∫
R9

ew
B
2
wT

d9w =

∫
R9

eny
B
2
yT

d9y.

After diagonalizing and using the Gaussian integral
∫∞
−∞ e

−x2 =
√
π we get

∫
R9

eny
B
2
yT

d9y =
1

n9
·

√
n9 · π9

| det B
2
|

=
1

n9
·

√
n9 · 29 · π9

| detB|
=

29/2π9/2

n9/2
√
| detB|

which leaves us with

(8)

(
81

8

)n
g(ẑ)

∑
k:k/n∈J0

eny
B
2
yT

=

(
81

8

)n
g(ẑ)

(2πn)9/2√
| detB|

.

It now remains to consider points in J\J0.
On the boundary of J0 the value of f is f(ẑ)−Ω(n−4/5). Recall that B is negative definite

(meaning yByT < 0 for all y ∈ R9). Furthermore, f is a fixed function that is independent
of n and has a single global maximum at ẑ. This implies that

max
z∈J\J0

f(z) = f(ẑ)− Ω(n−4/5) = log(81/8)− Ω(n−4/5).

Since r and g are polynomially bounded it follows that the terms in the summation (6)

for which k/n ∈ J/J0 are bounded by (81/8)ne−Ω(n1/5). Since there are polynomially many
such terms their sum is (81/8)ne−Ω(n/5).
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It follows, then, that

E[Y (Y − 1)] =
∑

k:k/n∈J

r(z)g(z) exp(nf(z)),

=
∑

k:k/n∈J0

r(z)g(z) exp(nf(z)) +
∑

k:k/n∈J\J0

r(z)g(z) exp(nf(z)),

∼
(

81

8

)n
g(ẑ)

29/2π9/2

n9/2
√
| detB|

+ (81/8)ne−Ω(n1/5),

∼
(

81

8

)n
g(ẑ)

29/2π9/2

n9/2
√
| detB|

,

∼
(

81

8

)n
81

7
.(9)

Thus we have
E[Y (Y − 1)]

E[Y ]2
=

(
81
8

)n 81
7

9
(

81
8

)n =
9

7
.

To complete our proof of Theorem 1.1 we introduce random variables X1, X2, . . . , Xk for
k ≥ 1 which represent the number of cycles of length k in P(n, 9). A well known result
by Bollobás (see Corollary 2.19 in [5]) stipulates that X1, X2, . . . , Xk are asymptotically
independent Poisson distributions with mean

E[Xk] −→ λk :=
8k

2k
.

To satisfy the condition (b) for the small subgraph conditioning method and thereby prove
Theorem 1.1, we will need to show that there is a constant µk for each k ≥ 1 such that

E[Y Xk]

EY
−→ µk

and that the joint factorial moments satisfy

E[Y [X1]j1 [X2]j2 . . . [Xk]jk ]

EY
−→

k∏
i=1

µjii

for any fixed j1, j2, . . . , jn, where [x]k is the falling factorial x!/(x− k)!. To estimate E[Y Xk]
we will count the mean number of triples (P,C,O), where P represents a pairing, C represents
a k-cycle, and O represents an orientation by dividing the number of such pairings by the
total number of matchings |P(9, n)| = M(9n).

There are (9·8)k

2k
· n!

(n−k)!
different ways to choose vertices that make up the cycle. There

are i vertices with in-degree 2, b of which are in-vertices. Since the sum of in-degrees in the
cycle must equal the number of out-degrees in the cycle, there are i vertices in the cycle
with out-degree 2, c of which are out-vertices. This implies that k − 2i vertices in the cycle
have an in-degree and out-degree of 1 in the context of the cycle. We let ai = 2

(
k
2i

)
refer

to the number of orientations. The number of choices of in-vertices among i-vertices with
in-degree 2 is

(
i
b

)
. Likewise, there are

(
i
c

)
possible choices of out-vertices among i vertices

with out-degree 2. Turning our attention to the vertices outside of the cycle, we see that
there are

(
n−2i

n/2−i−b+c

)
ways to pair the in- and out-vertices that are not in C.
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We now consider the distribution of special points between our orientations. There are(
7
2

)i−b
ways to select special points in vertices that have an in-degree of 2 in the cycle and are

out-vertices in the graph. Likewise, there are
(

7
2

)i−c
ways to select special points in vertices

that have an out-degree of 2 in the cycle and which are in-vertices in the graph. The special
points for vertices with in-degree 2 in C and which are in-vertices and for vertices with out-
degree 2 in C and which are out-vertices do not need to be identified. There are 7k−2i ways
to select special points among vertices in C which have an in-degree of 1 and an out-degree

of 1. There are
(

9
2

)n−k
ways to select special points for vertices outside of C. Given that

9n/2 − k must be in-vertices, there are (9n/2 − k)! different ways to pair in-vertices with
out-vertices.

We calculate E[XkY ]
E[Y ]

as follows:

E[Y Xk]

E[Y ]
∼

bk/2c∑
i=0

[n]k(9·8)k

2k
ai
(

9
2

)n−k
(9n/2− k)!7k−2i

i∑
b=0

i∑
c=0

(
i
b

)(
i
c

)(
n−2i

n/2−i−b+c

)(
7
2

)i−b(7
2

)i−c
(
n
n/2

)(
9
2

)n
(9n/2)!

,

∼

bk/2c∑
i=0

[n]k(9·8)k

2k
ai7

k−2i
i∑

b=0

i∑
c=0

(
i
b

)(
i
c

)(
n−2i

n/2−i−b+c

)(
7
2

)i−b(7
2

)i−c
(
n
n/2

)
(9 · 4)k(9n/2)k

,

∼

bk/2c∑
i=0

nk

2k
ai2

k7k−2i (n−2i)!
n!

i∑
b=0

(
i
b

)
(7 · 3)b

i∑
c=0

(
i
c

)
(7 · 3)c n/2!

(n/2−i+b−c)!
n/2!

(n/2−i−b+c)!

(9n
2

)k
.

Since n→∞ and k is finite Sterling’s formula implies that (n−2i)!
n!
∼
(
n
e

)−2i
and

n/2!
(n/2−i+b−c)!

n/2!
(n/2−i−b+c)! ∼

(
n
2e

)2i
. We therefore get

E[Y Xk]

E[Y ]
∼

bk/2c∑
i=0

nk

2k
ai2

k7k−2i (n−2i)!
n!

i∑
b=0

(
i
b

)
(7 · 3)b

i∑
c=0

(
i
c

)
(7 · 3)c n/2!

(n/2−i+b−c)!
n/2!

(n/2−i−b+c)!

(9n
2

)k
,

∼
bk/2c∑
i=0

(
28

9

)k
ai
2k

i∑
b=0

(
i

b

)
21b

i∑
c=0

(
i

c

)
21c
(n
e

)−2i ( n
2e

)2i

.

Since
i∑

b=0

(
i
b

)
21b =

i∑
c=0

(
i
c

)
21c = (1 + 21)i we get the following:

E[Y Xk]

EY
∼

bk/2c∑
i=0

1

2k

(
28

9

)k
ai

(
1

7

)2i

222i

(
1

2

)2i

,

∼ 1

2k

(
28

9

)k bk/2c∑
i=0

2

(
k

2i

)(
11

7

)2i

.
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This can be completed by defining q(x) := 2(1 + x)k =
k∑
i=0

2
(
k
i

)
· i. We can consider our

particular sum to be the even terms of the summation
bk/2c∑
i=0

2
(
k
2i

) (
11
7

)2i
. Since the exponential

term will be negative for odd i we can simplify our expression as follows:

bk/2c∑
i=0

2

(
k

2i

)(
11

7

)2i

=
1

2

(
q

(
11

7

)
+ q

(
−11

7

))
.

Returning to our calculation of E[XkY ]
EY gives us

E[Y Xk]

EY
=

1

2k

(
28

9

)k((
18

7

)k
+

(
−4

7

)k)
,

=
1

2k

(
8k +

(
−16

9

)k)
.

We conclude that µk = 1
2k

(
8k +

(
−16

9

)k)
. Since Corollary 2.19 from [5] stipulates that the

cycles are asymptotically independent, we are justified in further concluding that, for every
finite sequence j1, j2, . . . , jk of non-negative integers, the following holds:

E(Y [X1]j1 · · · [Xk]jk)

EY
∼

k∏
i=1

µjii =
k∏
i=1

(λi(1 + δi))
ji

where δi = µi
λi
− 1 to satisfy condition (c). For the k that we concerned ourselves with above

δk =
(
−2

9

)k
.

We now need to show that
∑

i λiδ
2
i <∞. Using the fact that − log(1− x) =

∑
k≥1 xk/k!,

exp

(∑
k≥1

λkδ
2
k

)
=
∑
k≥1

8k

2k

(
4

81

)k
= exp

(
1

2
− log

(
1− 25

34

))
=

9

7
.

Since exp

(∑
k≥1

λkδ
2
k

)
∼ E(Y 2)

E[Y ]2
∼ 9/7, all four conditions of the small subgraph conditioning

method are satisfied. We can conclude that P(Y > 0) ∼ 1.
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