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Abstract

An embedding is a mapping from a set of nodes of a network into a real vector space. Embeddings can
have various aims like capturing the underlying graph topology and structure, node-to-node relationship,
or other relevant information about the graph, its subgraphs or nodes themselves. A practical challenge
with using embeddings is that there are many available variants to choose from. Selecting a small
set of most promising embeddings from the long list of possible options for a given task is challenging
and often requires domain expertise. Embeddings can be categorized into two main types: classical
embeddings and structural embeddings. Classical embeddings focus on learning both local and global
proximity of nodes, while structural embeddings learn information specifically about the local structure
of nodes’ neighbourhood. For classical node embeddings there exists a framework which helps data
scientists to identify (in an unsupervised way) a few embeddings that are worth further investigation.
Unfortunately, no such framework exists for structural embeddings. In this paper we propose a framework
for unsupervised ranking of structural graph embeddings. The proposed framework, apart from assigning
an aggregate quality score for a structural embedding, additionally gives a data scientist insights into
properties of this embedding. It produces information which predefined node features the embedding
learns, how well it learns them, and which dimensions in the embedded space represent the predefined
node features. Using this information the user gets a level of explainability to an otherwise complex
black-box embedding algorithm.

1 Introduction

Inspired by early work in word embedding techniques [23], node, edge and graph embedding algorithms have
gained a lot attention in the machine learning community, in recent years. Indeed, learning an accurate and
useful latent representation from network-data is an important and necessary step for any successful machine
learning task, including node classification [24], anomaly detection [3], link prediction [13], and community
detection [25] (see also surveys [5, 12]).

In this paper, we distinguish two families of node embeddings: classical node embeddings and structural
node embeddings. The first family is very rich with already over 100 algorithms proposed in the literature.
Informally speaking, classical node embeddings fall into broad and diverse family of embeddings that try to
assign vectors in some high dimensional space to nodes of the graph that would allow for its approximate
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reconstruction using such encapsulated information. Different classical embedding algorithms use different
approaches to achieve this task. Some of them, in order to extract useful information from graphs, try to
create an embedding in a geometric space by assigning coordinates to each node such that nearby nodes
are more likely to share an edge than those far from each other. Some other approaches postulate that
pairs of nodes that have overlapping neighbourhoods (not necessarily intermediate ones) should have similar
representations in the embedded space. Independently, the techniques to construct the desired classical
embeddings can be broadly divided into the following three groups: linear algebra algorithms, random walk
based algorithms, and deep learning methods [1, 20].

Classical embeddings work well for machine learning tasks such as link prediction. However, as the study
of [32] shows, they do not guarantee good performance, for example, in tasks such as community labeling
that can be viewed as a classification task or role detection. The reason is that in these challenging-for-
classical-embeddings machine learning problems, when doing inference, it is important to preserve structural
characteristics of nodes. Informally speaking again, by structural characteristics of nodes we mean the
structure of nodes’ egonets (that is, induced subgraphs of given nodes and their neighbourhoods up to some
fixed depth) but disregarding node labelling. The simplest form of one-dimensional structural embeddings are
node features such as degree or local clustering coefficient. Indeed, node features have been used extensively
since the very beginning of network analysis, as most of them have natural interpretations and are usually
relatively easy to compute. From the standpoint of this discussion, it is important to highlight that such
node features do not depend on node labels, but rather on the relationships between them. For example, two
nodes might both have large and comparable degrees or similar pageranks (and, as a result, end up close to
each other in the embedded space) but be distant from each other in terms of concrete neighbours (and so
they would be far apart in classical embeddings). The already mentioned study [32] shows that such node
features are efficient in various tasks such as community labeling. The reason is that often the role of a node
within a graph is an important predictor of some features but not necessarily its concrete neighbours.

Since using hand-crafted node features in various machine learning tools has proven to be a useful tech-
nique, a number of structural embedding algorithms such as RolX [14], Struct2Vec [27], GraphWave [9],
and Role2Vec [2] have been recently proposed. This family of embeddings is much smaller but it is expected
to grow in the near future. Such embedding algorithms try to capture structural characteristics of nodes,
that is, put nodes that have similar structural characteristics close together in the embedded space. Again,
like with classical embeddings, concrete implementations of structural embeddings differ in the way how
they define similarity between neighbourhoods of two nodes (possibly of different sizes but similar to each
other)—see Subsection 2.1 for a longer discussion.

Most embedding algorithms, both classical and structural, have plenty of parameters to tune, the dimen-
sion of the embedding being only one of them but an important one. Moreover, most of them are randomized
algorithms which means that even for a given graph, each time we run them we get a different embedding,
possibly of different quality. Because of that, it is not clear which algorithm and parameters should be used
for a given application at hand—even for the very same application, the decision of which algorithm to use
might depend on the properties of the investigated network [8].

In order to help data scientists to filter (in an unsupervised way) a large family of classical embeddings
to choose from and identify a few embeddings that are worth further investigation, a framework was recently
introduced [17, 19]. In order to handle enormous graphs, a landmark-based version of the framework was
proposed in [18], which can be calibrated to provide a good trade-off between performance and accuracy.
The code is available on GitHub repository1. The framework assigns to each embedding two scores, local
and global, that measure the quality of an evaluated embedding for tasks that require good representation
of local and, respectively, global properties of the network. Unfortunately, there is no framework to evaluate
structural embeddings (in an unsupervised way) and in this paper we propose one such approach.

Suppose that a data scientist faces a problem in which a good structural embedding is required. As
already commented above, there are many structural embeddings available to chose from, and each of them
often has many parameters that can be tuned. Moreover, as will be discussed in Section 2, in general there
is no uniformly best structural embedding, even for a single type of problem. Their effectiveness changes
depending on various properties of the graph that needs to be dealt with. For these reasons, there is a need
for an unsupervised way to distinguish good structural embedding from bad ones.

1https://github.com/KrainskiL/CGE.jl
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In general, structural embeddings are designed to capture many complex structural graph characteristics.
However, in this work we stipulate that, as a minimum requirement, a good structural embedding should
be able to reconstruct at least some selected node features that are commonly used in network analysis to
capture their structural properties (such as node degree, local clustering coefficient, etc.). The assumption
here is that data scientist using the framework is usually able to identify which standard node features might
be useful to be preserved for a given machine learning task at hand. However, it is important to note that
structural embeddings might capture more structural characteristics of the graph than the ones selected by
a user. For this reason, we propose a framework that is able, in an unsupervised way, not only to create
a ranking of embeddings explaining how well they allow for reconstruction of selected node features, but
also identifies which dimensions of the embeddings are actually important for this reconstruction. This,
implicitly, identifies other dimensions (that are not important to explain the selected node features) that
carry information about structural characteristics of a graph that are not captured by the selected features.

This paper is an extended version of the proceedings paper [7]. This paper is structured as follow:

• In Section 2, we use two real-world networks to investigate the differences between classical and struc-
tural node embeddings. We introduce a set of structural node features and show how classical node
embeddings fail to capture such features.

• In Section 3, we introduce our framework and outline the algorithm and its parameters.

• Finally in Section 4, we use both a synthetic and a real network to showcase and analyze various
algorithmic properties of our framework. We also highlight an example use case of our framework by
exploring role classification case study.

2 Motivation

In order to motivate the line of research presented in this paper, we need to do two things. First of all,
since there already exists a framework that evaluates classical node embeddings [17], we need to argue that
structural graph embeddings have different properties than classical ones and so require a new evaluation
process. Structural embeddings focus on capturing different properties of the network—see Subsection 2.1.
As a result, the two scores returned by the existing framework [17] (despite the fact that they are useful in
deciding which embeddings should be used in applications such as link prediction, clustering, and classifi-
cation [8]) are meaningless when it comes to applications that require structural information about graph
nodes. Once the reader is convinced that there is a need for another evaluation framework, the second task
is to motivate the specific approach we took to design it—see Subsection 2.2.

2.1 Background on Structural Embedding Algorithms

As it was discussed in Section 1, there are the two types of embeddings, classical and structural. They
differ significantly when it comes to what they aim to capture. However, since the recent development of
structural embeddings started independently by various groups of researchers, there is no agreement yet on
what exactly they are supposed to capture. In this subsection, we briefly summarize different approaches
present in the literature.

In [9], structural node discovery of a node is defined as a process that tries to identify nodes which have
topologically similar network neighbourhoods while residing in potentially distant parts of the network. It
is contrasted with the classical node embedding techniques, which try to place nodes that are close in the
network to be also close in the embedded space. Similar view is shared in [27] where it is assumed that
under structural embedding two nodes that have identical local network structures should have the same
representation in the embedded space, while nodes with different structural identities should be far apart. In
particular, the latent representation should not depend on any node or edge attributes such as their labels.
A related approach is used in [29], where structural node embedding is defined using subgraph patterns
present in a nodes’ neighbourhoods such as network motifs, graphlet orbits/positions. In [2], the authors
emphasized that classical embedding algorithms based on random walks on graphs mainly capture node
proximity, and proposed a notion of a “role” for measuring structural similarity of nodes. Based on this
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notion, the authors introduced Role2Vec, a random walk based algorithm, which does not use node identity
but rather considers nodes attributes instead.

However, other authors define the notion of structural similarity slightly differently. For example, in [16]
two nodes are defined to be structurally equivalent if the nodes have the same sets of neighbours. In this
paper, we classify embeddings that would follow this notion of equivalence, as classical. However, in [16]
different notions of node equivalence are introduced that lead to structural embeddings according to the
definition we use in this paper. First, they define automorphic equivalence of two nodes if there exists
a graph automorphism that maps one of the nodes to the other (informally, two nodes can swap labels,
along with possibly some label swaps of other nodes, while preserving all of the relationships in the graph).
A more flexible notion of equivalence discussed in that work, that also leads to structural embeddings, is
regular equivalence, which concentrates only on having neighbours of some type, ignoring the number of
such neighbours. As a result, two nodes of different degrees can be regularly equivalent if they have the
same types of neighbours. Similar definitions are used, for example, in [28]. A similar notion of structural
similarity as proposed in [16] is considered in [33]. In [33], embeddings are said to be structure-preserving if
they preserve second-order proximity of nodes, that is, two nodes are similar if their neighbours are similar
in the sense of classical embeddings. Again, in this paper we classify such embeddings as classical. Finally,
let us mention about one more paper that is closely related to the discussion we have in this subsection.
In [30], the authors argue that graph embeddings should be divided into two classes: community-based or
role-based. They discuss various properties and potential applications of both approaches. In this paper we
take a similar approach by calling community embeddings classical (as this class was developed earlier and
received more attention from the researchers), and role-based embedding algorithms as structural.

2.2 Properties of Structural Embeddings

The previous subsection shows that there are various approaches used in the existing structural node em-
beddings, and more embeddings from this family will likely be introduced in the near future. Details of their
design may vary but, in general, structural embeddings are designed to capture various complex structural
graph characteristics. We believe that a good structural embedding should at least be able to reconstruct
some selected node features that are commonly used in network analysis to capture their structural prop-
erties (such as node degree, local clustering coefficient, etc.). On the other hand, since the aim of classical
embeddings is different, they might not be able to do that. In order to test this hypothesis and illustrate the
difference between the two families of embeddings, we performed an experiment in which different embed-
dings of two selected real-life networks are analyzed to see if they are able to explain some commonly used
node features.

The experiments were performed on two datasets representing Bitcoin transactions networks on the two
platforms (markets): OTC and Alpha. In the paper we will refer to them as Bitcoin OTC2 and Bitcoin

Alpha3, respectively. In both networks, nodes represent users and edges represent the fact of being rated by
a given user [21], thus the considered graphs are directed. Rating can happen when there is a transaction
between users and the value (represented as edge weight) can achieve scores from −10 (total distrust) to 10
(total trust), basing of how well the user performed during the transaction. User can be rated only once but
the rating can be updated. Only users with positive ratings can rate other market players.

Bitcoin OTC is a directed graph with 5,881 nodes and 35,592 edges, whereas for Bitcoin Alpha these
values are 3,783 and, respectively, 24,186. Some additional basic characteristics of both graph datasets are
presented in Table 1.

The main advantage of these datasets is the fact of having “ground truth” labelling available. Indeed, the
fact that ratings range from negative to positive allows for classification of nodes as trusted or not trusted.
For the two considered graphs, the “ground truth” is constructed the following way. After rescaling ratings
between −1 and 1, trusted users are the founders of the platform and market players that are rated positively
by them (ratings at least 0.5), whereas fraudulent are these rated negatively (ratings at most −0.5) by benign
users [21].

The general outline of the experiment presented in this section is as follows. We selected two popular

2https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
3https://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
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Bitcoin OTC Bitcoin Alpha

# of Nodes 5881 3783
# of Edges 35592 24186
Min Degree 1 1
Max Degree 1298 888
Avg Degree 12.10 12.79
Median Degree 4 4
99th Quantile Degree 142.20 152.36
# of Components 4 5
Size of the largest component 5875 3775
# of Isolated Nodes 0 0
Clustering coefficient-global 0.045 0.064
Clustering coefficient-local 0.151 0.158

Table 1: Basic statistics of Bitcoin OTC and Bitcoin Alpha datasets.

Classic Structural
Node feature Node2Vec Deepwalk RolX Struc2Vec
betweenness -0.01 0.00 0.38 -0.02
closeness -0.02 -0.01 0.38 -0.02
degree -0.01 -0.01 0.59 -0.01
harmonic centrality -0.01 -0.01 0.92 0.08
local clustering coef -0.01 -0.01 0.53 0.01
pagerank -0.01 -0.01 0.53 0.01

Table 2: Embedding’s explainability in terms of R2 for Bitcoin OTC dataset.

classical embeddings, Node2Vec and DeepWalk, and two structural embeddings, RolX and Struct2Vec.
Next, we selected the following widely used six graph features: betweenness, closeness, degree, harmonic
centrality, local clustering coefficient, and pagerank. Our objective was to check if these four considered
embeddings can be used to predict the values of the selected features. For each pair consisting of an
embedding and a selected feature, a predictive model was built. In such predictive models, node feature is a
target variable and embedding provides explanatory variables. It is important to note that for both Bitcoin
OTC and Bitcoin Alpha we select the largest connected component, and calculate features and embeddings
on the largest component. The same filtering is performed for building any down-stream machine learning
models, to remain consistent with the above data filtering.

In the experiment, graph features were scaled to be in range between 0 and 1 to ensure comparability
between them. We have tested multiple dimensionalities of the considered embeddings. Below, we only
present the results for 64 dimensional ones, as the results are very similar for all tested dimensions (4, 16,
32, 64, 128). We used two separate datasets (Bitcoin OTC and Bitcoin Alpha from [21, 22]) for the same
task to make sure the conclusions are robust.

Each predictive model was created using H2O AutoML4, which chose the best model in automated manner
using the cross-validated mean residual deviance metrics from the set of following models: XGBoost5, Deep
Learning6, and Gradient Boosting Machine (GBM)7. In the paper we only report test-set R2 for all models for
predicting graph features. However, using other metrics such as RMSE, MAE leads to similar conclusions.

Tables 2 and 3 illustrate the potential diversity in the results one can obtain in such an experiment. Let
us summarize the major conclusions that can be drawn:

• in general, classical embeddings are not useful for prediction of graph features (the only exception in

4https://h2o.ai/platform/h2o-automl
5https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/xgboost.html
6https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/deep-learning.html
7https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/gbm.html
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Classic Structural
Node feature Node2Vec Deepwalk RolX Struc2Vec
betweenness 0.00 0.00 0.26 0.04
closeness 0.00 0.00 0.26 0.04
degree 0.00 0.00 0.51 0.11
harmonic centrality 0.19 0.24 0.87 0.61
local clustering coef 0.01 0.00 0.48 0.09
pagerank -0.01 0.01 0.47 0.08

Table 3: Embedding’s explainability in terms of R2 for Bitcoin Alpha dataset. All numbers are rounded
to two decimal places.

our tests is harmonic centrality which for one of the graphs is predictable);

• structural embeddings outperform classic embeddings in prediction of graph features;

• for a selected structural embedding, there can be significant differences in its performance for different
graphs, so it is not possible to draw a general conclusion on exact properties of a given structural
embedding a priori;

• there can be significant differences in performance of different structural embeddings for the same
graph; in our experiment RolX performed much better than Struct2Vec, but for other graphs the
relation might be different.

For these reasons, if a data scientist has a concrete problem at hand, for which a good structural embed-
ding is needed, it is impossible to decide a priori which such embedding should be chosen. Since there are
many possible structural embeddings to choose from (and even for a single embedding algorithm there are
usually many parameters that can be tuned), it is desirable to be able to filter-out structural embeddings
that are not likely to perform well in a given task at hand (in our example from this section Struct2Vec
embedding seems to be not so promising). Therefore, in the next section we propose a framework that
allows for creation of a ranking of structural embeddings so that the user can concentrate on analysis of only
selected best ones.

3 Framework

In this section we introduce our framework and highlight its properties. We start with providing a high level
overview (Subsection 3.1) before formally presenting our algorithm (Subsection 3.2). Justification for some
specific design choices and theoretical properties are discussed next (Subsection 3.3) and we conclude this
section with some initial experiments (Subsection 4.3).

3.1 Input/Output

The goal of the framework is to evaluate possible correlations of various node embeddings with a number of
classical node features of a single graph G = (V,E) on n = |V | nodes. The input consists of

• k dimensional node embedding—k vectors of real numbers, each of length n,

• ` node features—` vectors of real numbers, each of length n.

The framework outputs the following

• a real number (represented by symbol ψ) from the interval [0, 1] representing how well given feature
vectors may be approximated by given embedding vectors; ψ = 0 indicates a good approximation and
the other extreme value, ψ = 1, represents a bad approximation; both pre- and post-optimization values
of ψ are returned, where the post-optimization ψ value is computed by minimizing ψ as a function of
a vector w—formal definition and more details will be provided soon,
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• a vector w of non-negative real values of length k and L1-norm equal to 1 that indicates which em-
bedding dimensions contribute to the explanation of features; here, larger values correspond to larger
contribution; the w vector consists of the weights in the embedding distance computation, and is used
to identify which embedding dimension the structural feature is mapped onto.

The structure of our framework is designed to output a quantitative metric ψ, which measures how well
an embedding algorithm has learned a given feature (or a collection of features). This metric can be used to
both identify what features embedding algorithms learn, in addition to how well they learn those features.
A more comprehensive explanation of this is given in the following section.

3.2 Formal Description of the Algorithm

In our framework, nodes are clustered (using k-means clustering) in the feature-space, and distance between
sampled nodes in the feature-space are calculated and compared to the distance measured in the embedded-
space. Therefore, the algorithm has a few parameters that the user might experiment with but each of them
has a default value:

• s: the number of clusters in the feature space generated by the k-means algorithm (by default, s =
√
n,

where n is the number of nodes of a network); the value s =
√
n is a safe estimated to ensure the

convergence and stability of the calculated ψ metric—more on this is discussed in the following section,

• p: the fraction of sampled pairs of nodes that are from the same cluster (by default, p = 0.5),

• c: the total number of sampled pairs of nodes (by default, c = min{105, n2/s}; apart from a natural
upper bound of 105, for small networks we need to make sure that the number of pairs of nodes
sampled within clusters, p · c, is at most the number of all pairs of nodes from the same cluster;
indeed, at the worst case scenario each cluster could consist of n/s nodes and so there could be only(
n/s
2

)
· s ≈ n2/(2s) pairs of nodes within clusters; this would cause a problem as the algorithm samples

pairs without replacement),

• standardization method: we provide two methods, MinMax that scales and translates each feature
individually such that all of them are in the range between zero and one, and StandardScaler that
scales features such that the mean and the standard deviation are equal to zero and, respectively, one
(by default, we use the StandardScaler normalization).

The algorithm performs the following steps:

1. Standardization. Transform all feature and embedding vectors using one of the two methods, Min-
Max or StandardScaler. After this transformation, all vectors are appropriately normalized and stan-
dardized. As a result, later steps are invariant with respect to any affine transformation of these
vectors.

2. Clustering. Perform the classical k-means clustering of nodes (into s clusters) in the feature space
using the selected metrics. Let (c1, . . . , cs) with n =

∑s
i=1 ci be the distribution of cluster sizes.

3. Sampling. There are two types of pairs of nodes that are independently sampled as follows.

a) sample

m̂ = min

⌊p · c⌋, ∑
1≤a≤s

(
ca
2

)
unique pairs of nodes within clusters; a single pair of nodes is sampled by first selecting cluster i
of size ci with probability equal to

p(i) =

(
ci
2

)
− xi∑

1≤a≤s(
(
ca
2

)
− xa)

,

where xi is the number of pairs already sampled from cluster i, and then selecting a pair of nodes
from the chosen cluster, uniformly at random; if a pair of nodes sampled this way is already
present in the sampled set we discard it, otherwise we keep it.
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b) sample

m̄ = min

⌊(1− p) · c⌋, ∑
1≤a<b≤s

cacb


unique pairs of nodes that are between clusters; a single pair of nodes is sampled by first selecting
two clusters i, j (i < j) with probability equal to

p(i, j) =
cicj − xi,j∑

1≤a<b≤s(cacb − xa,b)
,

where xi,j is the number of pairs between cluster i and cluster j already sampled, and then
selecting one node from each of the chosen clusters, uniformly at random; if a pair of nodes
sampled this way is already present in the sampled set we discard it, otherwise we keep it.

4. Computing Feature Distance. For each of the sampled pairs of nodes, compute the corresponding
distance in the `-dimensional feature space df . For the Euclidean metric we have

df (vi, vj) =

√ ∑
1≤a≤`

(f ia − f
j
a)2,

where (f i1, . . . , f
i
`) and (f j1 , . . . , f

j
` ) are features of nodes vi and, respectively, vj .

5. Computing Embedded Distance. Suppose for a moment that a normalized vector of non-negative
weights w = (w1, . . . , wk) with

∑k
i=1 wi = 1 is fixed. For each of the sampled pairs of nodes, compute

the corresponding distance in the k-dimensional embedded space de. The weighted Euclidean distance
is given by

de(vi, vj) =

√ ∑
1≤a≤k

wa(eia − e
j
a)2,

where (ei1, . . . , e
i
k) and (ej1, . . . , e

j
k) are embeddings of nodes vi and, respectively, vj .

6. Correlation between the two spaces. To compute the correlation between the two spaces, we
define a metric ψ = 1 − r2 ∈ [0, 1], where r ∈ [−1, 1] is the Pearson correlation between vectors in
the embedding space and vectors in the feature space. As a result, ψ is defined such that both large
positive (close to 1) and large negative (close to -1) correlation would have small values (close to 0).
This is done so that the optimization scheme (see the next bullet-point) is more stable.

7. Optimization. Optimize vector w to minimize ψ, where the final value of ψ is referred to as the
post-optimization ψ. These optimized vectors reflect the importance of embedded dimensions for
selected features. We note that the optimization is done using Quasi-Newtonian bounded constraint
minimization technique from Scipy Optimize method. We note that the pre-optimization ψ value
measures the overall raw embedding of a particular feature. To measure how well a feature is learned
by a particular embedding algorithm, ψ is optimized against that feature. The optimization process
removes (or minimizes) any embedded information that does not contribute to the representation of
the feature at study. Therefore, we use the post-optimization ψ value to conduct all experiments in
this study.

3.3 Properties

Let us briefly highlight some basic and desired properties of the framework which, in particular, justify its
design and show its potential usefulness.

• The framework is designed in such a way that affine transformations of any of the feature or embedding
vectors do not change the results.
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• The framework does not assume any particular type of the relationship between feature space and
embedded space. Instead, it is desired that if two nodes are close in the feature space, then they are
also close in the embedded space (with a proper metrics/weighting in the embedded space).

• The sampling strategy used in the framework has the following consequence. Achieving a good ψ score
ensures that close pairs of nodes in the feature space are close in the embedded space. On the other
hand, if some pairs of points are far in the feature space, then the framework puts less weight on the
fact whether they are close or not in the embedded space. The rationale behind this property is that a
typical pair of nodes are likely to be far in both spaces and so the framework should not pay too much
attention to these pairs.

• An embedding algorithm might learn many node features, which may not contribute to the repre-
sentation of particular structural feature. This additional learned information can be removed and
minimized by adjusting the weights associated with appropriate embedding dimensions. For example,
the feature PageRank may get mapped to dimension of 1 (out of 8) of an embedding space. In this
case, dimensions 2 to 7 do not contribute to the representation of PageRank and can be removed by
setting the weights for those dimensions to 0. This process is done automatically by our framework
during the optimization process of the ψ value.

• It is the responsibility of the analyst to select features that should be represented well in the correspon-
dence between the feature space and the embedding space. The assumption here is that each feature
is equally important. However, the analyst may, on top of passing all features to the framework, pass
each of them independently, one by one, to assess which embedding dimensions are important for a
given feature.

• All steps performed by the framework are standard, well-known, and easily available in most data
science frameworks. As a result, users might easily modify the framework, if needed, to incorporate
any specific needs or situations that are encountered. Moreover, since all of these steps are standards,
they are typically implemented efficiently which makes the framework to be relatively fast.

4 Experimentation

In this section, we investigate and analyze various desired algorithmic properties of our framework. We
focus on six embedding algorithms, four structural ones (LSME [6], Role2Vec [2], Struc2Vec [27], and
RolX [15]) and two classical ones (Node2Vec [11] and DeepWalk [26]). The goal of our analysis here is to
understand and analyze various properties of our framework. In addition, we showcase how one could use our
framework in applications such as node classification, by investigating the performance of a number of node
and structural embedding algorithms. We break up our analysis into two main parts. First (Subsection 4.3),
we explore some of the basic properties of our framework, such as algorithm stability and behaviour. Second
(Subsection 4.4), we showcase the application of our framework in a node classification case study. In
this section, we use the default hyper-parameters for every embedding algorithm. Lastly, we use both a
synthetically designed graph in addition to real-world networks for the role classification task.

4.1 Synthetic Network

For experiments in this section we use synthetically generated graph G which is composed of three structurally
distinct sets of subgraphs. As shown in Figure 1, these subgraphs are labelled Web, Star and dStar. The Web
and Star subgraphs each have three types of nodes (w0, w1 and w2) and (s0, s1, s2), while dStar subgraph
has two types of nodes (ds0, ds1). The overall synthetic graph is created by joining Nw Web, Ns Star and Nds

dStar subgraphs by randomly creating links between w2, s2 and ds1 nodes. The edge creation process is as
follows; from joined set of w2, s2 and ds1 nodes randomly select two nodes na and nb. If na 6= nb and eab /∈ E,
where E is the set of edges of G, then create an edge eab. Repeat this process until all w2, s2 and ds1 nodes
are connected to at least one other node. Based on this description, we can fully define our synthetic graph
using 8 parameters: G({Nw, Ns, Nds}, {kw1, kw2}, {ks1, ks2}, {kds1}). Here, Nw, Ns, Nds are the number of
Web, Star and dStar subgraphs in the overall graph and, kx correspond to the number of nodes in layer x
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of each subgraph. Each layer of the subgraphs is connected to the previous/next layers as shown in Figure
1. For example, kw1 = 5, based on Figure 1. In this section, we create a synthetic graph with the following
parameters: G({Nw = 200, Ns = 200, Nds = 200}, {kw1 = 5, kw2 = 10}, {ks1 = 5, ks2 = 10}, {kds1 = 5}),
resulting a synthetic graph with 7,600 nodes. We have chosen this structure for our synthetic graph to allow
for a simple yet structurally distinct nodes to be used for our classification tasks. Since our framework is
designed for structural embedding algorithms, we wanted to use synthetic graphs where nodes have known
structural roles (ground-truth). As we shall show in Section 4.4, we use the synthetic graph described above
to build classifiers for identifying root nodes S0, and analyze each embedding algorithm’s performance for
this task.

Figure 1: Synthetic graph G({Nw = 200, Ns = 200, Nds = 200}, {kw1 = 5, kw2 = 10}, {ks1 = 5, ks2 =
10}, {kds1 = 5}) composed of a collection of Web, Star and dStar subgraphs.

4.2 Real-World Network

In addition to the synthetic network described above, we will use a real-world network constructed using
Twitch social network. Twitch is a social network app/website on which users primarily share video-game
streams and commentary [31]. Here, we use a sample of this network, where nodes correspond to users and
the edge between two nodes indicates that the users follow one another. In addition to the graph data,
there are meta-data associated with each user. A breakdown of the graph statistics and user meta-data is
presented in tables 4 and 5, respectively.

For the purpose of our analysis, we will use mature and views as targets for the predictive case study.
The mature status of the accounts will be used for a classification task, where we will use node features, in
addition to the embedding feature to classify whether a user’s account is labeled mature or not. Similarly,
for the views count, we will build regression models to predict the number of views an account gets, based
on features derived from node and embedding features. In addition to building and analyzing classification
and regression models, we use our framework to extract insight into these tasks. The results for this work is
presented in section 4.5.
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Metric Stat

Number of Nodes 168,114
Number of Edges 6,797,557
Min Degree 1
Max Degree 35,279
Avg Degree 80.86
Number of Components 1

Table 4: Statistical properties of the Twitch network.

Meta-Data Feature Description Type

views View count estimation Numerical
life time User lifetime estimation Numerical
mature Explicit content streamer identification Categorical
dead account Churn prediction Categorical
affiliate Affiliate status identification Categorical
language Language of the account Categorical
created at Account creation date Date
update at Latest update to the account Date

Table 5: Meta-data features for the Twitch dataset [31].

4.3 Algorithmic Properties of the Framework

In this section, we analyze various algorithmic properties of our framework such as the convergence and sta-
bility of various metrics and the behaviour of structural vs. classical embedding algorithms. As we described
in Section 3.2, the quality of learned representation of a structural feature (for example degree centrality) is
measured using the post-optimization ψ value. The optimization is done by minimizing ψ as a function of
weights associated with each embedding dimension. To test the effectiveness of this approach, we performed
two experiments. In each experiment, we embed the synthetically created graph described in the previous
section using either LSME or a fixed-embedding algorithm. Here, the fixed-embedding maps the simplest
centrality measure, degree centrality, directly onto one of the N embedding dimensions. Furthermore, the
other N − 1 dimensions are filled with random numbers. This simulates a synthetic embedding algorithm,
which learns a perfect representation of a feature and maps it onto one of the dimensions of the embedding
space. For our experiments, we used N = 8 as the dimension of both embedding algorithms. Once the
embedding vectors are generated, we use our framework to measure the performance of each embedding
with respect to the degree centrality. In other words, we measure how well did each embedding learn the
representation of degree centrality. The purpose for this experiment is to showcase the optimization process
and highlight how our framework can be used to study how well features are mapped into the embedded
space.

Figure 3 shows the results for the pre and post optimization values for the weights associated with each
embedding dimension. In the pre-optimization state (top-left and bottom-left), the values for the weights
are set randomly. The optimization algorithm then identifies the dimensions which the representation of
the degree centrality was mapped onto. As expected, the post-optimization weights for the fixed embedding
is collapsed to only dimension 0 (w0), which holds a copy of degree centrality for the nodes. For the
LSME algorithm, degree centrality was mapped by the embedding algorithm onto primarily dimension 2
and partially onto dimension 0 and 4. It is important to note that the post optimization weights by themselves
are not complete measure of how well the embedding has learned the node feature. To capture the complete
picture, one has to also consider the post optimization score ψ—more on this soon. The experiments in
Figure 3 were repeated multiple times with randomized initial weights, and the results of the experiments
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Figure 2: Network structure for a sample of 5,000 nodes from the Twitch network. Red nodes correspond to
users with mature content and green nodes correspond to users with non-mature content. The size of each
node is proportional to the number of views each user has on Twitch.

were consistent with the above findings.

Before we dive deeper into the other properties of the framework, we want to consider the stability of
the algorithm as a function of the node sample size (parameter c) and the number of clusters produced by
k-means algorithm (parameter s). To apply the framework to large graphs, we would want our algorithm
to converge for both c � n and s � n, where n is the number of nodes of the graph. To measure the
stability of the algorithm, we perform two experiments using LSME and Role2Vec on a synthetic graph.
The performance of the embedding algorithms are measured using the degree centrality as the node feature.
Figures 4 and 5 show the convergence of ψ as a function of the normalized number of clusters and the
normalized sample size respectively, where normalization is done with respect to the size of the graph. Let
us first consider the behaviour of ψ as a function of s, the number of clusters. It is important to note
that while we vary s in this experiment, values for other parameters are kept as default. As we can see in
Figure 4, ψ converges to its long-run average when the number of clusters is approximately 2% to 3% of the
total size of the graph. Both here and in Figure 5, the long-run average is defined as the expected value
for ψ as sample size or number of clusters approaches the size of the graph. Finally, we conclude that our
default value for the number of clusters (s =

√
n) is a good approximation since for the current experiment

(n = 1, 000) the number of clusters is approximately 3% of the size of the graph (
√
1,000
1,000 ≈ 0.03). Next, we

look at the convergence of ψ as a function of c, the sample size. Similarly to the previous experiment, we
vary c while setting other parameters to their default values. As one can see in Figure 5, the value for ψ
converges for sample of sizes greater than or equal to 20% to 30% of the size of the graph. The results of our
experiments point at two facts. First that the algorithm converges and is stable for both c� n and s� n.
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Figure 3: Pre and post optimization values for weights associated with each embedding dimension (8 di-
mensional embedding). Top-left and bottom-left figures show pre-optimization random initialization of the
weights for LSME embedding and fixed embedding, respectively. Top-right and bottom-right are the post-
optimization values of the weight for LSME and fixed embedding.

Second, the default values for the hyperparameters are good and safe estimates.

We now turn our attention to experiments comparing the general behaviour of structural embedding as
compared to classical node embedding algorithms. As we highlighted in Section 2, classical node embedding
algorithms such as Node2Vec [11] and DeepWalk [26] have difficulty learning structural properties of
graphs. To showcase that our framework can be used as an unsupervised method for capturing this fact, we
perform six experiments using four structural and two classical embedding algorithms. All six algorithms
are ran against synthetic graphs (created using the procedure in Section 4.1) to generate 8-dimensional em-
bedding vectors. Each embedding is then evaluated using our framework, where its performance is measured
against 12 classical and widely used node features. For each node feature, we compute the post optimization
ψ value. As we noted previously, the value of ψ is inversely correlated to how well the embedding was able to
learn a given representation. In particular, ψ = 1 means that the embedding was not able to learn anything
for a given feature, and in the other extreme ψ = 0 means that the embedding was able to learn prefect
representation of the feature. With that said, let us consider the results presented in Figure 6. Here, we
show the post-optimization value for ψ as a function of various node features for LSME, Struc2vec, RolX
and Role2Vec, respectively. It is clear that these structural embedding algorithms performed differently,
as measure by our framework. The LSME, Struc2Vec and RolX algorithms performs much better than
Role2Vec. It is important to note that we have chosen to use the default settings and parameters for each
algorithm and did not perform any optimization. In addition, we have only focused on a set of 12 struc-
tural features, while algorithms could be learning features not in our set. While the structural embedding
algorithms LSME, Struc2Vec and RolX were able to learn some structural node features, as expected,
classical embedding algorithms (Node2Vec and DeepWalk) struggle with this task. This is clearly shown
in the top right and top left plots of Figure 6, where the post-optimization ψ values for all node features
are close to 1. Lastly, both Node2Vec and DeepWalk perform similarly to one another, indicating the
similarity in the underlying algorithms. It is also important to note that, the performance of these algorithm
also depends on the structure of the underlying network. In other words, for an embedding algorithm to
learn something about the graph, there must be something to be learned. In our idealized case of a synthetic
graph, we have artificially introduced nodes with structural properties to ease the task of learning structural
properties for the selected embedding algorithms.
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Figure 4: Post-optimization score ψ as a function of normalized number of clusters. Normalization is
with respect to the size of the graph. On the left/right ψ is computed for the degree centrality using the
LSME/Role2Vec embedding algorithms, respectively. The horizontal lines are the long-run average of ψ.

Figure 5: Post-optimization score ψ as a function of normalized sample size. Normalization is with respect to
the size of the graph. On the left/right ψ is computed for the degree centrality using the LSME/Role2Vec
embedding algorithms, respectively. The horizontal lines are the long-run average of ψ.

4.4 Role Classification Case Study

In this subsection, we explore the use case of our framework for analyzing role classification in a synthetic
network introduced earlier. A common task in network analysis is to classify nodes based on the role the
nodes play in their local network structure. To build features for a classification algorithm, one could
either use manually calculated structural properties of the nodes (node features) or leverage structural or
node embedding features; as an automated way of learning various structural properties of nodes. One
major challenge with using some embedding algorithms as a source for feature engineering, is the lack
of explainability of the learned representations. It is not easy to identify what structural properties of
the nodes are learned and how a given learned representation is mapped onto the embedding space. To
explore these ideas and showcase one possible use case of our framework, we consider the synthetic network
introduced in Subsection 4.1, and use w0, s0 and ds0 root nodes as the target nodes we would like to classify.
The root nodes considered here have very similar local structure, creating a relatively challenging tasks
for a classifier. The goal of our analysis is to design and build a classifier using both node features and
features extracted from various embedding algorithms. Lastly, we show how one could use our framework
as an unsupervised technique to gain insight into the performance of embedding algorithms in applications
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such as role classification. We use six embedding algorithms, two classical algorithms (Node2Vec and
DeepWalk) and four structural based ones (LSME, Struc2Vec, RolX, and Role2Vec). We hope to
answer the following questions: can one use our framework to identify embedding algorithms that best learn
various structural properties of nodes, which could hint at their performance in a role classification task?
Additionally, can one extract insights into the predictability strength of each node feature and how those
features are learned by a given embedding algorithm?

Figure 6: Post-optimization ψ values (y-axis) computed as a function of 12 node features (x-axis) for various
classical and structural embedding algorithms.

We first start by analyzing each embedding algorithm using our framework. We consider 12 node features
as a benchmark and compute ψ for each feature. The performance of each embedding algorithm is presented
in Figure 6. As before, ψ is inversely proportional to how well an embedding algorithm has learned a given
feature, where ψ = 1 means that a given feature was not learned by the algorithm. As we can see in Figure 6,
classical embedding algorithms (Node2Vec and DeepWalk) fail to learn the structural properties of the
graphs. This aligns with our expectations, since classical algorithms are designed to learn classical node
properties. Furthermore, Role2Vec also fails to learn any structural proprieties of the graph, while LSME,
Struc2Vec, and RolX perform quite well. It is important to note that we used the default hyper-parameters
for each algorithm, and it is possible to achieve better results if one optimizes the learning process. We would
like to also point out that one could breakdown the structural features into two categories: global and local.
For example, the degree of a node is a local feature while measures such as PageRank could propagate
information from neighboring nodes. The degree to which an embedding model could learn a particular
node structural feature could depend on the specifics of the algorithm; such as the random walk window in

15



random walk type algorithms. Some embedding algorithms may explore structural features up to L hops
away from a node, which could limit their ability to capture global structural features. A full study of how
the specifics of each algorithm contributes to their capacity to learn local versus global structural properties
is an interesting research question, but is outside the scope of our current study. Using current results, one
would expect LSME, Struc2Vec, and RolX algorithms to perform better than Node2Vec, DeepWalk,
and Role2Vec in classification tasks, where the structural properties of the nodes are of importance. With
the results from Figure 6 in mind, we build 7 classifiers with the goal of classifying w0, s0 and ds0 nodes
in graph G using features built using manually computed node features and features from each of our six
embedding algorithms. The classifiers are trained to predict 3 classes, one for each root node (w0, s0 and ds0).
Note that we do not mix features between embedding algorithms and node-features, in this analysis. For
example, the accuracy of the classifier built using DeepWalk, in Figure 7, only includes features extracted
from the embedding of the nodes by the DeepWalk algorithm.

Figure 7: Accuracy of 7 classifiers built using node and embedding features. Here, accuracy is measured as
the combined accuracy of the following classes (w0, s0 and ds0).

The overall accuracy of each classifier is plotted in Figure 7. Here, accuracy is measured as the combined
accuracy of the following classes (w0, s0 and ds0). For each embedding, we train 10 models and select the
best performing model and overage the performance across 10 samples. As expected, based on our analysis
in Figure 6, classifiers built using node features, Struc2Vec, RolX, and LSME perform much better than
those built using Role2Vc, DeepWalk, and Node2Vec. It is important to consider the following when
analyzing these results. The fact that a classifier built using solely node feature performs well, indicates
that any embedding that learns structural properties of the node should also perform well. However, this
logic does not apply in reverse. The poor performance of an embedding based on our framework does not
necessarily indicate that it will perform poorly in a classification task, since there may be features with
predictive power which are not captured by the reference features of our framework. We note that, the set
of reference features is modifiable and could be updated to include additional structural features. One could
extend the 12 features in the benchmarking set to capture high order structural properties of the graph, to
allow for a more extensive list of structural properties. Lastly, we point out that one could use the output
of the framework to study the specific features learned by each embedding algorithm. For example, both
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LSME and Struc2Vec fail to learn Constrain, which is the measure of Burt’s Constraint [10] for each node,
(see Figure 6) as a structural feature, while RolX performs better in this regard. This is an important
observation in scenarios where one would want to combine the features from different embedding algorithm
to built feature sets with more predictive power. It is natural that each embedding algorithm learns slightly
different properties of the graph. Our framework can be used as a tool to map out the embedding space and
understand it through the lens of structural features of the graph.

4.5 Application of framework in real-networks

In this section, we use our framework to analyze the Twitch dataset (Figure 2). Similar to the synthetic
network analysis, we will use the node features and the embeddings to build classification models to identify
a particular labeled group of nodes. Here, we will use the ”mature” status of the Twitch accounts as the
target for the classification task. Note that we do not use node (user) metadata in our model development, as
the goal is to study the predictive power of features one could extract using embedding techniques from the
underlying social network. The Twitch network has approximately equal number of mature vs non-mature
accounts. Similar to the synthetic network, we split our dataset into train, validation and test using the
60/10/30 split fractions, respectively. For each feature source, we train 10 models and the final accuracy is
plotted as the distribution of the accuracy of each model.

Figure 8 shows the performance of eight models trained on four structural embeddings (Struc2Vec,
LSME, RolX, Role2Vec), two classical embeddings (DeepWalk, Node2Vec), in addition to classifiers
trained on node structural features only and lastly a model train on the combination of all structural
embeddings. As we can see in Figure 8, the classical embedding algorithms (DeepWalk, Node2Vec)
perform the best with an accuracy of approximately 64%. This can be somewhat expected by looking at
Figure 2, where the mature (red) and non-mature (green) accounts are roughly divided into two communities.
The network layout in 2 is arrived at using the Force Atlas 2 algorithm in the Gephi graph visualization
software [4]. The structural embedding algorithms in general perform worst than the classical embeddings
in this particular study. Role2Vec is the only structural embedding algorithm with performance similar to
the classical embeddings. The Role2Vec algorithm uses a random walk technique to sample the underlying
network, similar to the Node2Vec and DeepWalk embeddings. This could be the reason the Role2Vec
algorithm is learning features about the network that other structural embedding algorithms don’t. This idea
can be further justified as the classifiers built using Role2Vec embedding, outperform classifiers built using
node features alone. This hints at the fact that there are either structural properties learned by RoleVec
algorithm, which are not present in our 12 node structural features, or that there are non-structural properties
of the graph that Role2Vec algorithm learns.

Let us now analyze the behaviour of the embeddings using our framework. We show the performance
scores (ψ) for the Twitch network in Figure 9. First, we observe that Struc2Vec fails to learn most structural
node features, except for degree centrality. This aligns with the fact that Struc2Vec performs the worst in
the classification task. Secondly, we point out that both LSME and RolX capture a number of structural
properties of the network, with RolX performing the best (as measured using ψ). This translate to their
better perfrormance in the classification task. Lastly, we observe that Role2Vec’s performance behaviour,
as shown in Figure 9, is the most comprehensive. We can see that Role2Vec learns (at least partially)
all 12 node structural features, which translates well to its performance in the classification task. We note
however that Role2Vec’s performance in the classification task is a result of a combination of learned node
structural features in addition to other predictive features not captured by our framework’s 12 feature set.
This is evident, since Role2Vec outperforms models trained strictly on node structural features (labeled
Node Features in Figure 9).

We conclude this section by highlighting the fact that our framework provides useful insights into the
behaviour of structural embedding algorithms in capturing structural properties of real networks. As we have
shown in Figure 9, it is easy to rank the structural embeddings based on how they learn various structural
properties of the graph, with Role2Vec performing better than LSME and RolX, which in turn perform
better than Struc2Vec. Arriving at this information, in an unsupervised way, is useful for practitioners and
as we have shown translates well to supervised tasks such as node classification.
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Figure 8: The accuracy of classifiers built to identify Twitch accounts that are labeled ”mature”. 4 structural
(Struc2Vec, LSME, RolX, Role2Vec), 2 classical embeddings (DeepWalk, Node2Vec) are used. In
addition we used the node structural features in addition to the combination of all structural features.

5 Conclusion

In this work, we introduced an unsupervised embedding evaluation framework which can be used to both
explain what structural properties of nodes embedding algorithms learn, in addition to how well each algo-
rithm learns a particular structural feature. As we highlighted in Section 2, classical embedding algorithms
often fail to learn meaningful representation of structural properties. Therefore, for tasks such as role discov-
ery or role classification, we need to rely on structural properties of nodes learned by structural embedding
algorithms. As we highlighted, there are numerous challenges with using structural embedding algorithms.
First, there is a diverse set of structural features that an algorithm could learn. Therefore, it is not easy
to define a single metric for measuring the performance of structural embedding algorithms. Second, mea-
suring performance of embedding algorithms is often done using supervised techniques, which relies on the
availability of labeled dataset. In Section 3, we introduced a framework, which addresses the above two
challenges. In our framework, we introduce a collection of core structural features, against which one could
measure the performance of a structural embedding algorithm. In addition, we introduce a technique for
performing these measurements in an unsupervised way, which avoids the need for the availability of labelled
datasets. By introducing a mapping between the embedding and the feature space, we are able to define a
metric (ψ) for measuring the performance of embedding algorithms. In addition, we can use this metric to
explain which features are learned by a given algorithm. As we have shown in Section 4.3, this feature of our
framework is especially useful for the explainability of algorithms that rely on deep-learning such as LSME.
Furthermore, using a synthetic and a real-life (Twitch network) graph as a benchmark, we showcased sev-
eral use cases for our framework. In Section 4.4, we showed that one could use our framework to measure
the performance of a number of classical and structural embedding algorithms against a set of structural
features. The performance of the embedding algorithms, as measured by ψ, correlates with the performance
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Figure 9: The performance of structural and embedding algorithms measured using ψ for the 12 node
structural features.

of the algorithms in a role classification task. This highlights the utility of our framework, which can be
used to gain insights into the performance of embedding algorithms in scenarios where labeled data is not
available. In addition, one could use our framework to identify difficult to embed structural features and
use the ψ value as iterative way of modifying an embedding algorithm to learn specific feature-sets. The
unsupervised framework developed and showcased in this work can be used a versatile tool for practitioners
studying structural properties of complex networks.
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graph embeddings. Journal of Complex Networks, 8(5):cnz043, 2020.
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