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Abstract. The Artificial Benchmark for Community Detection (ABCD)
is a random graph model that incorporates community structure and fol-
lows a power-law distribution for both node degrees and community sizes.
It produces graphs similar to the well-known LFR model but is faster,
more interpretable, and analytically tractable. In this paper, we build on
the core principles of ABCD to introduce mABCD, a variant designed
for multilayer networks.
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1 Introduction

Community structure is a key feature of real-world networks, revealing their internal
organization [14,21]. In social networks, it reflects shared interests; in citation networks,
it groups related papers; and in the Web graph, it connects pages on similar topics.
Identifying communities helps in understanding network structure.

However, datasets with ground-truth communities are scarce, necessitating syn-
thetic graph models for benchmarking clustering algorithms. The LFR model [28,27]
is widely used to generate networks with community structures while allowing hetero-
geneity in node degrees and community sizes.

A more recent alternative, the ABCD (Artificial Benchmark for Community
Detection) model [20], along with its fast multi-threaded version ABCDe [24], pro-
vides comparable properties to LFR but is faster and more flexible. It enables smooth
transitions between disjoint communities and random graphs and is theoretically easier
to analyze [19]. Notably, it exhibits self-similar degree distributions [2] and has been
extended to handle outliers (ABCD+o) [22] and hypergraphs (h–ABCD) [23].

The ABCD model is gaining traction among both practitioners and researchers.
For instance, [1] employs Adjusted Mutual Information (AMI) to compare 30
community detection algorithms using LFR and ABCD, highlighting ABCD’s scal-
ability and improved parameter control. Given its flexibility, this paper extends ABCD
to generate multilayer networks.
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Multilayer networks [26,13] is a relatively new aspect of complex networks that
has gathered a lot of attention over the last decade. Such networks allow us to capture
multiple di"erent relations between nodes, thus better reflecting the complexity of real-
world interactions. Shortly after the emergence of multilayer networks, the research on
community detection in those networks begun [5,36,9] (a detailed description can be
found in the survey paper [29]). This, and the fact that real-world datasets with known
community structures for multilayer networks are even less common, generated the
need for synthetic multilayer networks with known community structures.

The first such models were extensions of the existing models for simple single-layer
networks such as mLFR [7], which is an extension of the LFR model mentioned
above. Another model was proposed in [3]. It is designed to generate networks with
various kinds of meso-structures, with the community being an example of such a struc-
ture. Finally, the authors of the survey paper on community detection in multilayer
networks [29] proposed yet another model that allows the generation of a simple com-
munity structure and a network with edges based on that structure. This model allowed
them to compare several existing community detection algorithms and was partially
included in the multinet library [30] for analyzing and mining multilayer networks.

While these models provide valuable tools for benchmarking community detection
algorithms, each has its trade-o"s. Magnani et al.’s [29] approach prioritizes simplicity
and algorithm comparison but sacrifices scalability and complexity. Bazzi et al. [3] o"er
flexibility and mesoscale modelling but face challenges with parameter complexity and
computational e#ciency. Finally, the mLFR model [7] focuses on structural realism but
lacks support for heterogeneous and strongly correlated inter-layer properties. These
limitations underscore the ongoing need for more advanced models to replicate the
multifaceted nature of real-world multilayer networks.

In this paper, we use the underlying ingredients of the ABCD model and intro-
duce its variant for multilayer networks, mABCD. The paper is structured as follows.
First, we introduce the notation and terminology for multilayer networks—see Sec-
tion 2. In particular, we introduce various correlation measures between the layers. In
Section 3, we formally define the mABCD model. Conclusions and future directions
are presented in Section 4.

2 Multilayer Networks
In this section, we introduce the standard notation used and properties of interest for
multilayer networks [13,26]. For a given n → N := {1, 2, . . .}, we use [n] to denote the
set consisting of the first n natural numbers, that is, [n] := {1, 2, . . . , n}. We define the
multilayer network as a quadruple M = ([n], [ω], V = [n]↑ [ω], E), where
– [n] is a set of n actors (for example, users of various social networking sites),
– [ω] is a set of layers (for example, di"erent social networking platforms, such as

LinkedIn, Facebook and Instagram, on which actors interact with each other),
– V = [n] ↑ [ω] a set of nodes (vertices); node v = (a, ωi) → V represents an actor a

in layer ωi,
– E is a set of (undirected) edges between nodes; if e = v1v2 → E with v1 = (a1, ω1) →

V and v2 = (a2, ω2) → V , then ω1 = ω2, that is, edges occur only within layers.

Note that not every actor needs to be present on all layers. For simplicity, in
our model, we assume that each layer has exactly n nodes associated with all actors.
Actors not engaging with a given layer (we will call them inactive) will be associated
with isolated nodes (nodes of degree zero).
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2.1 Correlations Between Layers

There are no edges between nodes in di"erent layers, but in most real-world multilay-
ered networks, layers are clearly not independently generated. Each actor is associated
with ω nodes, one in each layer, and there are some highly non-trivial correlations be-
tween edges across layers. For example, active users on one social media platform are
often also active on another one [16]. This creates correlations between degree distri-
butions across layers. Communities that are naturally formed in various layers often
depend on the properties of the associated actors. For example, users interested in
soccer might group together on Instagram and on Facebook. As a result, partitions of
nodes into communities (associated with di"erent layers) are often correlated. Finally,
interactions between actors in one layer might increase their chances of interacting in
another layer, yielding correlations at the level of edges.

Below, we briefly summarize how we measure these three types of correlations
mentioned above. The first two measures are standard, and their detailed description
can be found, for example, in [8,21].

Correlations Between Nodes Degrees in Various Layers We will use
Kendall rank correlation coe!cient ε [25] to measure correlations between se-
quences of node degrees in two di"erent layers. It is a nonparametric measure of the
ordinal association between two measured quantities: the similarity of the orderings
of the data when ranked by each of the quantities (in our application, the degree se-
quences). The Kendall correlation between two variables ranges from ↓1 to 1. It is
large when observations have a similar rank between the two variables and is small
when observations have a dissimilar rank between the two variables.

Specifically, we will use the “tau-b” statistic, which is adjusted to handle ties. If an
actor is inactive in one of the two layers we compare against each other, then we simply
ignore the two nodes corresponding to this actor. As a result, the degree sequences are
always of the same length.

Correlations Between Partitions in Various Layers The adjusted mutual
information (AMI), a variation of mutual information (MI), is a common way
to compare partitions of the same set [21,37]. Usually, one may want to compare the
partitions returned by some clustering algorithms. In our present context, we may
want to compare partitions into ground-truth communities from two di"erent layers.
The AMI takes a value of 1 when the two partitions are identical and 0 when the MI
between two partitions equals the value expected due to chance alone. Actors, that are
inactive in at least one of the two layers we compare against each other, are ignored so
that a comparison of partitions is made on the same set of actors.

Correlations Between Edges in Various Layers To measure correlations
between edges in di"erent layers, we define R, a ω↑ ω matrix in which elements ri,j →
[0, 1] (i, j → [ω]) capture correlation between edges present in layers i and j. For any
i, j → [ω] with i < j, let

Ej
i = {a1a2 : (a1, i)(a2, i) → E ↔ a1, a2 → [n] are active in layers i and j}, (1)

be the set of edges that are present in layer i, involving actors that are also active in
layer j. Note that in the definition of Ej

i , edges are defined over actors that are active
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in both layers, not nodes in layer i, so that we can perform set operations on edges
between layers. Entries ri,j in R are computed using the following formula:

ri,j =
|Ej

i ↗ Ei
j |

min{|Ej
i |, |Ei

j |}
.

If min{|Ej
i |, |E

i
j |} = 0, then we leave ri,j undefined; in the implementation, NaN value

is produced.
Note that the definition of R implies that ri,i = 1 for any i → [ω] and ri,j = rj,i for

1 ↘ i < j ↘ ω. The maximum value of 1 is attained when edges in one of the layers
form a subset of edges in the other layer. The minimum value of 0 is attained when
the two sets of edges in the corresponding layers are completely disjoint. As a result,
rij aims to capture correlations between individual edges, but it is not normalized
as, for example, the Kendall rank correlation coe#cient ε . The coe#cient ε ranges
from ↓1 to 1, corresponding to the two extremes, and 0 corresponds to a neutral case.
Graphs associated with the layers are sparse, but one layer might have substantially
more edges than the other. Hence, rij is convenient, but it does not have a natural
interpretation as ε . Finally, let us mention that one can easily update the value of rij
when some small operations are applied to either layer i or j. It will become handy
when such operations must be performed on our synthetic model to converge to the
desired correlation matrix R.

2.2 Examples of Multilayer Networks
Before constructing the model, we first examined whether and how degrees, edges, and
partitions correlate across layers in real-world networks. Existing research [29,8] has yet
to provide a definitive answer. To fill this gap, we analyzed eight real-world networks
from diverse domains, each di"ering in actors, nodes, edges, and layers. Table 1 sum-
marizes their structural characteristics, while Figure 1 presents correlation matrices for
node degrees, partitions, and edges (as defined in Section 2.1) for one of the analyzed
networks.

Fig. 1: Node degrees, partitions, and edge correlations between layers of cannes

network.

Our analysis revealed no consistent patterns across networks—degrees, edges, and
partitions were sometimes correlated and sometimes independent. In one network, two
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layers might be correlated, while another layer remained unaligned. To accommodate
this variability, we designed mABCD for flexibility: advanced users can customize dis-
tributions and correlations between layers, while default parameters, such as a power-
law degree distribution, provide guidance for less experienced users.

Table 1: Networks used in experiments with their basic parameters shortlisted.

Name Layers Actors Nodes Edges Note
arxiv 13 14,065 26,796 59,026 Coauthorship network from articles pub-

lished on the “arXiv” [12].
aucs 5 61 224 620 A graph of interactions between employ-

ees of Aarhus University, Department of
Computer Science [34].

cannes 3 438,537 659,951 974,743 A network of interactions between Twitter
users [31].

ckmp 3 241 674 1,370 A network depicting di"usion of innovations
among physicians [11].

eutr-A 37 417 2,034 3,588 The European air transportation net-
work [10].

l2-course 2 41 82 297 A network of interactions between U.S. stu-
dents learning Arabic [33].

lazega 3 71 212 1,659 A network of interactions between sta" of a
law corporation [35].

timik 3 61,702 102,247 881,676 A graph of interactions between users of the
virtual world platform [18].

3 The mABCD Model

In this section, we introduce the variant of the ABCD model that produces a synthetic
collection of graphs that form a multilayer structure, mABCD.

3.1 Power-law Distribution

Power-law distributions will be used to generate both the degree sequence and com-
munity sizes so let us formally define it. For given parameters ϑ → (0,≃), ϖ,ϱ → N
with ϖ ↘ ϱ, we define a truncated power-law distribution P (ϑ, ϖ,ϱ) as follows. For
X ⇐ P (ϑ, ϖ,ϱ) and for k → N with ϖ ↘ k ↘ ϱ,

P (X = k) =

∫ k+1

k
x→ω dx

∫ε+1

ϑ
x→ω dx

.

3.2 The Configuration Model

The well-known configuration model is an important ingredient of the generation pro-
cess, so let us formally define it here. Suppose then that our goal is to create a graph
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on n nodes with a given degree distribution d := (di, i → [n]), where d is a sequence of
non-negative integers such that m :=

∑
i↑[n] di is even. We define a random multi-graph

CM(d) with a given degree sequence known as the configuration model (sometimes
called the pairing model), which was first introduced by Bollobás [6]. (See [4,38,39]
for related models and results.)

We start by labelling nodes as [n] and, for each i → [n], endowing node i with di
half-edges. We then iteratively choose two unpaired half-edges uniformly at random
(from the set of pairs of remaining half-edges) and pair them together to form an edge.
We iterate until all half-edges have been paired. This process yields Gn ⇐ CM(d),
where Gn is allowed self-loops and multi-edges and thus Gn is a multi-graph.

3.3 Parameters of the mABCD Model

The mABCD model is governed by the following parameters. The first family of
parameters is responsible for a few global properties of the model.

Parameter Range Description
n N Number of actors
ω N Number of layers
R [0, 1]ϖ↓ϖ Correlation between edges

Actors will be associated with labels from the set [n]. These labels will a"ect the
degrees of actors. Each actor a → [n] will be associated with ω nodes, vi = (a, i) with
i → [ω], one for each of the ω layers. Moreover, each actor will be associated with a
vector in Rd representing their features. We will refer to these vectors as vectors in the
reference layer. This reference layer will a"ect the process of generating partitions into
communities in various layers.

The second family of parameters is responsible for various properties that are spe-
cific for each of the ω layers; subscripts i → [ω] indicate that the corresponding parame-
ters shape the ith layer. In particular, the set of parameters ςi, i → [ω], will control the
level of noise, that is, the fraction of edges in layer i that are between nodes from two
di"erent communities.

Parameter Range Description
qi (0, 1] Fraction of active actors
εi [↓1, 1] Correlation coe#cient between degrees and labels
ri [0, 1] Correlation between communities and reference layer
ϑi (2, 3) Exponent of power-law degree distribution
ϖi N Min degree at least ϖi
ϱi N (1 ↘ ϖi ↘ ϱi < n) Max degree at most ϱi

φi (1, 2) Exponent of power-law community size distribution
si N Min community size at least si
Si N (ϖ < si ↘ Si ↘ n) Max community size at most Si

ςi (0, 1) Level of noise

3.4 The mABCD Construction

We will use A for the distribution of graphs (layers) generated by the following 6-
phase construction process. The model generates ω graphs; graph Gi

n = ([n]↑ {i}, Ei),
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i → [ω], is the graph representing the ith layer. Once they are generated, we simply take
V =

⋃
i↑[ϖ]([n]↑ {i}) and E =

⋃
i↑[ϖ] E

i.

Phase 1: Selecting Active Nodes As mentioned above, in a multilayer network,
not all of the actors are active in all the layers. Actor a → [n] is active in layer i with
probability qi, independently for each i → [ω] and all other actors. If an actor is not
active in a given layer, then it will be represented by an “artificial” inactive node. We
use N i to denote the number of active nodes (and actors) in layer i. (Clearly, N i is a
random variable with expectation qin.) For convenience, we will keep inactive nodes as
part of the corresponding graphs, but one may think of them as being removed from a
given layer. Each actor is active in all layers by default, thus qi = 1 (i → [ω]).

Phase 2: Creating Degree Sequences The degree sequences for all of the ω
layers are generated independently so we may concentrate on a given layer i → [ω].
We ensure that the degree sequence satisfies (a) a power-law with parameter ϑi, (b) a
minimum value of at least ϖi, and (c) a maximum value of at most ϱi.

Inactive nodes (representing actors not present in particular layer) are easy to deal
with, they simply have degree zero. The remaining N i degrees are i.i.d. samples from
the distribution P (ϑi, ϖi,ϱi). We use di

n = (div, v → [n]) for the generated degree
sequence of Gi

n with di1 ⇒ di2 ⇒ · · · ⇒ din; di
Ni is a degree subsequence of active nodes.

Finally, to ensure that
∑

v↑[n] d
i
v is even, we decrease di1 by 1 if necessary; we relabel

as needed to ensure that di1 ⇒ di2 ⇒ · · · ⇒ din.
Parameter εi → [↓1, 1] controls how degrees of the nodes are correlated with labels

of the associated actors (recall that node (a, i) in layer i is associated with an actor with
label a). In one important case, namely, when εi = 0, there is no correlation at all and
the degree sequence di

Ni is assigned randomly to the Ni active nodes. When εi = 1, the
order of active nodes with respect to their labels is the same as the order with respect
to their degrees; the largest degree node is first. In other words, if nodes (a1, i), (a2, i)
with 1 ↘ a1 < a2 ↘ n are active, then degi(a1) ⇒ degi(a2), where degi(a1) is the
degree of node (a1, i). Similarly, if εi = ↓1, then the order of active nodes with respect
to their labels is also consistent with the order with respect to their degrees but this
time the last node is of the largest degree. Since εi’s could be di"erent for di"erent
layers, one node could have large degrees in some layers but small ones in some other
ones.

To achieve the desired property, each active node (a, i) independently generates
a normally distributed random variable Xa = N(a/n,↼i), where the variance ↼i is
a specific function of εi. (Recall that we concentrate on a given layer i → [ω]. For
convenience, we simplify the notation and stop referencing to layer i in notation such
as Xa. Still, there are many independent random variables for each active node (a, i)
associated with actor a.) We sort active nodes in increasing order of their values of
Xa and assign the degree sequence accordingly; that is, node (a, i) gets degree dir,
where r → [Ni] is the rank of Xa. In particular, the node with the smallest value of
Xa gets assigned the largest degree, namely, di1. Note that if ↼i = 0, then Xa = a/n
(deterministically), and so we recover the perfect correlation between the degrees and
the labels (εi = 1). On the other hand, if ↼i ⇑ ≃, then the order of nodes is perfectly
random (with uniform distribution), so we recover the other desired extreme (εi = 0).

Function ↼i : [0, 1] ⇑ [0,≃) is empirically approximated so that the variance
↼i = ↼i(↽i) yields the Kendall rank correlation close to εi → [0, 1] between the ordering
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generated by the ranks of Xa and the labels a associated with corresponding actors
that are active in layer i. Twenty degree distributions are independently generated
(with di"erent random seeds), and the one with the correlation coe#cient that is the
closest to the desired value of εi is kept. To deal with negative correlations εi → [↓1, 0),
we simply “flip” the order generated for |εi|.

Phase 3: Creating Communities Our next goal is to create community structure
in each layer of the mABCD model. When we construct a community, we assign a
number of nodes to said community equal to its size. Initially, the communities form
empty graphs. Then, in later phases we handle the construction of edges using the
degree sequence established in Phase 2.

Similarly to the process of generating the degree sequences, the distributions of
community sizes are generated independently, ensuring that the distribution for a given
layer i → [ω], satisfy (a) a power-law with parameter φi, (b) a minimum value of si, and
(c) a maximum value of Si. In addition, we also require that the sum of community
sizes is exactly n. Specifically, inactive nodes (if there are any) form their own com-
munity, namely, Ci

0. Other (regular) communities are generated with sizes determined
independently by the distribution P (φi, si, Si). We generate communities until their
collective size is at least n. If the sum of community sizes at this moment is n+x with
x > 0, then we perform one of two actions: if the last added community has a size at
least x + si, then we reduce its size by x. Otherwise (that is, if its size is c < x + si),
then we delete this community, select c ↓ x old communities and increase their sizes
by 1.

Now, given that the sequences of community sizes are already determined (for all
layers), it is time to assign nodes to communities. To allow communities to be correlated
with each other, we first create a latent reference layer that will guide the process of
assigning nodes to specific communities across all layers. One may think of this auxiliary
layer as properties of actors (such as people’s age, education, geographic location,
beliefs, etc.) shaping di"erent layers (for example, various social media platforms).
This single reference layer will be used for all ω layers. In this reference layer, each
actor a → [n] gets assigned a random vector in Rd (by default, d = 2) that is taken
independently and uniformly at random from the ball of radius one centred at 0 =
(0, 0, . . . , 0).

Let us now concentrate on a given layer i → [ω]. Recall that the community sizes have
already been generated. We write Li for the (random) number of regular communities
in layer i partitioning the set of active nodes in this layer and use ci = (cij , j →
{0} ⇓ [Li]) for the corresponding sequence of community sizes. Recall that inactive
nodes (representing actors not present in a particular layer) form their own community
(namely, Ci

0) so ci0 = n ↓N i is the number of inactive nodes in layer i. Let R be the
set of active nodes. We assign nodes to communities, dealing with one community at
a time, in a random order. When community Ci

j is formed (for some j → [Li]), we first
select a node from R that is at the largest distance from the center 0 (in the reference
layer). This node, together with its cij ↓ 1 nearest neighbours in R, are put to Ci

j . We
remove Ci

j from R and move on to the next community.
The above strategy creates a partition of nodes that is highly correlated with the

geometric locations of nodes in the reference layer; nodes that are close to each other in
the reference layer are often in the same community—see Figure 2 for an example. To
reduce the correlation strength (modelled by the parameter ri → [0, 1]), we perform the
following procedure. Each active node independently leaves its own community with
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probability 1 ↓ ri, freeing a spot in this community. All the nodes that left are then
put back randomly to any available spot (which typically is in a community that this
node was not originally in). Note that in the extreme case, when ri = 0, the resulting
partition does not depend on the reference layer at all, so there is no correlation. We
write Ci

n = (Ci
j , j → {0} ⇓ [Li]) for the generated collection of communities in Gi

n.
Again, let us stress the fact that Ci

n is a random partition of [n] of random size Li +1.
Finally, note that in the above process of assigning nodes to communities, as op-

posed to the original ABCD model, we ignore the degree of nodes. Indeed, the original
ABCD model tries to make sure that large degree nodes are not assigned to small
communities. In mABCD, there are many layers and non-trivial correlations between
partitions into communities and degree sequences between layers. In a hypothetical
extreme situation, it might happen that each node belongs to some small community
in some layer. Hence, the mABCD model does not try to prevent such unavoidable
situations and will resolve potential issues later (see Phase 5).

Fig. 2: Two partitions generated based on the same reference layer with n = 1,000
nodes: (left) q1 = 1 (all nodes active), S1 = 32, s1 = 16, ω1 = 1.5, (right):

q2 = 0.5 (50% nodes active), S2 = 50, s2 = 25, ω2 = 1.5.

Phase 4: Creating Edges Now, it is time to form edges in mABCD. It will be
done in the next three phases, Phases 4–6. Phases 4 and 5 will independently generate
ω graphs Gi

n, i → [ω], for each of the ω layers whereas Phase 6 will make sure that edges
across various layers are correlated, if needed. We may then concentrate on a given
layer i → [ω].

At this point Gi
n contains n nodes labelled as (a, i), a → [n], partitioned by the

communities Ci
n, with node (a, i) containing degi(a) unpaired half-edges. Firstly, for

each a → [n], we split the degi(a) half-edges of (a, i) into two distinct groups, which we
call community half-edges and background half-edges. For a → Z and b → [0, 1) define
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the random variable ⇔a+ b↖ as

⇔a+ b↖ =
{
a with probability 1↓ b, and
a+ 1 with probability b .

(Note that E [⇔a+ b↖] = a(1↓ b)+(a+1)b = a+ b.) Now define Ya :=
⌊
(1↓ ς) degi(a)

⌉

and Za := degi(a) ↓ Ya (note that Ya and Za are random variables with E [Ya] =
(1↓ ς) degi(a) and E [Za] = ς degi(a) and since we generate each layer separately they
are di"erent for each layer) and, for all a → [n], split the degi(a) half-edges of (a, i)
into Ya community half-edges and Za background half-edges. Next, for all j → [Li],
construct the community graph Gi

n,j as per the configuration model on node set Ci
j

and degree sequence (Ya, a → Ci
j). Note that C0 consists of inactive nodes which, by

design, have degree zero. Hence, there is no need to do anything with them. Finally,
construct the background graph Gi

n,0 as per the configuration model on node set [n]
and degree sequence (Za, a → [n]). In the event that the sum of degrees in a community
is odd, we pick a maximum degree node (a, i)) in said community and replace Ya with
Ya + 1 and Za with Za ↓ 1. Note that Gi

n,j is a graph, and Ci
j is the set of nodes in

this graph; we refer to Ci
j as a community and Gi

n,j as a community graph. Note also
that Gi

n =
⋃

0↔j↔Li G
i
n,j .

Phase 5: Rewiring Self-loops and Multi-edges We continue concentrating
on a given layer i → [ω]. Note that, although we are calling Gi

n,j (j → {0}⇓ [Li]) graphs,
they are in fact multi-graphs at the end of Phase 4. To ensure that Gi

n is simple, we
perform a series of rewirings in Gi

n. A rewiring takes two edges as input, splits them
into four half-edges, and creates two new edges distinct from the input. We first rewire
each community graph Gi

n,j , j → [Li], independently as follows.

1. For each edge e → E(Gi
n,j) that is either a loop or contributes to a multi-edge, we

add e to a recycle list that is assigned to Gi
n,j .

2. We shu$e the recycle list and, for each edge e in the list, we choose another edge
e↗ uniformly from E(Gi

n,j) \ {e} (not necessarily in the recycle list) and attempt
to rewire these two edges. We save the result only if the rewiring does not lead to
any further self-loops or multi-edges, otherwise we give up. In either case, we then
move to the next edge in the recycle list.

3. After we attempt to rewire every edge in the recycle list, we check to see if the
new recycle list is smaller. If yes, we repeat step 2 with the new list. If no, we give
up and move all of the “bad” edges from the community graph to the background
graph.

We then rewire the background graph Gi
n,0 in the same way as the community graphs,

with the slight variation that we also add edge e to recycle if e forms a multi-edge
with an edge in a community graph or, as mentioned previously, if e was moved to the
background graph as a result of giving up during the rewiring phase of its community
graph. At the end of Phase 5, we have a simple graph Gi

n representing the i-th layer
of a multilayer network.

Phase 6: Correlations Between Edges in Various Layers During this last
phase, we continue performing a series of rewiring (in batches) with the goal of creating
a multilayer network with the correlations between edges in various layers (as defined
in Subsection 2.1) to be as close to the desired matrix R (provided as one of the
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parameters of the model) as possible. It is important to highlight the fact that during
this phase, not only do the degrees of the involved nodes not change, but the community
degrees stay the same (as well as the background ones). Hence, in particular, the level
of noise stays the same.

We run t independent batches of operations (by default, t = 100). Before every
batch, we re-compute the (empirical) correlation matrix R̂ for the current multilayer
network (Gi

n : i → [ω]) and compare it with the desired matrix R. We select an entry ij
at random with the probability proportional to the discrepancy between the empirical
and the desired values. In other words, we select a pair (i, j) (1 ↘ i < j ↘ ω) with
probability

pij =
|r̂ij ↓ rij |∑

1↔r<s↔ϖ |r̂rs ↓ rrs|
.

We attempt to rewire ↙⇀min{|Ej
i |, |E

i
j |}↖ of edges in each batch with the goal to bring

r̂ij closer to rij (by default, ⇀ = 0.05). Recall that Ej
i can be viewed as the set of edges

in layer i that are between actors that are active in layer j (and, trivially, also active
in layer i since inactive actors form isolated nodes), see (1).

Suppose first that r̂ij < rij , that is, the correlation between layer i and layer j is
smaller than what we wished for. Each of the attempts does the following. Randomly
select one of the two graphs, Gi

n or Gj
n, and call it primary. Then, pick a random edge

uv from the primary graph between actors that are active in both layers. Our goal is
to try to introduce edge uv in the other graph (call it secondary) unless it is already
there, in which case we simply finish this attempt prematurely. If u and v belong to
one of the communities in the secondary graph (say to the community C), then we
take u↗ to be a random neighbour of u in C (if there are any), take v↗ to be a random
neighbour of v in C (again, if there are any). If u, v, u↗, v↗ are four distinct nodes and
there is no edge u↗v↗ in the secondary graph, then we remove the two edges uu↗ and
vv↗ and introduce two new edges uv and u↗v↗. If anything goes wrong, then we simply
finish prematurely and move on to another attempt. If u and v are from two di"erent
communities in the secondary graph, then the procedure is exactly the same, but this
time, our goal is to select four nodes, each from a di"erent community. Specifically, we
try to pick a random neighbour u↗ of u outside of the communities u or v belong to.
Then, we try to pick a random neighbour v↗ of v outside of the communities u, v, or
u↗ belong to. If the four selected nodes are di"erent and there is no edge u↗v↗ in the
secondary graph, we do the rewiring.

Suppose now that r̂ij > rij , that is, the correlation between layer i and layer j is
larger than what we wished for. As before, during each attempt, we randomly make one
of the two graphs, Gi

n, Gj
n, to be primary and the second one to be secondary. Then,

pick a random edge uv from the intersection of the two graphs. Our goal is to try to
remove edge uv from the secondary graph. If u and v belong to one of the communities
in the secondary graph (say to the community C), then we take a random edge u↗v↗

from C. If u, v, u↗, v↗ are four distinct nodes and there are no edges uu↗ nor vv↗ in the
secondary graph, then we remove the two edges uv and u↗v↗ and introduce two new
edges uu↗ and vv↗. As before, if anything goes wrong, then we simply finish prematurely
and move on to another attempt. If u and v are from two di"erent communities in the
secondary graph, then we pick a random edge u↗v↗ from the secondary graph with the
property that all four nodes belong to di"erent communities. We try to rewire the two
edges, making sure that no multi-edges get created.

The goal of the sequence of t batches is to bring the (empirical) correlation matrix
R̂ closer to the desired matrix R. Unfortunately, fixing one entry of R may a"ect the
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other entries. Hence, it is not guaranteed that the best solution is found after exactly
t batches. To take this into account, we track the quality of the multilayer networks
(Gi

n : i → [ω]) at the beginning of each bath (via L2 norm between R̂ and R) and the
final network is one of the t networks that performed best.

4 Conclusions and Futue Directions

In this paper, we introduced mABCD, an extension of the ABCD model designed
for multilayer networks. This new benchmark model provides a flexible and scalable
framework for generating synthetic multilayer networks with ground-truth communities
while maintaining desirable properties such as power-law degree and community size
distributions.

A key contribution of mABCD is its ability to control correlations between layers,
including node degrees, community structures, and edge connections. Unlike some of
the existing multilayer benchmarks, which often impose rigid structural assumptions,
mABCD allows for a smooth transition between independent layers and highly corre-
lated structures. This makes it particularly suitable for evaluating community detection
algorithms across di"erent network configurations.

Our empirical analysis of real-world multilayer networks highlighted the high vari-
ability in inter-layer correlations, underscoring the need for a flexible synthetic model.
mABCD directly addresses this need by allowing users to either fully customize cor-
relation structures or rely on default settings that mimic observed patterns.

With its scalability, adaptability, and theoretical tractability, mABCD is a power-
ful tool for researchers and practitioners working on community detection in multilayer
networks. We believe that this benchmark will facilitate more robust evaluations and
drive further advancements in the field.

The future work which we aim to present in the follow-up journal paper will in-
clude a deeper theoretical analysis of its properties. Initial experiments confirm that
mABCD e"ectively captures the desired correlations between degrees, community
structures, and edges across layers. However, a more rigorous study of these relation-
ships, including their behaviour and sensitivity to parameter variations, would enhance
our understanding of the model’s capabilities and limitations. Another area that needs
deeper evaluation is correlation control between layers. Our current approach provides
flexibility in tuning inter-layer dependencies, but we would like to empirically test
if correlations between degrees, partitions, and edges always match the desired values
and, if not, what are the tradeo"s between exact matching and model e#ciency (gener-
ation speed). The computational e#ciency of mABCD is the next property we would
like to evaluate to see if the model could be optimized. For example, optimizing the
correlation adjustment phase (Phase 6) could significantly reduce execution time for
large networks. Finally, we would like to explore mABCD in other applications than
community detection. For example, using mABCD to generate networks with di"er-
ent topologies (e.g., in terms of correlations between layers or weak/strong community
structure) to evaluate how network topology can a"ect various dynamic processes on
those networks. For example, assessing the impact of community structure on informa-
tion di"usion, epidemic spreading, or opinion dynamics could provide valuable insights
into real-world multilayer networks.
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Code and Data The algorithm is implemented in Julia programming language.
Source code and installation instructions are available on mABCD GitHub repository5.
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