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The Canadian Mathematical Olympiad (CMO) is an annual, invitational,
proof-based competition for Canadian students. It is Canada’s premier national
advanced mathematics competition. Students attempt to solve 5 problems in
three hours, with each problem graded on a scale from 0 to 7. In 2020, the
CMS introduced the Canadian Junior Mathematical Olympiad (CJMO), also
by invitation only, a variant specifically for students in grade at most 10. These
3-hour competitions are held each March at a selected time and date (by default,
the second Thursday of March). All official participants write at the same time
and are proctored by their local school faculty or staff. For more information
visit https://cms.math.ca/competitions/cmo/.

The CMO is an important contest for students with international aspirations,
as a good performance leads to the Canadian Team Selection Test, and then onto
the International Mathematical Olympiad (IMO) itself. Qualification for the
C(J)MO is primarily via the Canadian Open Mathematics Challenge (COMC),
an open contest written in late October.

In total, the 2025 CMO was written by 95 students, with 93 official entrants.
The CJMO was written by 17 students, all official entrants. Five Canadian
provinces were represented, with the number of contestants as follows:

CMO: AB (8), BC (13), ON (47), QC (8), SK (1)

CJMO: AB (1), BC (1), ON (12), QC (1)

(note that Canadian citizens residing outside of Canada can also officially write
the C(J)MO, accounting for the discrepancy in numbers).
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Grading for both contests went relatively smoothly, with a team of 15 math-
ematicians, including professors, students, and former contestants, contributing
their time. The top score on the CMO was 27, achieved by Warren Bei, and
the mean score was 8.1. The Matthew Brennan Award for best solution went to
Warren Bei for an excellent solution to problem 3. This was a difficult problem
with most solutions being fairly technical. Warren’s writeup was very short and
clean. On the CJMO, a top score of 23 was achieved by Warren Maximilian Lin,
and the mean score was 10.1. A full breakdown of the marks assigned problem
by problem is in Table 1.

Score P1 P2 P3 P4 P5
7 0 34 8 5 5
6 3 9 4 0 2
5 4 9 1 0 0
4 2 6 0 0 0
3 27 10 0 0 0
2 14 8 4 1 1
1 26 4 1 0 2
0 19 15 77 89 85

Avg 1.91 4.33 0.99 0.39 0.54

(a) CMO

Score P1 P2 P3 P4 P5
7 0 2 0 1 0
6 15 0 0 0 1
5 1 0 1 0 0
4 0 0 0 2 0
3 1 0 3 4 0
2 0 0 3 1 0
1 0 2 2 1 0
0 0 13 8 8 16

Avg 5.76 0.94 1.29 1.76 0.35

(b) CJMO

Table 1: C(J)MO score breakdown by problem.

An intrepid reader may note that CMO problem 1 (which was also CJMO
problem 3) was significantly harder than usual, with no perfect 7’s awarded.
This was due to an unintentional clerical error. The question entailed a voting
procedure among n hockey players, which took place in rounds. The question
was intended to read “Prove that eventually, all players will unanimously vote
for the same person.” Instead, the final version asked to prove that “after n
rounds, all players will unanimously vote for the same person.” Despite several
checks, this subtle change went unnoticed until after the contest.

Fortunately, the version with n rounds is still a correct problem, just more
appropriately placed as the fourth or fifth problem on the contest. The increased
difficulty had a large knock-on effect, with overall scoring averages being about
a problem lower than last year’s C(J)MO. It also offers a good lesson to future
olympiad contestants: do not always trust the ordering of the problems! It is
very common for test-setters to misestimate the relative difficulty of a contest,
leading to misnumbered problems. Even a contest like the IMO occasionally has
problems out of order (with the most famous example being 2011’s “windmill
problem”).

Problem 5 on the CMO was a neat problem about an ant traveling around
a rectangle.

Problem 1. A rectangle R is divided into a set S of finitely many smaller
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rectangles with sides parallel to the sides of R such that no three rectangles in
S share a common corner. An ant is initially located at the bottom-left corner
of R. In one operation, we can choose a rectangle r ∈ S such that the ant is
currently located at one of the corners of r, say c, and move the ant to one of
the two corners of r adjacent to c.

Suppose that after a finite number of operations, the ant ends up at the top-
right corner of R. Prove that some rectangle r ∈ S was chosen in at least two
operations.

A natural approach to solving the problem is to prove the contrapositive:
assume that the ant does not choose a rectangle twice, and prove that it cannot
travel from the bottom left to the top right.

A good next step is to draw a few sample dissections S, and attempt to walk
the ant to the top right following the moves. For example, see Figure 1.

Figure 1: A possible path by the ant. Arrows indicate direction of travel, and
point to the chosen rectangles.

One will find that the ant can travel pretty far, in fact, it seems like it
can visit most vertices in S, and it can get very close to the top right corner.
Furthermore, if we drop the repeated rectangle rule, it is very easy to walk to
the top right. This signals that there must be some sort of invariant that is
blocking the ant.

Such an invariant is clearly broken when choosing the same rectangle twice.
Let us examine the given conditions a bit more closely: there is the clause
that “no three rectangles in S share a common corner.” This is clearly very
important, as the problem would be false without it! See Figure 2 for a simple
path that reaches the top-right corner of R, and does not choose a rectangle
twice.

What is special about forbidding such a three corner intersection? This
implies that all corner intersections are “T-intersections”: they form a pattern
like ⊢, ⊣, ⊥, or ⊤. In particular, to reach an intersection, there are exactly two
possible rectangles that can be chosen. One rectangle must be chosen to reach
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Figure 2: How the ant can win, if three corners may intersect. (Note that three
corners intersecting implies that a fourth must also intersect.)

the intersection point, and the other is therefore chosen to leave it, since we
cannot repeat rectangles.

In fact, this is exactly where the non-repeating condition gets used. It also
implies a strengthening of the problem: in order for the ant to get to the top
right, not only did the same rectangle have to be used twice, but it had to be
used twice consecutively !

Heading back to the problem, it seems like we are close. We have identified a
key property of the setup, which limits the possible moves, and need to form this
into an invariant that is somehow preserved. There is very little to work with
here, other than the location of the ant’s path relative to the chosen rectangle.

In particular, we can track if the ant is traveling vertically or horizontally,
and if the chosen rectangle is to the left or to the right of the ant as they travel.
This makes four combinations, and we can keep track of them as we walk (an
analogous invariant would be tracking the cardinal directions, e.g. SW corner
to NW corner). Colour the ant’s moves as follows:

• Red: vertical, with chosen rectangle on the right (with respect to the
ant’s travel);

• Orange: vertical, with chosen rectangle on the left;

• Green: horizontal, with chosen rectangle on the right;

• Blue: horizontal, with chosen rectangle on the left.

In Figure 2, we made it to the top-right corner of R, and we see that all four
colours were used. On the other hand, in Figure 1, there are no intersections
of three rectangles, we followed the no rectangle repeats rule, and only red and
blue were used!
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At this point it is clear that this observation must lead to a solution. Indeed,
note that the first move (from the bottom left) must choose the bottom left
rectangle, and either be vertical and right (red), or horizontal and left (blue).
By analyzing the different T-intersection possibilities, we find that if the ant
walks a blue or a red path, their next move is again blue or red, hence all future
moves are as well. See Figure 3 for a demonstration of the possibilities after a
move north or east (180 degree rotation gives the south and west cases).
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Figure 3: Possible ant moves going north or east. The ant enters on rectangle r,
and leaves on rectangle s. There are two possible choices, and each one remains
blue or red.

Finally, we must go back to the original problem. Why can the ant not reach
the top right corner? Well, the final move must be to choose the upper-right
rectangle, which is left of the vertical move to make it there, and right of the
horizontal move. These moves are coloured green and orange, which cannot
occur after a blue or red move. This provides the contradiction we require!

A takeaway of this problem is that even very difficult questions can some-
times be solved by a series of small observations. Nowhere in this solution did
we need to come up with a difficult and clever idea: it all fell apart naturally
from a slow and methodical investigation into how the ant can travel.
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