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Abstract. Hopping forcing is a single player combinatorial game in which the player is presented
a graph on n vertices, some of which are initially blue with the remaining vertices being white. In
each round t, a blue vertex v with all neighbours blue may hop and colour a white vertex blue in the
second neighbourhood, provided that v has not performed a hop in the previous t− 1 rounds. The
objective of the game is to eventually colour every vertex blue by repeatedly applying the hopping
forcing rule. Subsequently, for a given graph G, the hopping forcing number is the minimum number
of initial blue vertices that are required to achieve the objective.

In this paper, we study the hopping forcing number for random d-regular graphs. Specifically,
we aim to derive asymptotic upper and lower bounds for the hopping forcing number for various
values of d ≥ 2.

1. Introduction and Main Results

1.1. Definitions. Zero forcing was introduced in [16], with the purpose of finding bounds on the
maximum nullity of a family of matrices associated with any graph. The game starts with a graph
G with some vertices coloured blue and the remaining white. An interpretation of this is that
blue vertices contain information, whereas the white vertices are devoid of it. The goal is to use
repeated applications of a colour change rule with the objective being to (eventually) turn every
vertex blue. It quickly gained popularity as a model to study the spread of information on a given
graph, with applications being found in several fields including physics and engineering; see, for
example [10, 11, 23], survey on the subject [14], and a recent article published in the Notices of the
AMS [17].

The standard colour change rule, denoted by Z, allows a blue vertex b to force a white vertex
w to become blue provided that w is the unique white neighbour of b. The wide interest in zero
forcing has generated a large volume of work in the last few years, including analyzing it for random
graphs [4], analyzing the probabilistic counterpart for deterministic graphs [6] as well as random
ones [13]. On the other hand, the hopping forcing rule H, first added to the set of existing colour
change rules in [5], allows a blue vertex b to force a white vertex w in the second neighbourhood
of b to become blue provided that b has not performed a force yet and each vertex in the first
neighbourhood of b is already blue. The new rule was added as a tool in investigations about
relations between various zero forcing concepts. The relationships of this graph parameter and
other ones, such as vertex connectivity and independence number, as well as other zero forcing
parameters were investigated in [12]. For a given graph G, the hopping forcing number H(G)
denotes the cardinality of the set with the minimum number of initial blue vertices, such that all
the vertices of G can eventually be coloured blue.

We borrow the notation used in [12] and call a blue vertex b at step t dormant if it has neither
performed a force yet nor is able to (the reason being that either some neighbour of b is still white
or all vertices in the second neighbourhood of b are already blue), active if it has not yet performed
a force but is able to, or extinct if it has already performed a force.

Furthermore, it is important to note that although several vertices can hop simultaneously at
step t, for our purpose we only consider sequential hopping, that is, at any given step there will
be exactly one vertex performing a force, and if no vertex can hop but there are still some vertices
that are white, then the process terminates unsuccessfully.
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Now, we set up our set notation for this process and carefully lay out the steps. Let B1 be the
set of vertices that are initially blue. At the beginning (that is, before the player makes her move)
of time step t ≥ 1, let Bt denote the set of all blue vertices (either active, dormant or extinct),
Rt ⊆ Bt denote the set of vertices that are active (blue vertices that have not yet performed a force
whose first neighbourhood is entirely blue and that have at least one white vertex in the second
neighbourhood), and Wt denote the set of white vertices. Then, at each sequential hop, the player
selects a vertex xt ∈ Rt and performs a single force by hopping from xt to yt ∈ N2(xt)∩Wt, where
N2(xt) denotes the second neighbourhood of xt , that is, the set of vertices that are at distance
exactly two from xt. Subsequently, the sets Bt, Rt, and Wt are updated accordingly. In particular,

Bt+1 = Bt ∪ {yt}
Wt+1 = Wt \ {yt}.

Clearly, vertex xt needs to be removed from Rt since it became extinct but more updates might be
necessary as potentially more vertices change their status from active to dormant or vice versa.

Note that a successful strategy S can be defined as an initial set B1 of blue vertices and a
sequence of ℓ hops, x1 → y1, x2 → y2, . . . , xℓ → yℓ where, at the end of the process, every vertex is
blue. Such initial sets B1 will be called feasible. Clearly, B1 = V (G) is feasible which shows that
the hopping forcing number is well defined and that H(G) ≤ |V (G)|. On the other hand, H(G) ≥ 1
since B1 = ∅ is infeasible (unless G is the null graph, that is, V (G) = ∅ in which case, trivially,
H(G) = 0). Furthermore, out of several feasible sets B1

1 , B
2
1 , . . ., the set(s) with least cardinality

can be called optimal and this cardinality is the hopping number H(G). Observe that given a
graph G and B1, both feasibility and optimality can be ascertained at the beginning of the process,
that is, this is a ‘one person game’ with perfect information and no randomness. Finally, since the
optimal sequential hopping starts with |V (G)| −H(G) white vertices and at each step one of them
changes colour to blue, the length of the process is equal to |V (G)| −H(G).

More importantly, the set of initial blue vertices, B1, can be updated in an online fashion, that
is, we may try to perform the desired sequence of hops and append some vertices to the initial set
dynamically instead of knowing the set B1 a priori. Indeed, we may start with B1 = ∅. Then, at
time t, if xt is not extinct and yt is white and in N2(xt), then we may add xt (if needed) and all
white neighbours of xt (if there are any) to B1 so that the desired force can be performed.

1.2. Main Results. In this paper, we establish various asymptotic upper and lower bounds for
the hopping number of the random d-regular graph Gn,d (see Subsection 2.2 for the definition and
more details on this model). We say that a random graph has property P asymptotically almost
surely (or a.a.s.) if the probability that it has property P tends to 1 as n goes to infinity (see
Subsection 2.1 for more on asymptotic notation used in this paper).

Understanding random 2-regular graphs is easy. In Section 3, we prove the following result.

Theorem 1.1. A.a.s. H(Gn,2) ∼ (3/2) log n.

Unfortunately, the d = 2 case is the only value of d ≥ 2 for which we determine an asymptotic
behaviour of the hopping number. For the remaining ones, we only have some upper and lower
bounds—see Table 1 and Figure 1.1.

Upper bounds are studied in Section 4. We use an (on-line) algorithm to create the initial set of
blue vertices, yielding the following upper bounds:

Theorem 1.2. For any integer d ≥ 3, a.a.s.

H(Gn,d) ≤ (1 + o(1))
(d− 1)!(d− 2)d−1∏d−1
i=1 (i(d− 2) + 1)

n.
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Lower Bounds Upper Bound

Degree
Expander

Mixing Lemma

Configuration

Model

Contiguous

Model

d = 3 0.0149 0.0699 0.3333

d = 4 0.0372 0.1451 0.4571

d = 5 0.0588 0.2114 0.5341

d = 6 0.0787 0.2678 0.5884

d = 7 0.0968 0.3158 0.6294

d = 8 0.1134 0.3569 0.6618

d = 9 0.1287 0.3924 0.6882

d = 10 0.1429 0.4235 0.7101

d = 20 0.2445 0.6054 0.8231

d = 40 0.3755 0.7437 0.8946

d = 80 0.5556 0.8409 0.9386

d = 160 0.6848 0.9048 0.9649

d = 320 0.7767 0.9446 0.9803

d = 640 0.8420 0.9684 0.9890

d = 1280 0.8882 0.9823 0.9940

Table 1. Comparison of upper and lower bounds for the hopping number for small
and large values of d.

Figure 1.1. Comparison of upper and lower bounds for the hopping number for
small and large values of d.

The algorithm used in the argument is universal but the analysis is slightly different in the
degenerate case d = 3. Instead of investigating two cases in one proof, we prepare the reader for
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more complicated argument and first prove that a.a.s. H(Gn,3) ≤ (1+o(1))n/3 (see Subsection 4.1)
before analyzing the algorithm for d ≥ 4 (see Subsection 4.2).

Moreover, note that the constant in the upper bound can be estimated as follows:

(d− 1)!(d− 2)d−1∏d−1
i=1 (i(d− 2) + 1)

=
d−1∏
i=1

i(d− 2)

i(d− 2) + 1
=

d−1∏
i=1

(
1− 1

i(d− 2) + 1

)

= exp

(
−Θ

(
d−1∑
i=1

1

id

))
= exp

(
−Θ

(
log d

d

))
= 1−Θ

(
log d

d

)
.

In particular, it shows that it tends to one as d → ∞.

To get a lower bound for H(Gn,d) that explicitly tends to one as d → ∞, we use the expansion

properties of random d-regular graphs to get a lower bound of 1−Θ(1/
√
d). Indeed, in Section 5,

we prove the following result. (See Subsection 2.4 for the definition of λ(G).)

Theorem 1.3. Let G = (V,E) be a d-regular graph with n vertices and set λ = λ(G). Then,

H(G) ≥ max

(
1− 2λ

d
,
d− λ

d+ 3λ

)
n =

(
1−min

(
2λ

d
,

4λ

d+ 3λ

))
n.

As a result, for any d ≥ 3 and ε > 0, a.a.s.

H(Gn,d) ≥
(
1−min

(
4
√
d− 1

d
,

8
√
d− 1

d+ 6
√
d− 1

)
− ε

)
n.

In Section 6, the above lower bound is strengthened by applying the configuration model to get
the following, stronger but implicit and numerical, lower bound.

Theorem 1.4. For a given integer d ≥ 3, let

gd(x, z) =

(
d

2
− 1− dz

)
x log(x) + (d− 1)(1− x) log

(
1− x

2

)
− 2dxz log(z)

− (1− 2z)dx

2
log(1− 2z)

− d

(
1− x

2
− zx

)
log

(
1− x

2
− zx

)
.

For a fixed x ∈ (0, 1), function gd(x, z) is maximized at

z0(x) :=
1−

√
1− 2(1− x)x

2x
.

Fix ε > 0. Let xd be the unique x ∈ (0, 1) for which hd(x) = gd(x, z0(x)) = 0. Then, a.a.s.

H(Gn,d) > (xd − ε)n.

Next, we report our attempt to get better upper bounds for the hopping number by introducing
a degree-greedy algorithm [28] to create the initial set of blue vertices and then use the differential
equation method to analyze it. Unfortunately, the bounds we obtained using this method turned
out to be weaker than the ones we established above. Nevertheless, in Section 7 we briefly report our
attempt for the case of random 3-regular graphs with the hope that one can modify our algorithm,
and use similar techniques to analyze it, to get better bounds than the ones we managed to prove.
We finish the paper with a few natural suggestions for future directions (see Section 8).
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2. Preliminaries

2.1. Notation. The results presented in this paper are asymptotic by nature. We say that a
random graph has property P asymptotically almost surely (or a.a.s.) if the probability that it has
property P tends to 1 as n goes to infinity. Given two functions f = f(n) and g = g(n), we will
write f(n) = O(g(n)) if there exists an absolute constant c ∈ R+ such that |f(n)| ≤ c|g(n)| for all n,
f(n) = Ω(g(n)) if g(n) = O(f(n)), f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)), and we
write f(n) = o(g(n)) or f(n) ≪ g(n) if limn→∞ f(n)/g(n) = 0. In addition, we write f(n) ≫ g(n)
if g(n) = o(f(n)) and we write f(n) ∼ g(n) if f(n) = (1+o(1))g(n), that is, limn→∞ f(n)/g(n) = 1.

We will use log n to denote the natural logarithm of n. For a given n ∈ N := {1, 2, . . .}, we
will use [n] to denote the set consisting of the first n natural numbers, that is, [n] := {1, 2, . . . , n}.
Finally, as typical in the field of random graphs, for expressions that clearly have to be an integer,
we round up or down but do not specify which: the choice of which does not affect the argument.

2.2. Random d-regular Graphs. Our main results refer to the probability space of random d-
regular graphs with uniform probability distribution. This space is denoted Gn,d, and asymptotics
are for n → ∞ with d ≥ 2 fixed, and n even if d is odd.

Instead of working directly in the uniform probability space of random regular graphs on n ver-
tices Gn,d, we use the configuration model of random regular graphs, first introduced by Bollobás [9],
which is described next. Suppose that dn is even, as in the case of random regular graphs, and con-
sider dn points partitioned into n labeled buckets v1, v2, . . . , vn of d points each. A pairing of these
points is a perfect matching into dn/2 pairs. Given a pairing P , we may construct a multigraph
G(P ), with loops and parallel edges allowed, as follows: the vertices are the buckets v1, v2, . . . , vn,
and a pair {x, y} in P corresponds to an edge vivj in G(P ) if x and y are contained in the buckets
vi and vj , respectively.

It is an easy fact that the probability of a random pairing corresponding to a given simple graph
G is independent of the graph, hence the restriction of the probability space of random pairings
to simple graphs is precisely Gn,d. Moreover, it is well known that a random pairing generates a

simple graph with probability asymptotic to e(1−d2)/4 depending on d, so that any event holding
a.a.s. over the probability space of random pairings also holds a.a.s. over the corresponding space
Gn,d. For this reason, asymptotic results over random pairings suffice for our purposes. One of the
advantages of using this model is that the pairs may be chosen sequentially so that the next pair is
chosen uniformly at random over the remaining (unchosen) points. For more information on this
model, see the survey [29] or any of the books on random graphs [8, 19, 20].

2.3. Contiguous Model. The notion of the union of two random regular graphs on the same
vertex set is very useful for proving asymptotic properties of Gn,d with d ≥ 3. In particular, it is
known that, for the purpose of proving statements a.a.s., such a random graph can be viewed as
the multigraph formed from the union of a Hamilton cycle and random (d−2)-regular graph on the
same vertex set; see [29, Theorem 4.15] for a stronger and more general result. (The probability
of multiple edges being created is bounded away from 1, and the resulting graph, conditional upon
no multiple edges, is contiguous to a random d-regular graph.)

2.4. Expansion Properties of Random d-regular Graphs. We will use the expansion proper-
ties of random d-regular graphs that follow from their eigenvalues. The adjacency matrix A = A(G)
of a given a d-regular graph G with n vertices, is an n × n real and symmetric matrix. Thus, the
matrix A has n real eigenvalues which we denote by λ1 ≥ λ2 ≥ · · · ≥ λn. It is known that cer-
tain properties of a d-regular graph are reflected in its spectrum but, since we focus on expansion
properties, we are particularly interested in the following quantity: λ = λ(G) = max(|λ2|, |λn|). In
words, λ is the largest absolute value of an eigenvalue other than λ1 = d. For more details, see the
general survey [18] about expanders, or [3, Chapter 9].
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The value of λ for random d-regular graphs has been studied extensively. A major result due to
Friedman [15] is the following:

Lemma 2.1 ([15]). For every fixed ε > 0 and for G ∈ Gn,d, a.a.s.

λ(G) ≤ 2
√
d− 1 + ε.

The number of edges |E(S, T )| between sets S and T is expected to be close to the expected
number of edges between S and T in a random graph of edge density d/n, namely, d|S||T |/n. A
small λ (or large spectral gap) implies that this deviation is small. The following useful bound is
essentially proved in [1] (see also [3]):

Lemma 2.2 (Expander Mixing Lemma). Let G = (V,E) be a d-regular graph with n vertices and
set λ = λ(G). Then for all S, T ⊆ V ,∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ
√
|S||T | .

(Note that S ∩ T does not have to be empty; in general, |E(S, T )| is defined to be the number of
edges between S \ T and T plus twice the number of edges that contain only vertices of S ∩ T .)

At some point it will be better to apply stronger estimates for |E(S, V \ S)| that can be easily
derived from a slightly stronger version of the above lemma for |E(S, S)| (see [1]), namely,∣∣∣∣|E(S, S)| − d|S|2

n

∣∣∣∣ ≤ λ|S||V \ S|
n

for all S ⊆ V . Since |E(S, V \ S)| = d|S| − |E(S, S)|, we immediately get that∣∣∣∣|E(S, V \ S)| − d|S||V \ S|
n

∣∣∣∣ ≤ λ|S||V \ S|
n

(1)

for all S ⊆ V .

2.5. The Differential Equation Method. In this paper, we will use the differential equation
method (see [7] for a gentle introduction) to establish dynamic concentration of our random vari-
ables. The origin of the differential equation method stems from work done at least as early as
1970 (see Kurtz [21]), and which was developed into a very general tool by Wormald [26, 27] in the
1990’s. Indeed, Wormald proved a “black box” theorem, which gives dynamic concentration so long
as some relatively simple conditions hold. Warnke [24] recently gave a short proof of a somewhat
stronger black box theorem.

In fact, we will use another general result of Wormald [28] on the average-case performance of
certain greedy algorithms. Its proof uses the differential equation method and the result applies to
algorithms in which the possible operations performed at each step are prioritised, including heuris-
tic algorithms for finding large subgraphs with special properties in random regular graphs, such as
maximum independent sets and minimum dominating sets. This general approach eliminates some
of the complications caused by prioritisation. Since stating this general purpose algorithm would
take some space and effort, instead we will simply comment in Section 7 on how the result is applied
to our scenario when the algorithm and associated random variables that we aim to estimate are
introduced.

3. 2-regular Graphs

Let Y = Y (n) be the total number of cycles in a random 2-regular graph on n vertices. Since
exactly three vertices need to be initially blue in each cycle (that is, H(Ci) = 3 for any i ≥ 3),
H(Gn,2) = 3Y (n).

We know that the random 2-regular graph is a.a.s. disconnected; by simple calculations one can
show that the probability of having a Hamiltonian cycle is asymptotic to 1

2e
3/4
√

π/n = o(1) (see, for
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example, [29]). We also know that the total number of cycles Y (n) is sharply concentrated around
(1/2) log n. Indeed, it is not difficult to see this by generating the random graph sequentially using
the pairing model. The probability of forming a cycle in step i is exactly 1/(2n − 2i + 1), so the
expected number of cycles is

n∑
i=1

1

2n− 2i+ 1
=

2n∑
i=1

1

i
− 1

2

n∑
i=1

1

i
= log(2n)− 1

2
log n+O(1) =

1

2
log n+O(1).

The variance can be calculated in a similar way. So we get the following result (Theorem 1.1):

A.a.s. H(Gn,2) ∼ (3/2) log n.

4. Upper Bounds from the Contiguous Model: d-regular Graphs, d ≥ 3

To provide an upper bound for H(Gn,d) for 3-regular graphs, and subsequently for d-regular
graphs with d ≥ 4, we will use the contiguous model introduced in Subsection 2.3. For a given d ≥ 3,
a d-regular graph (generated by the pairing model) can be viewed as the union of a Hamilton cycle
(v1, v2, . . . , vn) and random (d− 2)-regular graph on the same vertex set, namely, {v1, v2, . . . , vn}.
We will call the two neighbours of vk that are on the Hamilton cycle HC-neighbours; the remaining
d− 2 neighbours of vk will be called RG-neighbours.

As explained at the end of Subsection 1.1, it will be easier to update B1, the set of initial blue
vertices in an online fashion. The strategy will be the same for all d ≥ 3 but formulas for d = 3,
the degenerate case, will be slightly different. Therefore, once we explain the general strategy we
will independently deal with the d = 3 case (Subsection 4.1) before moving to the d ≥ 4 case
(Subsection 4.2).

Start with B1 = ∅. We attempt to colour vertices blue as we hop along the Hamilton cycle. We
start by turning v1 and all of its neighbours blue; these vertices are added to B1. We will try to make
v1 to hop to some neighbour of v2. (Of course, v1 can try to hop through some other neighbour, not
necessarily through v2, but insisting on this choice will make the analysis of the strategy tractable.
But this strategy is certainly suboptimal.) If v3 is white, then v1 can hop there and force v3 to
become blue (note that v3 could be a neighbour of v1 and so could be blue). Similarly, if any of
the (d− 2) RG-neighbours of v2 are white, then v1 can hop and force one of them to become blue.
Note that if v1 could not hop through v2, then all neighbours of v2 are already blue. Otherwise, we
turn the remaining white neighbours of v2 (if there are any) blue; these vertices are added to B1.
After that we will try to make v2 to hop through v3 to some neighbour of v3, and continue hoping
along the Hamilton cycle. Once we investigate vn−3, the strategy is finished and we can check how
many vertices were added to B1 during this process. (Note that vn is a HC-neighbour of v1 and
so when we reach vn−2, all vertices are certainly blue.) By design, the set B1 that is constructed
during this process is feasible and so its size yields the desired upper bound for H(Gn,d).

Before we describe the situation when vt tries to hop through vt+1, let us make a simple obser-
vation that will simplify the analysis of the above process. Let X be the random variable counting
how many vertices could not hop during the process; clearly, Y = n−X is the number of vertices
that hopped. Since each time a vertex hops exactly one white vertex turns blue, |B1| + Y = n
which is equivalent to

|B1| = n− Y = X.

Hence, if we prove that a.a.s. X ∼ f(n) for some deterministic function f(n), then we may conclude
that a.a.s. H(Gn,d) ≤ (1 + o(1))f(n).

For each t ∈ [n − 3], let Xt be the indicator random variable for the event that vt cannot hop

through vt+1. Clearly, X =
∑n−3

t=1 Xt. When vt tries to hop through vt+1, vertices v1, v2, . . . , vt
and all of their neighbours are blue (in particular, vt+1 is blue); the remaining vertices are white.
Vertex vt cannot hop (that is, Xt = 1) if and only if the following two properties hold:
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(P1) at least one RG-neighbour of vt+2 is in {v1, v2, . . . , vt} (that is, vt+2 is blue so vt cannot
hop there),

(P2) for some i ∈ {0, 1, . . . , d− 2},
(P2’) i RG-neighbours of vt+1 are in {vn, v1, v2, . . . , vt, vt+2}, and
(P2”) (d−2− i) RG-neighbours of vt+1 are in {vt+3, vt+4, . . . , vn−1} but all of these (d−2− i)

RG-neighbours have at least one RG-neighbour in {v1, v2, . . . , vt}
(that is, all of the (d− 2) RG-neighbours of vt+1 are blue so vt cannot hop to any of these
vertices).

4.1. d = 3 case. The case d = 3 is the degenerate case (slightly different and easier to analyze),
and we will deal with it independently. We will prove the following (Theorem 1.2 for d = 3):

A.a.s. H(Gn,3) ≤ (1 + o(1))n/3.

Proof of Theorem 1.2 for d = 3. Fix any t ∈ [n − 3]. To compute the probability that Xt = 1, we
first expose the unique RG-neighbour of vt+2. Property (P1) holds with probability t/(n − 1).
Conditioning on this event, we expose the RG-neighbour of vt+1 to determine whether prop-
erty (P2) holds or not. An important observation is that if the unique RG-neighbour of vt+1

is in {vt+3, vt+4, . . . , vn−1}, then the property (P2”) cannot hold—this RG-neighbour has only one
RG-neighbour, namely, vt+1 which is not in {v1, v2, . . . , vt}. In other words, the only chance that
property (P2) holds is when i = 1. This makes the case d = 3 degenerate and distinguishes it from
the case d ≥ 4. The conditional probability that (P2) holds is then equal to t/(n− 3). We get that

P(Xt = 1) =
t

n− 1
· t

n− 3

and so

E[X] =

n−3∑
t=1

P(Xt = 1) =

n−3∑
t=1

t2

(n− 1)(n− 3)

=
1

(n− 1)(n− 3)
· (n− 3)(n− 4)(2n− 5)

6
=

n

3
+O(1). (2)

It remains to show that X is well-concentrated around its expectation. We demonstrate this by
estimating the variance. First, note that

Var[X] = 2
∑

1≤k<ℓ≤n−3

(
P(Xk = Xℓ = 1)− P(Xk = 1)P(Xℓ = 1)

)
+

n−3∑
k=1

(
P(Xk = 1)− P(Xk = 1)2

)
.

Clearly, the second term is O(n). Moreover, the first term can be split further depending on whether
ℓ = k+1 or ℓ ≥ k+2. If ℓ = k+1, then each term is trivially at most one, thus the corresponding
sum is again O(n). It follows that

Var[X] = O(n) + 2
∑

1≤k<ℓ≤n−3
ℓ≥k+2

(
P(Xk = Xℓ = 1)− P(Xk = 1)P(Xℓ = 1)

)

= O(n) + 2
∑

1≤k<ℓ≤n−3
ℓ≥k+2

(
k2

(n− 1)(n− 3)
· (ℓ+O(1))2

(n− 5)(n− 7)
− k2

(n− 1)(n− 3)
· ℓ2

(n− 1)(n− 3)

)

= O(n) +

n−5∑
k=1

O
(k2

n2

) n−3∑
ℓ=k+2

O
( ℓ

n2

)
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= O(n) +

n−5∑
k=1

O
(k2

n2

)
= O(n) = o(n2).

Since Var[X] = o((E[X])2), X is well-concentrated around its expectation by the second moment
method. The proof of the theorem is finished. □

4.2. d ≥ 4 case. The bound from Theorem 1.2 is replicated here for easier reference: for any
integer d ≥ 3, a.a.s.

H(Gn,d) ≤ (1 + o(1))
(d− 1)!(d− 2)d−1∏d−1
i=1 (i(d− 2) + 1)

n. (3)

The exact values for 3 ≤ d ≤ 10 are presented in Table 2. Approximated values can be found in
Table 1.

Degree Upper Bound Degree Upper Bound

d = 3 1/3 d = 7 78125/124124

d = 4 16/35 d = 8 40310784/60911435

d = 5 243/455 d = 9 40353607/58640175

d = 6 8192/13923 d = 10 17179869184/24192643475

Table 2. Explicit upper bounds for the hopping number for small values of d.

The case of d ≥ 4 follows a similar structure to the case where d = 3. The main distinction here
is that, since there are always at least two RG-neighbours in addition to the two HC-neighbours on
the cycle for d ≥ 4, a vertex could be a RG-neighbour of more than one vertex in {v1, v2, . . . , vt}
(see Property (P1)). Similarly, vt+1 could have (d− 2− i) RG-neighbours in {vt+3, vt+4, . . . , vn−1}
and all of these RG-neighbours can have at least one RG-neighbour in {v1, v2, . . . , vt} for all values
of i ∈ {0, 1, . . . , d − 2}. In other words, the Property (P2) holds with a non-zero probability even
when i = 0.

Proof of Theorem 1.2 for d ≥ 4. Fix any t ∈ [n − 3]. To compute the probability that Xt = 1, we
first expose the (d− 2) RG-neighbours of vt+2, one by one. Property (P1) holds with probability

1−
d−2∏
i=1

(
1− (d− 2)t

(d− 2)n− 2i+ 1

)
+O(n−1) = 1−

(
1− t

n

)d−2

+O(n−1). (4)

(The first O(n−1) term corresponds to the event that there is a loop at vt+2.) Conditioning on
Property (P1), we expose the RG-neighbours of vt+1 to determine whether property (P2) holds or
not. The conditional probability that (P2) holds is equal to

O(n−1) +
d−2∑
i=0

(
d− 2

i

)(
(d− 2)t+O(1)

(d− 2)n+O(1)

)i(
1− (d− 2)t+O(1)

(d− 2)n+O(1)

)d−2−i

·

(
1−

(
1− (d− 2)t+O(1)

(d− 2)n+O(1)

)d−3
)d−2−i

= O(n−1) +

d−2∑
i=0

(
d− 2

i

)(
t

n

)i(
1− t

n

)d−2−i
(
1−

(
1− t

n

)d−3
)d−2−i

. (5)
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We get that

P(Xt = 1) = O(n−1) +

(
1−

(
1− t

n

)d−2
)

·
d−2∑
i=0

(
d− 2

i

)( t

n

)i(
1− t

n

)d−2−i
(
1−

(
1− t

n

)d−3
)d−2−i

= O(n−1) +

(
1−

(
1− t

n

)d−2
)

·

(
t

n
+
(
1− t

n

)
−
(
1− t

n

)d−2
)d−2

= O(n−1) +

(
1−

(
1− t

n

)d−2
)d−1

and so

E[X] =

n−3∑
t=1

P(Xt = 1) = O(1) +

n−3∑
t=1

(
1−

(
1− t

n

)d−2
)d−1

= O(1) + n

∫ 1

0
(1− (1− x)d−2)d−1 dx

= O(1) + n
(d− 1)!(d− 2)d−1∏d−1
i=1 (i(d− 2) + 1)

, (6)

where the last integral follows via a recursive reduction approach. As with the case where d = 3, we
would like to show that X is well-concentrated around its expectation by estimating the variance.
First, note that

Var[X] = 2
∑

1≤k<ℓ≤n−3

(
P(Xk = Xℓ = 1)− P(Xk = 1)P(Xℓ = 1)

)
+

n−3∑
k=1

(
P(Xk = 1)− P(Xk = 1)2

)
.

Clearly, the second term is O(n). As in the proof for the d = 3 case, the first term can be split
further depending on whether ℓ = k + 1 or ℓ ≥ k + 2. If ℓ = k + 1, then each term is trivially at
most one, thus the sum is again O(n). To estimate P(Xk = Xℓ = 1) we first expose the (d − 2)
RG-neighbours of vk+2 and compute the probability of Property (P1) holding for Xk as in (4).
Conditioning on that, Property (P1) holds for Xℓ with probability

1−
d−2∏
i=1

(
1− (d− 2)ℓ+O(1)

(d− 2)n− 2i− 2(d− 2) + 1

)
+O(n−1) = 1−

(
1− ℓ

n

)d−2

+O(n−1).

Conditioning on that, the probability that Property (P2) holds for bothXk andXℓ can be computed
the same way as in (5). Clearly, the fact that Xk = 1 affects the probability that Xℓ = 1 but the
difference is hidden in the O(1) terms. We get that

P(Xk = Xℓ = 1) = O(n−1) +

(
1−

(
1− k

n

)d−2
)d−1

·

(
1−

(
1− ℓ

n

)d−2
)d−1

.

It follows that P(Xk = Xℓ = 1) − P(Xk = 1)P(Xℓ = 1) = O(n−1) and so Var[X] = O(n). Since
Var[X] = o((E[X])2), X is well-concentrated around E[X] by the second moment method. The
proof of the theorem is finished. □
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5. Lower Bounds From the Expansion Properties: d-regular Graphs, d ≥ 3

In this section, we provide rudimentary lower bounds by invoking the Expander Mixing Lemma.
However, let us first present an observation that will be used not only here but also for stronger
numerical bounds presented in the next section.

Lemma 5.1. Suppose that H(G) ≤ k for some graph G = (V,E). Then, V can be partitioned into
sets S, T , and U such that |S| = |T | = (n− k)/2, |U | = k, and there is no edge between S and T .

Proof. Consider any graph G = (V,E) with H(G) ≤ k. By the definition of the hopping number,
there exists a set B1 ⊆ V of cardinality k such that one can initially colour vertices of B1 blue, and
then turn everything blue after a sequence of hops.

Recall that at time step t ≥ 1, Bt denotes the set of blue vertices (either active, dormant or
extinct) and Wt denotes the set of white vertices. Let B′

t ⊆ Bt be the set of extinct blue vertices
at time step t, that is, the set of blue vertices that already performed a force. Note that initially
B′

1 = ∅ and W1 = V \ B1. More importantly, each hop increases the cardinality of B′
t by one

(one active blue vertex becomes extinct) and decreases the cardinality of Wt by one (one white
vertex becomes blue, either active or dormant but certainly not extinct). In particular, at time
t = (n − k)/2, |B′

(n−k)/2| = |W(n−k)/2| = (n − k)/2. On the other hand, Bt \ B′
t keeps changing

during the process but its cardinality is equal to k for all t.
Another important property is that for any t, there is no edge between vertices in B′

t and vertices
in Wt. Indeed, when an active vertex v ∈ At ⊆ Bt performs a force at time t, all of its neighbours
have to be blue (that is, none of them is in Wt). This vertex is moved to B′

t+1 and, since Wt is
only shrinking (that is, W1 ⊃ W2 ⊃ . . .), the desired property will be preserved to the end of the
process.

The lemma follows by taking the following partition of the vertex set V : S = B′
(n−k)/2, T =

W(n−k)/2, and U = B(n−k)/2 \B′
(n−k)/2 = V \ (S ∪ T ). □

The above lemma informally tells us that if the hopping number of some graph G is small, then
there are two large sets S and T without any edges in between. Such situation does not happen
in good expanders, in particular, this property is not satisfied a.a.s. for dense random d-regular
graphs. It provides a lower bound for the hopping number of Gn,d that holds a.a.s. We provide two
arguments yielding two corresponding lower bounds. The first bound is stronger for d ≥ 35.

For convenience, we repeat the statement of Theorem 1.3. Let G = (V,E) be a d-regular graph
with n vertices and set λ = λ(G). Then,

H(G) ≥ max

(
1− 2λ

d
,
d− λ

d+ 3λ

)
n =

(
1−min

(
2λ

d
,

4λ

d+ 3λ

))
n.

As a result, for any d ≥ 3 and ε > 0, a.a.s.

H(Gn,d) ≥
(
1−min

(
4
√
d− 1

d
,

8
√
d− 1

d+ 6
√
d− 1

)
− ε

)
n.

Proof of Theorem 1.3. Consider any d-regular graph G on n vertices and set λ = λ(G). It follows
immediately from the Expander Mixing Lemma (Lemma 2.2) that for any two disjoint sets S and
T of cardinality (n− k)/2,

|E(S, T )| ≥ d|S||T |
n

− λ
√

|S||T | = d(n− k)2

4n
− λ

n− k

2
=

d(n− k)

4

(
n− k

n
− 2λ

d

)
> 0,

as long as k < (1− 2λ/d)n. Hence, by Lemma 5.1, we get that

H(G) ≥
(
1− 2λ

d

)
n.
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To get the second lower bound, let us again consider any two disjoint sets S and T of cardinality
(n− k)/2. It follows from (1) that

|E(S, V \ S)| ≥ (d− λ)
|S||V \ S|

n
= (d− λ)

(n− k)(n+ k)

4n
,

and the same lower bound holds for |E(T, V \T )|. Similarly, using (1) one more time, after setting
U = V \ (S ∪ T ), we get that

|E(U, V \ U)| ≤ (d+ λ)
|U ||V \ U |

n
= (d+ λ)

k(n− k)

n
,

since |U | = n− (n− k)/2− (n− k)/2 = k. We get that

|E(S, T )| =
1

2

(
|E(S, V \ S)|+ |E(T, V \ T )| − |E(U, V \ U)|

)
≥ 1

2

(
(d− λ)

(n− k)(n+ k)

4n
+ (d− λ)

(n− k)(n+ k)

4n
− (d+ λ)

k(n− k)

n

)
=

n− k

4n

(
(d− λ)(n+ k)− 2(d+ λ)k

)
=

n− k

4n

(
(d− λ)n− (d+ 3λ)k

)
> 0,

provided that k < d−λ
d+3λn, and so by Lemma 5.1 we get that

H(G) ≥ d− λ

d+ 3λ
n.

The conclusion for Gn,d follows immediately from Lemma 2.1 which finishes the proof of the
theorem. □

6. Lower Bounds From the Configuration Model: d-regular Graphs, d ≥ 3

We will continue exploiting Lemma 5.1 to get stronger (but numerical, not explicit) lower bounds
for the hopping number. This time we will use the configuration model (see Subsection 2.2) to show
that there are no two large disjoint sets in Gn,d with no edge between them.

For a given integer d ≥ 3, let

gd(x, z) =

(
d

2
− 1− dz

)
x log(x) + (d− 1)(1− x) log

(
1− x

2

)
− 2dxz log(z)

− (1− 2z)dx

2
log(1− 2z)

− d

(
1− x

2
− zx

)
log

(
1− x

2
− zx

)
. (7)

For a fixed x ∈ (0, 1), function gd(x, z) is maximized at

z0(x) :=
1−

√
1− 2(1− x)x

2x
. (8)

(Note that z0(x) does not depend on d; see the proof of Theorem 6.1 for more details.) Let
hd(x) = gd(x, z0(x)) be the corresponding maximum value. (For an illustration, we plot functions
h3(x) and h10(x) in Figure 6.1.)
Function hd(x) has the following properties: limx→0 hd(x) = −(d− 2) log(2)/2 < 0, it is increasing
on the interval (0, x̂] (for some x̂ ∈ (0, 1)), decreasing on the interval [x̂, 1), and limx→1 hd(x) = 0.
As a result, there is a unique value xd ∈ (0, 1) for which hd(xd) = 0. This value can be easily
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Figure 6.1. Function h3(x) and h10(x).

approximated numerically and will play a crucial role in our next result. In light of the above
definitions, the following theorem is equivalent to Theorem 1.4.

Theorem 6.1. Fix any integer d ≥ 3 and ε > 0. Let xd be the unique x ∈ (0, 1) for which
hd(x) = gd(x, z0(x)) = 0, where gd(x, z) and z0(x) are defined in (7) and in (8), respectively. Then,
a.a.s.

H(Gn,d) > (xd − ε)n.

Proof. Fix d ≥ 3 and consider the configuration model generating Gn,d. Suppose that for some
carefully chosen function x = x(n) (0 < x < 1), the expected number S(x) of partitions of n
vertices of Gn,d into sets S, T , and U such that |S| = |T | = (1−x)n/2 , |U | = xn, with the property
that there is no edge between S and T is o(1). Then, it follows from the first moment method
that a.a.s. there is no such partition in Gn,d and we immediately get from Lemma 5.1 that a.a.s.
H(Gn,d) > xn.

Let us fix some auxiliary functions y = y(n) and z = z(n) such that y > 0, z > 0, y + z < 1,
yx < (1−x)/2, and zx < (1−x)/2. Let S(x, y, z) be the expected number of partitions into sets S,
T , and U such that |S| = |T | = (1− x)n/2 , |U | = xn, with the properties that |E(U, S)| = ydxn,
|E(U, T )| = zdxn, and |E(S, T )| = 0. It is clear that

S(x, y, z) =

(
n

xn

)(
(1− x)n

(1− x)n/2

)(
dxn

ydxn

)(
d(1− x)n/2

ydxn

)
(ydxn)!

·
(
(1− y)dxn

zdxn

)(
d(1− x)n/2

zdxn

)
(zdxn)!

·M((1− y − z)dxn)M(d((1− x)/2− yx)n)M(d((1− x)/2− zx)n)/M(dn),

where M(i) is the number of perfect matchings on i points, that is,

M(i) =
i!

(i/2)!2i/2
.

Indeed, we first need to select vertices to form set U (term
(
n
xn

)
) and partition the remaining vertices

into S and T (term
( (1−x)n

(1−x)n/2

)
). After that we need to select points in U (term

(
dxn
ydxn

)
) and points in

S (term
(d(1−x)n/2

ydxn

)
) that will be matched in the configuration model with edges between U and S;
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there are (ydxn)! ways to do that. Then, we need to select points from the remaining points in U

(term
((1−y)dxn

zdxn

)
) and points in T (term

(d(1−x)n/2
zdxn

)
) and match them (term (zdxn)!) to form edges

between U and T . Finally, we independently and arbitrarily pair the remaining points in U (term
M((1−y−z)dxn)), in S (termM(d((1−x)/2−yx)n)), and in T (termM(d((1−x)/2−zx)n)). Since
each of these configurations occurs with the same probability, namely, with probability 1/M(dn),
we get the expected value by dividing the product of all above terms by M(dn).

After simplification we get

S(x, y, z) = n!(dxn)!(d(1− x)n/2)!22dn/2(dn/2)!

·(xn)!−1((1− x)n/2)!−2(ydxn)!−1(zdxn)!−1

·2−(1−y−z)dxn/2((1− y − z)dxn/2)!−1

·2−d((1−x)/2−yx)n/2(d((1− x)/2− yx)n/2)!−1

·2−d((1−x)/2−zx)n/2(d((1− x)/2− zx)n/2)!−1(dn)!−1.

Using Stirling’s formula (i! ∼
√
2πi(i/e)i) we obtain

S(x, y, z) = Θ(n−2) exp
(
fd(x, y, z)n

)
,

where

fd(x, y, z) =

(
d− 1− d(y + z)− (1− y − z)d

2

)
x log(x)

+(d− 1)(1− x) log

(
1− x

2

)
−dxy log(y)− dxz log(z)

−(1− y − z)dx

2
log(1− y − z)

−d

2

(
1− x

2
− yx

)
log

(
1− x

2
− yx

)
− d

2

(
1− x

2
− zx

)
log

(
1− x

2
− zx

)
.

Not surprisingly, for a fixed x ∈ (0, 1), the function fd(x, y, z) is maximized when z = y. To see
it, for example, we may compute the directional derivative of fd(x, y, z) in the direction (0, 1,−1),
which is equal to

dx

2

(
2
(
log(z)− log(y)

)
+ log

(
1− x

2
− xy

)
− log

(
1− x

2
− xz

))
.

Clearly, if y < z, then this derivative is positive which implies that the maximum is obtained
when z = y. This motivates the definition (7) of gd(x, z), since gd(x, z) = fd(x, z, z). To maximize
gd(x, z), we compute the derivative with respect to z:

∂g(x, z)

∂z
= dx log

(
(1− x− 2zx)(1− 2z)

2xz2

)
.

It follows that ∂g(x,z)
∂z = 0 if and only if (1 − x − 2zx)(1 − 2z) = 2xz2. By solving this quadratic

equation we get that

z =
1/x±

√
∆

2
, where ∆ =

1

x2
− 2

x
+ 2.

The constraint y + z < 1 implies that z < 1/2 and, since the larger root is at least 1/(2x) > 1/2,

it is not a feasible solution. This motivates the definition of (8), as z0(x) = (1/x−
√
∆)/2.

We conclude that for any 0 ≤ y, z ≤ 1 satisfying our constraints,

fd(x, y, z) ≤ hd(x) = gd(x, z0(x)) = fd(x, z0(x), z0(x)).
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Finally, recall that xd ∈ (0, 1) is the unique value of x for which hd(x) = 0. Moreover, hd(xd−ε) < 0.
As a result, the expected number S(xd − ε) of partitions of the vertex set into sets S, T , and U
such that |S| = |T | = (1 − xd + ε)n/2 , |U | = (xd − ε)n, with the property that there is no edge
between S and T can be estimated as follows

S(xd − ε) =
∑
y,z

S(xd − ε, y, z) =
∑
y,z

O(n−2) exp
(
fd(xd − ε, y, z)n

)
=

∑
y,z

O(n−2) exp
(
hd(xd − ε)n

)
= O(1) exp

(
hd(xd − ε)n

)
= O(1) exp

(
− Ω(n)

)
= o(1).

Hence, a.a.s. there is no partition with this property and Lemma 5.1 implies that a.a.s. H(Gn,d) >
(xd − ε)n. This finishes the proof of the theorem. □

7. Upper Bound from the Degree-greedy Algorithm: 3-regular graphs

In this section, we assume that d = 3 is fixed with dn even. In order to get an asymptotically
almost sure upper bound on the hopping number, we study an algorithm that selects random
vertices of minimum degree and tries to hop from them. This algorithm is called degree-greedy
because the vertex is chosen from those with the lowest degree. Similar technique was successfully
used to estimate the brush number of random d-regular graphs [2]. We are not as successful in our
present problem but we do hope that one can modify our algorithm, and use similar techniques to
analyze it, to get better bounds than the ones we managed to prove. We illustrate our ideas in the
simplest case, namely, for d = 3.

We start with a random 3-regular graph G = (V,E) on n vertices, and we will work with the
configuration model. During the process, we will keep track of a set Dt of vertices that have at
least one point that is still unmatched. Vertices in Dt will be considered as potential candidates
to hop from. The process will ensure that these vertices have not perform a force yet. Moreover,
white vertices are easy to identify, namely, they have 3 unmatched points.

Initially, D0 = V . In every step t of the process, we select a random vertex αt, chosen uniformly at
random from those vertices with the lowest degree in the induced subgraph G[Dt−1] on unexposed
points. We expose the neighbours associated with the remaining points of αt, make them blue
(if they are still white), and try to hop through one of them. To be able to do it, one of these
neighbours has to have at least one remaining unchosen point which is associated with a white
vertex. Regardless, whether we succeed to hop or not, αt has to be removed from Dt together with
other vertices that got all points exposed.

In the first step, a vertex of degree 3 is selected to hop from. Three of its neighbours become
blue and we hop through one of them, making another vertex blue. (A.a.s. there is no triangle
around the initial vertex.) The induced subgraph G[D1] now has 1 vertex of degree 1, 3 vertices
of degree 2, and n − 5 vertices of degree 3. Note that α1 is a.a.s. the only vertex whose degree
in G[Dt] is 3 at the time of selecting a vertex to hop from. Indeed, if αt (t ≥ 2) has degree 3 in
G[Dt−1], then G[Dt−1] consists of some connected components of G and thus G is disconnected.
It was proven in [25] that for constant d, G is disconnected with probability o(1) (this also holds
when d is growing with n, as shown in [22]).

In the second step, we try hop from the vertex of degree 1. A.a.s. its neighbour is white and after
hopping through it, this vertex becomes of degree 1. However, when vertices of degree 2 become
plentiful, we will be hopping through them often (making them of degree 0) and we might run
out of vertices of degree 1. We will start hopping from vertices of degree 2 but eventually come
back to hopping from vertices of degree 1. Our goal is to control such “hiccups”. The details of
the application of the differential equations method to such degree-greedy algorithms have been
omitted, but can be found in [28].
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For 0 ≤ i ≤ 3, let Yi = Yi(t) denote the number of vertices with i unmatched points at time t.

(Note that Y0(t) = n −
∑3

i=1 Yi(t) so Y0(t) does not need to be calculated, but it is useful in the

discussion.) Let S(t) =
∑3

i=1 iYi(t) be the total number of points that are unmatched at time t. It
is tedious but not so difficult to consider all the cases to see that for r ∈ {1, 2} and i ∈ {0, 1, 2, 3},

E
(
Yi(t+ 1)− Yi(t) | G[Dt] ∧ degG[Dt](αt+1) = r

)
= fi,r(t/n, Y1(t)/n, Y2(t)/n, Y3(t)/n)

=
∑
j

p(j)
r ∆Y

(j)
i , (9)

where p
(j)
r and ∆Y

(j)
i are presented in Tables 3 and 4 (the sum is over all possible cases: j ∈ [5]

for r = 1, and j ∈ [12] for r = 2). Indeed, let us explain, for example, the very first case, r = 1
and j = 1. We try to hop from a vertex of degree 1. Its neighbour had degree 3 with probability
3Y3(t)/(S(t)−1) ∼ 3Y3(t)/S(t) but will have degree 1 once we hop through it. Its neighbour is white
with probability 3(Y3(t)− 1)/(S(t)− 3) ∼ 3Y3(t)/S(t). Hence, this case happens with probability

asymptotic to p
(1)
1 = (3Y3(t)/S(t))

2. We can hop there, making this effort count. Three vertices
changed their degrees. Initially we have one vertex of degree 1 and 2 of degree 3. After the hop,

one of them became of degree 0, one of degree 1, and one of degree 2, explaining the ∆Y
(1)
i ’s. Note

that sometimes we are not able to make a hop, as none of the vertices in the second neighbourhood
were initially white. We indicate whether the hop occurred or not in the last column in the two
corresponding tables.

j p
(j)
1 ∆Y

(j)
0 ∆Y

(j)
1 ∆Y

(j)
2 ∆Y

(j)
3 succesful hop?

1
(

3Y3(t)
S(t)

)2
1 0 1 −2 Yes

2
(

3Y3(t)
S(t)

)2 ( 2Y2(t)
S(t)

)
2 0 0 −2 Yes

3
(

3Y3(t)
S(t)

)(
2Y2(t)
S(t)

)2
2 1 −2 −1 No

4
(

3Y3(t)
S(t)

)(
2Y2(t)
S(t)

)
2 −1 0 −1 Yes

5
(

2Y2(t)
S(t)

)2
2 0 −2 0 No

Table 3. Vertex of degree r = 1 tries to hop (5 cases)

Suppose that at some step t of the process, hopping from a vertex of degree 2 creates, in expec-
tation, β vertices of degree 1 and hopping from a vertex of degree 1 decreases, in expectation, the
number of vertices of degree 1 by τ . After hopping from a vertex of degree 2, we expect to then hop
(on average) from β/τ vertices of degree 1. Thus, the proportion of steps which hop from vertices
of degree 2 is 1/(1 + β/τ) = τ/(β + τ). If τ falls below zero, vertices of degree 1 begin to build up
and do not decrease under repeated hopings of this type and we move to the next phase.

From (9) it follows that

β = β(x, y1, y2, y3) = f1,2(x, y1, y2, y3) = f1,2(x,y),

τ = τ(x, y1, y2, y3) = −f1,1(x, y1, y2, y3) = −f1,1(x,y),

where x = t/n and yi(x) = Yi(t)/n for i ∈ [3]. This suggests the following system of differential
equations

dyi
dx

= F (x,y, i)

where

F (x,y, i) =
τ

β + τ
fi,2(x,y) +

β

β + τ
fi,1(x,y).
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j p
(j)
2 ∆Y

(j)
0 ∆Y

(j)
1 ∆Y

(j)
2 ∆Y

(j)
3 succesful hop?

1
(

3Y3(t)
S(t)

)2 ( 2Y2(t)
S(t)

)
1 1 1 −3 Yes

2
(

3Y3(t)
S(t)

)3 ( 2Y2(t)
S(t)

)
2 1 0 −3 Yes

3
(

3Y3(t)
S(t)

)3 ( 2Y2(t)
S(t)

)2
2 3 −2 −3 Yes

4
(

3Y3(t)
S(t)

)3 ( 2Y2(t)
S(t)

)3
3 3 −3 −3 Yes

5
(

3Y3(t)
S(t)

)2 ( 2Y2(t)
S(t)

)4
3 4 −5 −2 No

6 2
(

3Y3(t)
S(t)

)2 ( 2Y2(t)
S(t)

)
2 0 0 −2 Yes

7 2
(

3Y3(t)
S(t)

)2 ( 2Y2(t)
S(t)

)2
2 2 −2 −2 Yes

8 2
(

3Y3(t)
S(t)

)2 ( 2Y2(t)
S(t)

)3
3 2 −3 −2 Yes

9 2
(

3Y3(t)
S(t)

)(
2Y2(t)
S(t)

)4
3 3 −5 −1 No

10
(

3Y3(t)
S(t)

)(
2Y2(t)
S(t)

)2
2 1 −2 −1 Yes

11
(

3Y3(t)
S(t)

)(
2Y2(t)
S(t)

)3
3 1 −3 −1 Yes

12
(

2Y2(t)
S(t)

)4
3 2 −5 0 No

Table 4. Vertex of degree r = 2 tries to hop (12 cases)

At this point we may formally define the termination point x̂ is defined as the infimum of those
x > x̂ for which at least one of the following holds: τ ≤ 0, τ + β = 0, or y2 ≤ 0. The initial
conditions are y3(0) = 1 and yi(0) = 0 for i ∈ {0, 1, 2}.

The general result [28, Theorem 1] studies a deprioritized version of degree-greedy algorithms,
which means that the vertices are chosen to process in a slightly different way, not always the
minimum degree, but usually a random mixture of two degrees. Once a vertex is chosen, it is
treated the same as in the degree-greedy algorithm. The variables Y are defined in an analogous
manner. The hypotheses of the theorem are mainly straightforward to verify but require several
inequalities involving derivatives to hold at the termination of phases, for the full rigorous conclusion
to be obtained. However, in practice, the equations are simply solved numerically in order to find
the points x̂, since a fully rigorous bound is not obtained unless one obtains strict inequalities on
the values of the solutions. The conclusion is that, for a certain algorithm using a deprioritized
“mixture” of the steps of the degree-greedy algorithm, with variables Yi defined as above, we have
that a.a.s.

Yi(t) = nyi(t/n) + o(n)

for 0 ≤ i ≤ 3. We omit all details, pointing the reader to [28] and Subsection 2.5 for a short
discussion on the differential equations method which is the main tool in proving the result. In
addition, the theorem gives information on an auxiliary variable such as, of importance to our
present application, the number of vertices that actually hopped.

The numerical solution to the relevant differential equations is shown in Figure 7.1. During the
process, only vertices of degree 1 and 2 attempt to make a hop. Since we prioritize vertices of
degree 1, the function y1 responsible for “monitoring” such vertices is equal to zero. Note that it
means that a.a.s. there are only o(n) vertices of degree 1 at any point of the process, not that we do
not see them at all (we clearly do). As expected, the number of vertices of degree 3 (represented by
y3) decreases, and the number of vertices of degree 0 (represented by y0) increases. The number of
vertices of degree 2 (represented by y2) initially increases but then it decreases. A.a.s., at time x̂n ≈
0.6614n the process stops with all vertices being of degree 0. By investigating the auxiliary random
variable, and the associated differential equation, we conclude that a.a.s. approximately 0.5159n
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Figure 7.1. Evolution of Yi(t), 0 ≤ i ≤ 3 for d = 3 using the Differential Equation Method.

vertices hop, yielding an upper bound for the hoping number of approximately (1 − 0.5159)n =
0.4841n. Unfortunately, it is a much weaker upper bound than the one we obtained by investigating
the contiguous model, namely, (1 + o(1))n/3.

8. Future Directions

In this paper, we investigated the hopping number of random d-regular graphs. Unfortunately,
for all values of d, except the d = 2 case, we only have upper and lower bounds—see Table 1 and
Figure 1.1. It would be nice to narrow the gaps between these bounds.

It feels natural to attempt a greedy algorithm to generate a small initial set of blue vertices.
We analyzed one such heuristic algorithm for the d = 3 case in Section 7 using the Differential
Equation method. Unfortunately, the bound we got turned out to be weaker than the one based
on the contiguous model. Nevertheless, one may want to leverage the same tool to analyze similar
algorithms with, hopefully, better success.

There are numerous variants of the classic zero forcing rule. Some other colouring rules might be
analyzable using similar techniques as the ones used in this paper. Moreover, we concentrated on
minimizing the size of an initial set of blue vertices. Some other papers investigate the propagation
time instead, assuming that multiple forces are performed simultaneously in a sequence of time
steps, and optimize the trade-off between the size of a forcing set and its propagation time—the
so-called throttling number. Analyzing the throttling number for hopping forcing (or any other
forcing rule) on random structures might be an interesting task.
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