
Predicting Properties of Nodes via Community-Aware Features

Bogumił Kamiński∗ Paweł Prałat† François Théberge‡ Sebastian Zając§

April 23, 2024

Abstract

This paper shows how information about the network’s community structure can be used to define node
features with high predictive power for classification tasks. To do so, we define a family of community-
aware node features and investigate their properties. Those features are designed to ensure that they
can be efficiently computed even for large graphs. We show that community-aware node features contain
information that cannot be completely recovered by classical node features or node embeddings (both
classical and structural) and bring value in node classification tasks. This is verified for various classification
tasks on synthetic and real-life networks.

Keywords: social networks, node prediction, community detection, feature engineering

Statements and Declarations
BK and SZ have been supported by the Polish National Agency for Academic Exchange under the Strategic
Partnerships programme, grant number BPI/PST/2021/1/00069/U/00001.

∗Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw, Poland; e-mail: bkamins@sgh.waw.pl,
ORCID: 0000-0002-0678-282X

†Department of Mathematics, Toronto Metropolitan University, Toronto, ON, Canada; e-mail: pralat@torontomu.ca
‡Tutte Institute for Mathematics and Computing, Ottawa, ON, Canada; email: theberge@ieee.org
§Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw, Poland; e-mail: szajac2@sgh.waw.pl

1

1 Introduction
Classification is a classical supervised machine learning problem in which data instances with ground truth
labels are used to train a model that can predict the labels of unseen data instances. In the context of data
that can be represented as graphs, node classification is a particularly important problem in which the goal is
to predict labels associated with the nodes. Node classification is widely used in various practical applications
such as social network analysis [4], recommender systems [56], and applied chemistry [19].

Many node classification methods have been previously investigated in the literature, such as generalized
(regularized) linear classifiers, support vector machines, decision trees, and neural networks (especially Graph
Neural Networks, GNNs, that attracted a lot of attention recently). However, for classifiers to perform well,
they must have access to a set of highly informative node features that can discriminate representatives of
different classes. No matter how sophisticated classifiers one builds, they will perform poorly if they do not
get informative input concerning the problem. In particular, although GNNs can aggregate features using
network structure, they can benefit from good node-level features as an input [14]. This is especially true for
the features that cannot be computed via aggregation across neighbouring nodes. Hence, it is desirable to
enrich a family of available features and apply machine learning tools to features of various sorts.

Predictive models applied on high-dimensional data tend to overfit, which may cause performance
degradation on unseen data (this issue is known as the curse of dimensionality) [22]. This problem can be
solved with model regularization or various standard dimensionality reduction tools that can be categorized
into two families: feature selection (selecting a subset of relevant features for model construction) and feature
extraction (projecting the original high-dimensional features to a new space with low dimensionality) [41, 51].
Hence, the more node features potentially encapsulating additional, jointly non-redundant information, the
better, as there exist efficient fitting procedures that can efficiently handle large sets of potential model
features.

In this paper, we investigate a family of features that pay attention to community structure often present
in social networks [1]. Community structure plays an important role in social network formation, and thus, it
can be associated with nodes’ properties. Such features are further called community-aware features. Indeed,
the community structure of real-world networks often reveals the internal organization of nodes [16]. In
social networks, communities may represent groups by interest; in citation networks, they correspond to
related papers; in the Web, communities are formed by pages on related topics, etc. Such communities
form groups of densely connected nodes with substantially fewer edges touching other parts of the graph.
Identifying communities in a network can be done unsupervised and is often the analysts’ first step. A better
understanding of the network’s community structure can be leveraged in its later analysis.

The motivation to study community-aware features is twofold. On the one hand, one can expect that such
features can be highly informative for many node classification tasks. For example, it might be important
whether a given node is a strong community member or, conversely, it is loosely tied to many communities. In
terms of classical statistics, one can think of it as a question of whether a vector in a real space (representing
one observation) belongs in a “dense” (strong member of some cluster) or “sparse” (data point between some
clusters) region. Such problems are often studied by data depth methods [44]. On the other hand, one can
expect that community-aware features are not highly correlated to other features typically computed for
networks. Indeed, to compute community-aware features, one needs first to identify the community structure
of a graph. This, in turn, is a complicated non-linear transformation of the input graph, which cannot be
expected to be easily recovered by supervised or unsupervised machine learning models that are not designed
to be community-aware.

The contributions of this paper are the following:

• We propose a new set of community-aware node features.

• We verify that the information in the proposed features is non-redundant against classical node features
and against node embeddings (both classical and structural).

• We verify that the proposed features have predictive power in node classification tasks.

2

We show that there are classes of node prediction problems in which community-aware features have
high predictive power. We also verify that community-aware features contain information that cannot
be recovered either by classical node features or node embeddings (both classical and structural). In our
experiments, we concentrate on binary classification to ensure that the results can be reported consistently
across different graphs. We test our approach both on synthetic and real-life graphs. However, the same
qualitative conclusions regarding the usefulness of community-aware features hold for problems involving
multi-class or continuous target prediction.

There are some community-aware features already introduced in the literature, such as CADA [23] or
the participation coefficient [21]; see Section 3 for their definitions. CADA is a feature that was originally
developed as a measure of outlingness with respect to the community structure. On the other hand, the
participation score measures how the neighbours of a given node are spread among communities.

However, it is important to highlight that both CADA and the participation score ignore the distribution
of community sizes. We argue that considering community sizes when computing community-aware features
matters as it provides a more detailed picture. As an example, consider a graph that has two communities; one
of them contains 80% of the total volume and the other 20%. Now, consider two nodes, the first one has 80%
of its neighbours in the first community, and the second one has 80% of neighbours in the second one. Under
CADA and the participation score, they will have the same value of these metrics (as they ignore community
sizes). However, we postulate that the first node is qualitatively different than the second one. Indeed, since
the first community randomly has 80% of the volume (e.g., under the Chung-Lu or the configuration models),
one would expect both to have 80% neighbours in the first community. The first node behaves exactly as
expected. On the other hand, the behaviour of the second node is surprising. Most of its neighbours belong
to small communities. Therefore, in this paper, we propose a class of community-aware features that, via the
appropriate null model, consider community sizes and compare their predictive performance to the measures
previously proposed in the literature.

The paper is an extended version of the proceedings paper [34]∗ and is structured as follows. In Section 2,
we introduce the concept of null models that we will use to benchmark how strongly given node is attached
to its community. In particular, we show how it is used to define modularity function, a quality function used
by many clustering algorithms (Subsection 2.1). In Section 3, we recall a few community-aware node features,
CADA (Subsection 3.1), normalized within-module degree and participation coefficient (Subsection 3.2),
before introducing our own features, community association strength (Subsection 3.3) and distribution-based
measures (Subsection 3.4). Experiments are presented in Section 4. Three types of experiments were performed
and reported: information overlap between community-aware and classical features (Subsection 4.4.1), one-
way predictive power of community-aware and classical features (Subsection 4.4.2), and combined variable
importance for prediction of community-aware and classical features (Subsection 4.4.3).

2 Using Null Models to Understand Community Structure
A null model is a type of a random object that matches a specific property P observed is some dataset
(for example, a collection of constraints such as a degree distribution in a graph following a given sequence
(di)

n
i=1), but is otherwise taken randomly and unbiasedly from some larger family of objects having property

P (in our previous example, all graphs of the same order and the degree distribution (di)
n
i=1). Using null

models as a reference is a flexible approach for statistically testing the presence of properties of interest
in empirical data. As a result, the null models can be used to test whether a given object exhibits some
“surprising” property that is not expected based on chance alone or as an implication of the fact that the
object has property P. A classical application of null models is frequentist hypothesis testing in statistics,
where null-models are used to derive the distribution of statistics of interest under null hypothesis.

∗The proceedings paper [34] is significantly shorter. In particular, it does not contain Sections 2, 4.3, 4.4.2, and 5 from this
paper, it does not provide derivation and detailed discussion of β∗ introduced in Section 3.2, and in Section 4, it does not contain
the results presented for the ABCD+o graphs. We also present additional results for a larger real-life Twitch graph, which is
not covered in the proceedings version.

3

Null models were successfully used in network science to build various machine learning tools such as
clustering algorithms [5, 52] or unsupervised frameworks to evaluate node embeddings [26, 29]; see [43] for
more examples.

In this paper, we consider null models in the context of graphs. Null models play a central role not only
in extracting graph community structure but, more importantly, they are used to quantify how tightly nodes
are connected to the communities that surround them. More specifically, we consider null models that have
the property P that ensures the degree distribution follows a given sequence observed in an empirical graph
that we aim to analyze (either exactly, as in the configuration model [6, 54], or in expectation, as in the
Chung-Lu model [10]). Insisting on property P is needed to make sure high degree nodes induce more edges
than low degree ones under the null model. On the other hand, under the null model, there are no built-in
communities, so edges are wired randomly as long as the degree distribution is preserved. As a result, such
null models can be successfully used to benchmark and formally quantify how “surprising” it is to see that
there are communities present in an empirical graph and that nodes are strongly attached to them.

To illustrate how null models are applied, in Subsection 2.1 we define the modularity function that is
a key ingredient in Leiden [52], the clustering algorithm we use to extract community structure. However,
the community-aware features we propose in Section 3 work also for other methods of community detection
as long as they return a partition of nodes into communities. Clearly, they also work in the cases when
ground-truth partitions are additionally provided.

2.1 Modularity Function
Consider a simple, unweighted graph G = (V,E), where V is a set of nodes and E is a set of edges between
nodes. Each edge e ∈ E is a two-element subset of V . Given a subset of nodes A ⊆ V , we define the number
of edges in the graph induced by this set (that is, the number of edges in G that have both endpoints in A)
as e(A) = |{a ∈ E : a ⊆ A}|. In particular, we have e(V) = |E|.

For any node v ∈ V , we define its degree as the number of neighbours of v (that is, the number of edges
that contain v): deg(v) = |{e ∈ E : v ∈ e}|. For any subset of nodes A ⊆ V , we define its volume as the sum
of degrees of nodes in A, that is, vol(A) =

∑
v∈A deg(v). In particular, vol(V) = 2|E|. Finally, we say that

A = {A1, A2, . . . , Aℓ} is a partition of V into ℓ sets if Ai ∩Aj = ∅ for any 1 ≤ i < j ≤ ℓ and
⋃

i∈[ℓ] Ai = V ,
where [ℓ] = {1, 2, . . . , ℓ}.

With these definitions at hand, we are ready to define the modularity function of any partition A of V .
The standard modularity function, first introduced by Newman and Girvan in [45], is defined as follows:

q(A) =
∑
Ai∈A

e(Ai)

|E|
−
∑
Ai∈A

(
vol(Ai)

vol(V)

)2

. (1)

The first term in (1), |E|−1
∑

Ai∈A e(Ai), is called the edge contribution and it computes the fraction of edges
that are captured within communities in partition A. The second term in (1), namely vol(V)−2

∑
Ai∈A vol(Ai)

2,
is called the degree tax and it computes the expected fraction of edges that do the same in the corresponding
Chung-Lu [10] null-model. In this random graph, the probability that node v is adjacent to node w (with
loops allowed) is equal to p(v, w) = deg(v) deg(w)/vol(V) so that the expected degree of v is equal to∑

w∈V p(v, w) = deg(v), as desired. The modularity measures the deviation between the two.
The maximum modularity q∗(G) is defined as the maximum of q(A) over all possible partitions A of V .

It is used as a quality function by many popular clustering algorithms such as Louvain [5] and Leiden [52]
that perform very well. It also provides an easy way to measure the presence of community structure in a
network. If q∗(G) is close to 1 (which is the trivial upper bound), we observe a strong community structure;
conversely, if q∗(G) is close to zero (which is the trivial lower bound, since q(A) = 0 if A = {V }), there is no
community structure.

As already discussed in the introduction, the modularity function is prone to the so-called resolution limit
reported in [17]. This means that an optimal partition of a large graph cannot contain small communities,

4

that is, all |Ai| are large. To overcome this problem, a simple modification of the modularity function was
proposed (see e.g. [39]) that introduces the resolution parameter λ > 0:

qλ(A) =
∑
Ai∈A

e(Ai)

|E|
− λ

∑
Ai∈A

(
vol(Ai)

vol(V)

)2

. (2)

In this variant, if λ is set to be larger than 1, then large communities (communities for which vol(Ai) is
large) are penalized more than small ones. As a result, partitions A that yield large qλ(A) tend to consist
of increasingly smaller communities as λ grows. If λ → ∞, then the edge contribution of qλ(A) becomes
negligible and the optimal partition turns out to be A = {{v} : v ∈ V } in which each node creates its own
single node community.

For more details and discussion of alternative approaches, we direct the reader to [46, 55] or any book on
complex networks such as [31, 37].

3 Community-Aware Node Features
In this section, we introduce various community-aware node features. All of them aim to capture and quantify
how given nodes are attached to communities. It will be assumed that a partition A = {A1, A2, . . . , Aℓ} of V
into ℓ communities is already provided; communities induced by parts Ai (i ∈ [ℓ]) are denser comparing to
the global density of the graph. Such partition can be found by any clustering algorithm. In our empirical
experiments we use Leiden [52] which is known to produce good, stable results.

To simplify the notation, we will use degAi
(v) to be the number of neighbours of v in Ai, that is,

degAi
(v) = |N(v) ∩Ai|, where N(v) is the set of neighbours of v.

We start with three node features that have been already proposed in the literature: anomaly score CADA
(Subsection 3.1), normalized within-module degree and participation coefficient that usually work in tandem
(Subsection 3.2). As mentioned in the introduction, these three features completely ignore community sizes
in their definitions. Using Chung-Lu model [10] as the null model, we can easily incorporate this useful
information. We propose a few new community-aware features that take this into account: community
association strength (Subsection 3.3) and various distribution-based measures (Subsection 3.4).

3.1 Anomaly Score CADA
The first community-aware node feature is the anomaly score introduced in [24] with the goal to describe to
what extent the neighbours of a node belong to a diverse number of communities, while the node itself does
not strongly belong to one of them. The anomaly score is computed as follows: for any node v ∈ V with
deg(v) ≥ 1,

cd(v) =
deg(v)

dA(v)
, where dA(v) = max

{
degAi

(v) : Ai ∈ A
}
;

the denominator, dA(v), represents the maximum number of neighbouring nodes that belong to the same
community. In one extreme, if all neighbours of v belong to the same community, then cd(v) = 1. In the
other extreme, if no two neighbours of v belong to the same community, then cd(v) = deg(v).

Note that cd(v) does not pay attention to which community node v belongs to. Moreover, this node
feature is unbounded, that is, cd(v) may get arbitrarily large. As a result, we will also investigate the following
small modification of the original score, the normalized anomaly score: for any node v ∈ Ai with deg(v) ≥ 1,

cd(v) =
degAi

(v)

deg(v)
.

Clearly, 0 ≤ cd(v) ≤ 1. Moreover, any good clustering algorithm typically should try to assign v to the
community where most of its neighbours are, so most nodes are expected to have cd(v) = 1/cd(v). The case

5

when this condition might not hold is if some node has slightly more neighbours in some large community
than in some small community. Indeed, it might happen that a community detection algorithm maximizing
the modularity function assigns some node to a small community despite the fact that it is not a community
where the node has most of its neighbours in. For example, consider the situation in which there are two
communities of respective sizes 80% and 20% of the total volume, and a node that has 51% of its neighbours
in large community and 49% of its neighbours in a small community. This also shows the importance of
paying attention to community sizes.

3.2 Normalized Within-module Degree and Participation Coefficient
In [21], an interesting and powerful approach was proposed to quantify the role played by each node within a
network that exhibits community structure. Seven different universal roles were heuristically identified, each
defined by a different region in the (z(v), p(v)) 2-dimensional parameter space, where z(v) is the normalized
within-module degree of a node v and p(v) is the participation coefficient of v. Node feature z(v) captures how
strongly a particular node is connected to other nodes within its own community, completely ignoring edges
between communities. On the other hand, node feature p(v) captures how neighbours of v are distributed
between all parts of the partition A.

Formally, the normalized within-module degree of a node v is defined as follows: for any node v ∈ Ai,

z(v) =
degAi

(v)− µ(v)

σ(v)
,

where µ(v) and σ(v) are, respectively, the mean and the standard deviation of degAi
(u) over all nodes u in

the community v belongs to. Note that in the definition above we assumed that the graph induced by the
community node v belongs to is not regular (that is, σ(v) ̸= 0). In our numerical experiments, if σ(v) = 0,
then we simply take z(v) = 0. This situation might happen in practice when a small community is detected,
since it is highly unlikely for a large set of nodes to induce a regular graph. Note also that z(v) is the familiar
Z-score as it measures how many standard deviations the internal degree of v deviates from the mean. If
node v is tightly connected to other nodes within the community, then z(v) is large and positive. On the
other hand, |z(v)| is large and z(v) is negative when v is loosely connected to other peers.

The participation coefficient of a node v is defined as follows: for any node v ∈ V with deg(v) ≥ 1,

p(v) = 1−
ℓ∑

i=1

(
degAi

(v)

deg(v)

)2

.

The participation coefficient p(v) is equal to zero if v has neighbours exclusively in some community (most
likely in its own community). In the other extreme situation, the neighbours of v are homogeneously
distributed among all parts and so p(v) is close to the trivial upper bound of

1−
ℓ∑

i=1

(
deg(v)/ℓ

deg(v)

)2

= 1− 1

ℓ
≈ 1

which is close to 1 for large ℓ.

3.3 Community Association Strength
As already advertised, let us now introduce our own community-aware node feature that takes the distribution
of community sizes into account. In order to build an intuition, suppose for a moment that we aim to adjust
the modified modularity function (2) to detect nodes that are outliers. If the fraction of neighbours of a
node v in its own community is small relative to the corresponding expected fraction under the null-model,
then we will say that v is likely to be an outlier. In other words, in order to quantify the probability that
v is an outlier, one might want to compare degAi

(v)/deg(v) against vol(Ai)/vol(V). Our goal is to adjust

6

the modularity function in such a way that nodes that are likely to be outliers are put into single node
communities.

Let us formalize these concepts. Given a partition A, we define a set of outliers as O =
⋃

i∈[ℓ]:|Ai|=1 Ai,
that is, nodes that are put into a single node communities are defined as outliers. For a fixed parameter
β ≥ 0 (and the resolution parameter λ > 0), we define the regularized modularity function as follows:

qλ,β(A) =
∑
Ai∈A

e(Ai) + δ|Ai|=1β vol(Ai)/2

|E|+ Z/2
− λ

(∑
Ai∈A

(
vol(Ai)(1 + δ|Ai|=1β)

vol(V) + Z

)2
)
, (3)

where Z =
∑

Ai∈A δ|Ai|=1β vol(Ai) = β vol(O); δB is the Kronecker delta: δB = 1 if B is true and δB = 0,
otherwise.

The above definition clearly generalizes the modified modularity function (2), and we recover it when
β = 0. For β > 0, the rationale behind it is as follows. If additional self-loops are introduced in graph G in
communities containing outliers (single node communities), then the number of them is guided by parameter
β and is proportional to the volume of such small communities (but not their node count, as they contain
only one node). This impacts the edge contribution and the degree tax is adjusted accordingly. If β is close
to 0, then only nodes that are loosely attached to their own communities are pushed to single communities
(and so they become outliers) since such operation increases the modularity function (3). The larger β gets,
the more nodes have incentive to become outliers. Similarly to the original modularity function, particular
values of qλ,β(A) are not interpretable. It is designed for algorithms such as Louvain or Leiden, trying to
maximize function qλ,β(A), to find outliers. In our application it will be used to define node features.

Unfortunately, the formula (3) is challenging to work with, since the modifications are affecting the
numerators and the denominators of both the edge contribution and the degree tax. It is easier to use the
following approximation instead:

qλ,β(A) ≈
∑
Ai∈A

e(Ai) + δ|Ai|=1βvol(Ai)/2

|E|
− λ

(∑
Ai∈A

(
vol(Ai)

vol(V)

)2
)
.

Using this approximation, one can ask the following question for any node v that belongs to community Ai:
what is the threshold value of β∗(v) so that if β > β∗(v), then the approximation of the regularized modularity
function increases if v is moved from Ai to form its own, single node community. The approximated version
can be easily analyzed to get such threshold. Indeed, the change associated with the edge contribution∑

Ai∈A (e(Ai) + δ|Ai|=1βvol(Ai)/2)/|E| when we remove node v from its community Ai and put it into a
new community that contains only this node is equal to

−degAi
(v) + β deg(v)/2

|E|
=

−2 degAi
(v) + β deg(v)

vol(V)
(4)

whereas the change associated with the degree tax −λ
(∑

Ai∈A (vol(Ai)/vol(V))
2
)

when we remove node v

from its community Ai and put it into a new community that contains only this node is

λ
(vol(Ai)− deg(v))2 + deg(v)2 − vol(Ai)

2

vol(V)2
= −2λ

vol(Ai) deg(v)− deg(v)2

vol(V)2
. (5)

The threshold value may be then computed by finding the unique value of β that makes (4) equal to (5).
Hence, for any v ∈ Ai, we define the community association strength as follows:

β∗(v) = 2

(
degAi

(v)

deg(v)
− λ

vol(Ai)− deg(v)

vol(V)

)
.

The lower the value of β∗(v), the less associated node v with its own community is. In the derivation above
we allow for any λ > 0, but in the experiments, we will use λ = 1.

7

Let us also notice that when λ = 1, β∗(v) is essentially twice the normalized anomaly score cd(v) after
adjusting it to take into account the corresponding prediction from the null model. Moreover, let us note
that some simplified version of this node feature was already used in [32].

To illustrate the usefulness of this new node feature on a toy example, we consider the well-known Karate
Club graph [57] in Figure 1. There are two ground truth communities which can be distinguished by red and
green node colours. The shades of nodes correspond to the values of the community association strength
β∗(v); darker shades indicate lower values of this node feature. We see that nodes 3 and 10 are the darkest
and, indeed, they have the same number of neighbours in their own community as outside of it. Also, in
general, we see that darker nodes are in the middle of the plot, at the “intersection” of communities, while
light nodes are on the left and right borders (they have all neighbours within their own communities). It
is important to notice that to layout the graph we used a standard force-directed algorithm that assumes
that some kind of attractive forces (imagine springs connecting nodes) are used to attract nodes connected
by edges together, while simultaneously repulsive forces (imagine electrically charged particles) are used to
separate the remaining pairs of nodes. As a result, “tightly” connected clusters of nodes will show up close to
each other, and those that are “loosely” connected will be repulsed towards the outside. The fact that β∗(v)
was able to recover the position of nodes is a good and promising sign. Other community-aware features
should produce similar results for this graph as its two ground truth communities have similar sizes.

1

2

3 4

5 6

7

8
9

10

11

12
13

14

15

16

1718

19
20

21

22

23
24

2526

27

28

29

30

31

32

33
34

Figure 1: Communities (red and green colours) in the Karate graph. The shades of nodes correspond to their
values of β∗(v) (darker colours indicate lower values).

3.4 Distribution-Based Measures
Our next community-aware node features are similar in spirit to the participation coefficient, that is, they
aim to measure how neighbours of a node v are distributed between all parts of the partition A. The main
difference is that they pay attention to the sizes of parts of A and compare the distribution of neighbours to
the corresponding predictions from the null model. They are upgraded versions of the participation coefficient,
similarly to the community association strength being an upgraded counterpart of the normalized anomaly
score.

Formally, for any node v ∈ V , let q1(v) be the vector representing fractions of neighbours of v in various
parts of partition A, that is,

q1(v) =

(
degA1

(v)

deg(v)
,
degA2

(v)

deg(v)
, . . . ,

degAℓ
(v)

deg(v)

)
.

8

Similarly, let q̂1(v) be the corresponding prediction for the same vector based on the Chung-Lu model, that is,

q̂1(v) =

(
vol(A1)

vol(V)
,
vol(A2)

vol(V)
, . . . ,

vol(Aℓ)

vol(V)

)
=: q̂1.

Note that q̂1(v) = q̂1 does not depend on v (of course, it should not!) but only on the distribution of
community volumes. Our goal is to measure how similar the two vectors are. A natural choice would be any
of the p-norms but, since both vectors are stochastic (that is, all entries are non-negative and they add up to
one), alternatively one can also use any good measure for comparison of probability distributions. In our
experiments we tested the following node features:

• L1 norm: L1
1(v) =

∑ℓ
i=1

∣∣∣degAi
(v)

deg(v) − vol(Ai)
vol(V)

∣∣∣
• L2 norm: L2

1(v) =

(∑ℓ
i=1

(
degAi

(v)

deg(v) − vol(Ai)
vol(V)

)2)1/2

• Kullback–Leibler divergence [12]: kl1(v) =
∑ℓ

i=1

degAi
(v)

deg(v) log
(

degAi
(v)

deg(v) · vol(V)
vol(Ai)

)
• Hellinger distance [25]: h1(v) =

1√
2

(∑ℓ
i=1

((
degAi

(v)

deg(v)

)1/2
−
(

vol(Ai)
vol(V)

)1/2)2
)1/2

The above measures pay attention to which communities neighbours of v belong to. However, some of
such neighbours might be strong members of their own communities but some of them might not be. Should
we pay attention that? Is having a few strong members of community Ai as neighbours equivalent to having
many neighbours that are weak members of Ai? To capture these nuances, one needs to consider larger
ego-nets around v, nodes at distance at most 2 from v. We define q2(v) to be the average value of q1(u) taken
over all neighbours of v, that is,

q2(v) =
1

deg(v)

∑
u∈N(v)

q1(u).

As before, q̂2(v) is the corresponding prediction based on the null model. However, since q̂1(u) = q̂1 does not
depend on u, q̂2(v) also does not depend on v and, in fact, it is equal to q̂1. The difference between q2(v) and
q̂2(v) may be measured by any metric used before. In our experiments we tested L1

2(v), L2
2(v), kl2(v), and

h2(v), counterparts of L1
1(v), L2

1(v), kl1(v), and h1(v) respectively.
Let us mention that q1(v) and q2(v) have a natural and useful interpretation. Consider a random walk

that starts at a given node v. The ith entry of the q1(v) vector is the probability that a random walk visits a
node from community Ai after one step. Vector q2(v) has the same interpretation but after two steps are
taken by the random walk.

One can repeat the same argument and define L1
i (v), etc., for any natural number i by performing i steps

of a random walk. Moreover, a natural alternative approach would be to consider all possible walk lengths
but connections made with distant neighbours are penalized by an attenuation factor α as it is done in the
classical Katz centrality [35].

Finally, let us note that the above aggregation processes could be viewed as simplified versions of GNNs
classifiers. Therefore, the investigation of these measures additionally shows how useful community-aware
measures could be when used in combination with GNN models.

4 Experiments

4.1 Graphs Used
We consider undirected, connected, and simple (no loops nor parallel edges are allowed) graphs so that all
node features are well defined and all methods that we use work properly. In each graph, we have some

9

“ground-truth” labels for the nodes which is used to benchmark classification algorithms. For consistency of
the reported metrics, we consider binary classification tasks, so the ground-truth node features that are to be
predicted will always consist of labels from the set {0, 1} with label 1 being the target class. We consider
generic binary classification, and the choice of classes will vary for different experiments.

In the experiments, we used two families of graphs. The first family consists of synthetic networks. The
main goal of experiments on this family is to show the added value of community-aware node features.
In these networks, the target class depends on the overall community structure of the graph. Artificial
Benchmark for Community Detection with Outliers (ABCD+o) [32] fits this need perfectly. Nodes in these
synthetic graphs have binary labels: community-aware outliers (with label 1) do not belong strongly to any
of the communities whereas other nodes (with label 0) are members of a community, and we can control the
strength of such memberships.

The second family of networks we used in our experiments are empirical real-world graphs (mainly social
networks, but also other types of networks for completeness of the analysis). We tried to select a collection of
graphs with different properties (density, community structure, degree distribution, clustering coefficient, etc.).
More importantly, some of them have highly unbalanced binary classes. Experiments with these networks will
serve as a more challenging and robust test for usefulness of the proposed community-aware node features.

4.1.1 Synthetic ABCD+o Graphs

The Artificial Benchmark for Community Detection graph (ABCD) [30] is a random graph model with
community structure and power-law distribution for both degrees and community sizes. The model generates
graphs with similar properties as the well-known LFR model [38, 40], and its main parameter ξ (counterpart
of the mixing parameter µ in the LFR model) controls the level of noise, that is, the proportion of edges
that touch two distinct communities. Both models produce synthetic networks with comparable properties
but ABCD is significantly faster than LFR (especially its fast implementation that uses multiple threads,
ABCDe [27]) and can be easily tuned to allow the user to make a smooth transition between the two
extremes: pure (disjoint) communities and random graph with no community structure. Moreover, it is easier
to analyze theoretically. For example, various theoretical asymptotic properties of the ABCD model are
analyzed in [28], including the modularity function that is an important graph property of networks in the
context of community detection.

An important feature of the family of ABCD networks is its flexibility. Hypergraph counterpart of the
model, h–ABCD [33], was recently introduced that can mimic any desired level of homogeneity of hyperedges
that fall into one community. More importantly from the perspective of the current paper, an extension of
the ABCD model to include community-aware outliers, ABCD+o, was introduced in [32]. The outlier
nodes in this model are not assigned to any community; their neighbours are sampled from the entire graph.
Experiments in [32] were performed to show that outliers in the new model as well as outliers in real-world
networks pose similar distinguishable properties which ensures that it may potentially serve as a benchmark
of outlier detection algorithms.

In our experiments, we generated ABCD+o networks on n = 10,000 nodes, including s0 = 1,000 outliers
(10%). The degree distribution follows a power-law with exponent γ = 2.5 and degrees are between 5 and
500. The distribution of community sizes follows a power-law with exponent β = 1.5 and their sizes range
from 50 to 2,000. We generated 4 networks with different level of noise: ξ ∈ {0.3, 0.4, 0.5, 0.6}. The lower the
value of ξ, the more tight the communities are which makes it easier to detect communities as well as to
identify outliers.

4.1.2 Empirical Graphs

For experiments on real-world, empirical networks, we selected the following six datasets. In the selection
process we focused on social networks (four data sets), but also, for completeness of the analysis, included
two networks of other types. One of the graphs (Twitch) is larger than the others so we can additionally test
the scalability of the proposed methods. In cases when multiple connected components were present, we kept
only the giant component. Self-loops, if present, were also dropped before performing the experiments. We

10

summarize some statistics for the above graphs in Table 1. The number of communities reported in the table
are communities identified by running the Leiden algorithm 1,000 times independently on a respective graph
and picking the community partition with the highest modularity (see Section 4.2 for more details).

• Reddit [36]: A user-subreddit graph which consists of one month of posts made by users on subreddits.
This is a bipartite graph with 9,998 nodes representing users in one part and 982 nodes representing
subreddits in the other one. This dataset contains ground-truth labels of banned users from Reddit
which we use as the target class (label 1). Nodes associated with subreddits are not used for training
nor evaluation but are kept for building node features associated with users.

• Grid [42]: A European high-voltage power grid, extracted in 2016 by GridKit from OpenStreetMap.
Nodes correspond to stations and edges represent lines between stations. Nodes in the original data
set have attributes such as “joint”, “merge”, “plant”, “station” and “substation”. For the target class we
selected the attribute “plant” because it was the least frequent attribute in the data, so we can have a
test in which the target is highly unbalanced.

• Facebook [48]: In this graph, nodes represent official Facebook pages while the edges are mutual
likes between sites. Nodes are labelled by Facebook and belong to one of the 4 categories: politicians,
governmental organizations, television shows and companies; we selected politicians as our target class.

• LastFM [49]: A social network of LastFM users from Asian countries. Nodes are associated with users
and edges are mutual follower relationships between them. The node features were extracted based on
the artists liked by the users. The network was designed with multinomial node classification in mind:
one has to predict the location of users. For our purpose, we ignore all node features but the country
field and use “country 17” (the most frequent country because we wanted to have a test in which the
target would not be highly unbalanced) as the target class.

• Amazon [13]: This dataset includes product reviews on Amazon under the “musical instruments”
category. Nodes in this graph are users and edges connect users that reviewed at least one common
product. Users with with less than 20% “helpful” votes are labelled as fraudulent entities (label 1)
whereas users with at least 80% helpful votes are labelled as benign entities (label 0). Some nodes
have missing labels; as it was done in the case of Reddit network, we do not use them for training nor
evaluation but we keep them for building node features of the labeled nodes.

• Twitch [50]: A social network of Twitch users which was collected from the public API in Spring 2018.
Nodes are Twitch users and edges are mutual follower relationships between them. For this graph, the
binary prediction task identifies if the user streams mature content (label 1) or gaming content (label 0).

Table 1: Statistics of the selected real-world empirical graphs.

dataset # average # target target
of nodes degree of communities proportion description

Reddit 10,980 14.30 12 3.661% is node a banned user
Grid 13,478 2.51 78 0.861% is node a plant

LastFM 7,624 7.29 28 20.619% is node in country #17
Facebook 22,470 15.20 58 25.670% is node a politician
Amazon 9,314 37.49 39 8.601% is node fraudulent
Twitch 168,114 80.87 19 47.01% is streamed content mature

11

4.2 Node Features Investigated
The community-aware node features that we tested are summarized in Table 2. Their precise definitions can
be found in Section 3. The features are computed with reference to a partition of a graph into communities
obtained using the Leiden algorithm. The partition is chosen as the best of 1,000 independent runs of the
community_leiden function implemented in the igraph library [11] (Python interface of the library was used).
Each of such independent runs was performed until a stable iteration was reached.

Table 2: Community-aware node features used in our experiments. A combination of WMD and CPC is also
used as a 2-dimensional embedding of a graph (WMD+CPC).

abbreviation symbol name subsection
CADA cd(v) anomaly score CADA 3.1
CADA* cd(v) normalized anomaly score 3.1
WMD z(v) normalized within-module degree 3.2
CPC p(v) participation coefficient 3.2
CAS β∗(v) community association strength 3.3

CD_L11 L1
1(v) L1 norm for the 1st neighbourhood 3.4

CD_L21 L2
1(v) L2 norm for the 1st neighbourhood 3.4

CD_KL1 kl1(v) Kullback–Leibler divergence for the 1st neighbourhood 3.4
CD_HD1 h1(v) Hellinger distance for the 1st neighbourhood 3.4
CD_L12 L1

2(v) L1 norm for the 2nd neighbourhood 3.4
CD_L22 L2

2(v) L2 norm for the 2nd neighbourhood 3.4
CD_KL2 kl2(v) Kullback–Leibler divergence for the 2nd neighbourhood 3.4
CD_HD2 h2(v) Hellinger distance for the 2nd neighbourhood 3.4

Classical (non-community-aware) node features are summarized in Table 3. These are standard and
well-known node features. We omit their precise definitions but, instead, refer to the appropriate sources in
the table. Alternatively, their definitions can be found in any book on mining complex networks such as [31].

Finally, we will use two more sophisticated and powerful node features obtained through graph embeddings,
where a graph embedding is a mapping from a set of nodes of a graph into a real vector space. Embeddings
can have various aims like capturing the underlying graph topology and structure, node-to-node relationship,
or other relevant information about the graph, its subgraphs or nodes themselves. Embeddings can be
categorized into two main types: classical embeddings and structural embeddings. Classical embeddings
focus on learning both local and global proximity of nodes, while structural embeddings learn information
specifically about the local structure of nodes’ neighbourhood. We test one embedding from each class:
node2vec [20] and struc2vec [47]. The parameters used for the embeddings are as follows:

• node2vec: dim=16; walk-length=50; num-walks=10; p=1; q=1.

• struc2vec: dim=16; num-walks=10; walk-length=50; window-size=5; OPT1, OPT2, and OPT3 set to
true.

4.3 Time complexity
Given some (synthetic or empirical) graph under consideration, let n be the number of nodes, m the number
of edges and ℓ the number of communities obtained with some algorithm. Recall that potential isolated nodes
are removed before the experiments start and so we may assume that m = Ω(n). The major computational
cost of computing the community-aware features comes from running the community detection algorithm.
In our study we use the Leiden algorithm which, for sparse graphs, has an empirically verified O(n log n)
running time for sparse graphs (m = O(n)).

12

Table 3: Classical (non-community-aware) node features that are used in our experiments.

abbreviation name reference
lcc local clustering coefficient [53]
bc betweenness centrality [18]
cc closeness centrality [3]
dc degree centrality [31]
ndc average degree centrality of neighbours [2]
ec eigenvector centrality [7]

eccen node eccentricity [9]
core node coreness [31]
n2v 16-dimensional node2vec embedding [20]
s2v 16-dimensional struc2vec embedding [47]

Most community-aware measures defined above (except the second neighbourhood ones) can be computed
in O(m+ n · ℓ) time. First, we traverse all edges of the graph and aggregate the number of neighbours of all
nodes in respective communities and next, using this information, we compute the desired measure which can
be done in one pass over the data.

The second neighbourhood measures (that is, L1
2(v), L2

2(v), kl2(v), and h2(v)) require an additional step
in each the averages over first neighbourhood measures of a given node are computed. This step can be done
in O(m · ℓ) time and thus the overall computational complexity is O(m+ n · ℓ+m · ℓ) = O(m · ℓ).

Most real-world networks are sparse (m = O(n)) and so in such networks almost all nodes have relatively
small degrees (consider, for example, power-law networks which are quite common). As a result, efficient
algorithms compute community-aware node features for such networks in linear time (one does not need to
consider all ℓ communities for a single node but only communities a node is connected to; O(1) of them, on
average) which is much faster than the time required to run the Leiden algorithm. Moreover, computing
community-aware features is often faster than classical ones. In particular, some classical features such
as betweenness centrality have significantly worse complexity. Similarly, computation of node2vec and
struc2vec embeddings is significantly more time consuming than computing community-aware features. This
problem was especially visible for the largest graph considered (Twitch) for which the computation of these
features took many hours, while computation of community-aware measures was fast.

4.4 Results of the experiments
In this section, we present the results of three numerical experiments that were performed to investigate the
usefulness of community-aware features:

1. information overlap between community-aware and classical features;

2. one-way predictive power of community-aware and classical features;

3. combined variable importance for prediction of community-aware and classical features.

The details behind these experiments and the observations are provided in the independent subsections below.
From the computational perspective, all analytical steps (generation of graphs, extractions of both community-
aware and classical features, execution of experiments) were implemented in such a way that all experiments
are fully reproducible. In particular, all steps that involve pseudo-random numbers were appropriately seeded.
The source code allowing for reproduction of all results is available at GitHub repository†.

†https://github.com/sebkaz/BetaStar.git

13

https://github.com/sebkaz/BetaStar.git

4.4.1 Information Overlap

In the first experiment (information-overlap), our goal was to test, using a variety of models, to what extent
each community-aware feature described in Table 2 can be explained by all the classical features from Table 3
(including both embeddings, node2vec and struc2vec).

In this experiment each community-aware feature was a target in the model. The features were all classical
features. Our goal was to check how well a given community-aware feature can be explained (predicted). As a
measure of this prediction quality we used the Kendall correlation of the value of the target community-aware
feature and its prediction produced by the model. We used the kendaltau function from the scipy python
package‡ which computes the Tau-b statistic that makes adjustments for ties in the input data. To ensure
that the reported results are robust and capture possible non-linear relationships between combinations of
classical features and a target community-aware feature, for each community-aware feature, five models were
built using random forest, xgboost, lightgbm, linear regression, and regularized regression. The maximum
Kendall correlation that was obtained is reported.

We used the non-parametric Kendall correlation to have a measure that is robust to possible non-linear
relationships, since Kendall correlation checks how well the ordering of predictions matches the ordering
of the target. Nevertheless, we also used the R2 measure, which assumes linearity of the relationship. The
results obtained were similar. The model building procedure assumed a random train-test split of nodes with
a proportion of 70/30. The reported Kendall correlation values were computed on test data set.

The goal of this experiment is to show that community-aware features cannot be explained by classical
features (including two highly expressible embeddings). The conclusion is that it is worth to include such
features in predictive models as they could potentially improve their predictive power. However, this additional
information could be simply a noise and so not useful in practice. To verify the usefulness of the community-
aware features, we performed two more experiments, namely, one-way predictive power and combined variable
importance for prediction checks. In these experiments, we check if community-aware features are indeed
useful in node label prediction problems.

In general, the expectation is that for synthetic networks such as ABCD+o graphs, the community-aware
features should significantly outperform classical features. Indeed, recall from Section 4.1.1 that the target
variable in these networks is whether or not some node is a strong member of the community or not (an
outlier). Such targets is exactly the scenario in which community-aware features should perform well. For
empirical graphs described in Section 4.1.2, the target is a binary label that measures some practical feature
or a role of a given node. It is important to highlight that these labels are not derived from the community
structure of these graphs, at least not directly. Instead, they are characteristics of nodes defined independently
of the graph structure. Therefore, for these networks we do not expect that community-aware features will
significantly outperform other features. However, we conjecture that in many empirical networks, it may be
the case that the prediction target is related to the fact that a node is a strong member of its own community
or not. We expect to see that some community-aware features are still useful in prediction. It is important to
highlight that, as we have described in Section 4.1.2, we have not hand-picked a few empirical networks that
present good performance of community-aware features, aiming for a diverse collection of networks.

Results and Observations

In Tables 4 and 5, we report the Kendall correlation for synthetic ABCD+o graphs and, respectively,
empirical networks. In both tables, rows are sorted by the geometric mean across all investigated graphs so
that features that provide more additional information are listed first.

For artificial ABCD+o graphs, we observe the following patterns in Table 4:

• The lowest correlation is generally for measures related to a single community (CADA, CADA*, CAS),
followed by measures taking into account all communities (CPC and the CD_ family of measures); in
particular, WMD has the highest correlation with the classical features.

‡https://docs.scipy.org/doc/scipy-1.12.0/reference/generated/scipy.stats.kendalltau.html

14

https://docs.scipy.org/doc/scipy-1.12.0/reference/generated/scipy.stats.kendalltau.html

Table 4: Information overlap between community-aware and classical features. The maximum of Kendall
correlation between target and predictions on test data set for ABCD+o graphs.

target ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6
CADA 0.3305 0.2541 0.2292 0.1766
CADA* 0.3613 0.2877 0.2772 0.1713
CPC 0.3540 0.3568 0.3231 0.3106
CAS 0.4205 0.3584 0.3138 0.2167
CD_L21 0.4539 0.4043 0.3823 0.3313
CD_L22 0.6265 0.5589 0.5009 0.4492
CD_L11 0.5935 0.5571 0.5834 0.5648
CD_L12 0.6503 0.5799 0.5464 0.5188
CD_KL1 0.6991 0.6411 0.5918 0.4929
CD_HD1 0.6809 0.6334 0.6170 0.5584
CD_KL2 0.7453 0.6602 0.6090 0.5471
CD_HD2 0.7546 0.7119 0.6815 0.6352
WMD 0.7670 0.7288 0.6915 0.6387

Table 5: Information overlap between community-aware and classical features. The maximum of Kendall
correlation between target and predictions on test data set for empirical graphs.

target Amazon Facebook Grid LastFM Reddit Twitch
CADA 0.5830 0.5666 0.2156 0.4815 0.6826 0.5736
CADA* 0.6058 0.5828 0.2174 0.5058 0.6867 0.5813
CPC 0.6338 0.5992 0.2193 0.5175 0.7193 0.6219
CAS 0.6538 0.6257 0.2999 0.5594 0.7306 0.6292
CD_L21 0.7052 0.6464 0.3496 0.5698 0.7574 0.6651
CD_L22 0.7554 0.7355 0.3557 0.6295 0.7941 0.6744
CD_L11 0.7251 0.7041 0.6978 0.6220 0.7735 0.6833
CD_L12 0.7794 0.7785 0.6447 0.6884 0.7810 0.7024
CD_KL1 0.7176 0.7516 0.7394 0.6289 0.7755 0.7087
CD_HD1 0.7383 0.7482 0.7168 0.6459 0.7853 0.7178
CD_KL2 0.7706 0.7826 0.7292 0.6853 0.8097 0.7405
CD_HD2 0.8212 0.8173 0.6930 0.7369 0.8221 0.7612
WMD 0.8447 0.8456 0.8488 0.8531 0.7638 0.7414

• The correlation decreases as the level of noise in the graphs increases.

The observed values are generally low which indicates that for artificial graphs, community-aware features
are difficult to predict given classical graph features. The highest correlation value for WMD is not surprising
since, in general, it correlates with the degree centrality.

For empirical graphs, in Table 5 we observe slightly higher correlation values than for synthetic networks
but the ordering of correlation values is similar to the previous results. Higher correlation values indicate
that the community structure of empirical graphs is related to other structural characteristics, as opposed to
synthetic ABCD+o graphs. Nevertheless, the correlation values are not too close to 1 anyway, so they are
not entirely predictable from classical features. In particular, for the Grid graph, the correlation values are
similar to artificial graphs (slightly above 0.2 for single-community measures).

In summary, the results confirm that the information encapsulated in community-aware measures cannot
be recovered with high precision using classical features (even including embeddings). In the following
experiments, we investigate if this extra information is useful for the node classification task.

15

4.4.2 One-way Predictive Power

For the next experiment, for each graph each feature was considered individually as the only predictor except
the two embeddings (node2vec and struc2vec) for which 16 dimensional vectors were taken as sets used to
predict features.

With a 70/30 train-test split of the data (stratified by class labels since in some cases, the target feature is
significantly unbalanced), a random forest model was built and two measures of predictive power are reported
below: the area under the ROC curve (AUC, computed using roc_auc_score function in scikit-learn) and
the average precision score (APS, computed using average_precision_score function in scikit-learn). Both
measures were computed for a binary target node attribute as described in column “target description” in
Table 1 for real graphs and the outlier marker for the ABCD+o graphs. We report two scores, since classes
in the selected datasets are unbalanced. Indeed, in such cases the commonly used AUC measure might not
provide enough insight and APS could be a better measure to pay attention to. As a robustness check, we
tried other prediction models (xgboost, lightgbm, regularized logistic regression) and obtained similar results
(not reported in the paper but available on GitHub repository).

Results and Observations

Results of the experiments are reported in Figures 2 and 3 for each individual feature used as predictor. Since
for node2vec and struc2vec node embeddings all 16 dimensions are considered, we should expect better
predictive power of such features and so better results. Similarly, as discussed in Section 3.2, WMD and CPC
are often considered together so we additionally consider 2-dimensional vectors consisting of these measures
(WMD+CPC) as an input. Both APS and AUC measures are reported. They are generally similar but not in all
cases. In particular, we observe the largest difference for the Grid graph, which has the most imbalanced
target variable.

For the ABCD+o graphs reported in Figure 2, the results indicate that community-aware features
outperform classical features by a large margin for all levels of noise present in these synthetic networks.

For the empirical graphs reported in Figure 3, the results are more varied. For some graphs such as
Facebook, LastFM, Reddit, and Twitch, the embeddings perform the best. However, in all cases the
community-aware features are among the top scoring features and, in general, they score better than classical
features excluding embeddings. Recall that embeddings have the advantage that they are 16-dimensional
while the community-aware features are just (1-dimensional) real numbers. As a result, embeddings are able
to encapsulate more information about nodes and so they are expected to potentially be able to score higher.
It is also worth noting that CAS typically performs much better than CADA and CADA*, which indicates that
taking into account the expected distribution of neighbours across communities based on the null-model gives
additional and valuable information.

In summary, the one-way analysis confirms the usefulness of community-aware features both in synthetic
as well as empirical graphs. This finding is consistent with the next computational experiment.

16

Figure 2: Results of one-way predictive power assessment of considered node features for ABCD+o graphs

17

Figure 3: Results of one-way predictive power assessment of considered node features for empirical graphs

18

4.4.3 Combined Variable Importance for Prediction

The third experiment (combined variable importance for prediction) provides yet another way to verify the
usefulness of community-aware features for node classification task. For each graph we take the same target
as in the one-way predictive power experiment, but this time we build a single model that takes into account
all community-aware as well as all classical features (including both embeddings) as explanatory variables.
A random forest classifier was built. For each variable, we computed its importance using the permutation
approach described in [8, 15]. The variable importance was computed for each feature using APS as a target
predictive measure.

As in the previous experiments, a 70/30 train-test split was used. We report the ranking of variable
importance (rank 1 being the most important one) so that the values are comparable across all graphs
investigated in this experiment. The raw importance scores have different ranges for various graphs.

Results and Observations

The results are presented in Tables 6 and 7 for synthetic graphs and, respectively, empirical ones. The ranks
range between 1 and 53 (with rank 1 being the best), since there are 53 features in total (13 community-aware,
8 classical, 16 for node2vec, and 16 for struc2vec). The rows are sorted by the arithmetic mean of rank
correlations across all graphs. We added the APS and AUC of the models used to derive the variable
importance.

The observations are consistent with the results of the one-way predictive power experiment:

• For ABCD+o graphs, the community-aware features perform better than classical features, and CAS is
better than CADA/CADA*, which again shows that considering a null-model distribution of edges across
communities is informative.

• For empirical graphs the situation is more interesting. For one of them (namely, the Facebook graph), no
community-aware measure appears in the top-10. It should be noted though, as can be seen in Figure 3,
that both node2vec and struc2vec embeddings provide almost perfect prediction for this graph. On the
other hand, for the Grid graph, community-aware features are important (3 of them are in the top-10).
In general, the community-aware features that score high for at least one graph are: CAS, CD_L22, WMD,
CD_L12, CD_HD2, CD_HD1, and CD_KL1. In particular, we see that the second-neighbourhood measures
are well represented. This indicates that looking at the community structure of larger ego-nets of
nodes is useful for empirical graphs. This was not the case for synthetic ABCD+o graphs as their
generation structure is simpler than the more sophisticated mechanisms that lead to network formation
of empirical social networks.

5 Concluding Remarks
In summary, community-aware features are useful for prediction of labels of nodes. We confirmed this
hypothesis on synthetic graphs in which community-aware features clearly outperformed other classical node
features. For the experiments on empirical graphs, it is important to highlight that we did not hand pick
graphs for which the community-aware features would work well, but rather defined a priori criteria for graph
selection. In this way, we believe that what is reported is a fair assessment of how community-aware features
are expected to perform in practice. In the experiments on empirical graphs, community-aware features were
not always the most important ones (but sometimes they were). In particular, as expected, node embeddings
performed well. Nevertheless, we are convinced that, given the observed predictive power of the features in
diverse empirical graphs, it is recommended to include them in predictive models. Indeed, for certain graph
structure-target variable combinations they turned out to be essential for obtaining a good predictive model.

Moreover, it should be highlighted that community-aware features have a relatively low computational
complexity compared to many classical features or node embeddings. Hence, for large graphs where other
computations may be prohibitive, community-aware features are of even more value . As an example, consider

19

Table 6: Variable importance ranks for community-aware features in models including all features as
explanatory variables for ABCD+o graphs. Values range from 1 (the best) to 53 (the worst), as well as the
APC and AUC measures of the model quality on the test datasets.

variable ξ = 0.3 ξ = 0.4 ξ = 0.5 ξ = 0.6
CAS 1 1 1 1
CD_L22 6 16 7 18
CD_KL1 12 7 10 15
CADA 5 2 3 2
CD_L21 4 3 5 5
WMD 7 6 6 4
CADA* 3 4 2 6
CPC 2 5 4 3
CD_L12 9 18 12 28
CD_KL2 8 9 9 42
CD_L11 14 12 35 14
CD_HD2 10 13 15 22
CD_HD1 16 11 33 40
APS 0.9883 0.9791 0.8743 0.5348
AUC 0.9979 0.9934 0.962 0.8522

Table 7: Variable importance ranks for community-aware features in models including all features as
explanatory variables for empirical graphs. Values range from 1 (the best) to 53 (the worst), as well as the
APC and AUC measures of the model quality on the test datasets.

variable Amazon Facebook Grid LastFM Reddit Twitch
CAS 16 17 6 6 40 15
CD_KL1 18 20 14 9 30 5
WMD 49 25 1 8 31 12
CD_L21 19 32 11 29 25 26
CADA 26 33 22 15 33 25
CPC 39 30 24 17 26 20
CD_L22 25 28 3 11 49 31
CADA* 37 34 26 14 50 24
CD_HD1 23 23 17 27 8 10
CD_L12 24 53 20 7 4 34
CD_L11 14 22 18 45 27 21
CD_KL2 15 31 27 42 28 41
CD_HD2 9 52 46 38 32 38
APS 0.2395 0.9585 0.0475 0.8863 0.0883 0.6469
AUC 0.7375 0.9832 0.6814 0.9679 0.6805 0.6823

20

the Facebook graph for which community-aware features performed relatively poorly. However, if this graph
were much larger making it challenging to compute node2vec or struc2vec embeddings for it, Figure 3
indicates that the next best features were CAS and some distribution-based community-aware features.

Another important and desired property of community-aware features is that they are easily interpretable.
After building a predictive model, the analyst can more easily explain what indeed could be the underlying
reason for the prediction. For example, for some prediction problems being a strong member of a community
might be a positive information, while in other cases it could be the opposite. This explainability can be
contrasted with embeddings that, although often having strong predictive power, do not help the user to
understand the underlying reasons for the predictions.

Finally, let us note that the new measures proposed in this paper (that is, CAS and distribution-based
ones), in general, performed better than community-aware features proposed earlier in the literature (namely,
CADA, CPC, WMD). This shows that looking at how strongly a given node is a member of a community over
what could be predicted by the null-model (that is, if the node is adjacent to randomly generated edges) is,
indeed, an attractive approach that can be recommended to be used in practice.

References
[1] Reda Alhajj and Jon Rokne. Encyclopedia of Social Network Analysis and Mining, 2nd ed. Springer,

2018.

[2] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani. The architecture of complex weighted
networks. Proceedings of National Academy of Sciences, 101(11):3747–3752, 2004.

[3] Alex Bavelas. Communication patterns in task-oriented groups. The Journal of the Acoustical Society of
America, 22(6):725–730, 1950.

[4] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node classification in social networks. Social
network data analytics, pages 115–148, 2011.

[5] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008,
2008.

[6] Béla Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs.
European Journal of Combinatorics, 1(4):311–316, 1980.

[7] P. Bonacich and P. Lloyd. Eigenvector-like measures of centrality for asymmetric relations. Social
Networks, 23:191–201, 2001.

[8] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. doi:10.1023/A:1010933404324.

[9] F. Buckley and F. Harary. Distance in graphs (Vol. 2). Addison-Wesley, 1990.

[10] Fan Chung Graham and Linyuan Lu. Complex graphs and networks. Number 107 in CBMS Regional
Conference Series in Mathematics. American Mathematical Soc., 2006.

[11] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006. URL: https://igraph.org.

[12] Imre Csiszár. I-divergence geometry of probability distributions and minimization problems. The annals
of probability, pages 146–158, 1975.

[13] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In Proceedings of the 29th ACM
International Conference on Information and Knowledge Management (CIKM’20), 2020.

21

https://doi.org/10.1023/A:1010933404324
https://igraph.org

[14] Lukas Faber, Yifan Lu, and Roger Wattenhofer. Should graph neural networks use features, edges, or
both?, 2021. arXiv:2103.06857.

[15] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong, but many are useful:
Learning a variable’s importance by studying an entire class of prediction models simultaneously, 2019.
arXiv:1801.01489.

[16] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010.

[17] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection. Proceedings of the
national academy of sciences, 104(1):36–41, 2007.

[18] Linton C. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35–41, 1977.
URL: http://www.jstor.org/stable/3033543.

[19] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. In International conference on machine learning, pages 1263–1272.
PMLR, 2017.

[20] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. CoRR,
abs/1607.00653, 2016. URL: http://arxiv.org/abs/1607.00653, arXiv:1607.00653.

[21] Roger Guimera and Luís A Nunes Amaral. Functional cartography of complex metabolic networks.
nature, 433(7028):895–900, 2005.

[22] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of
statistical learning: data mining, inference, and prediction, volume 2. Springer, 2009.

[23] Thomas J. Helling, Jan C. Scholtes, and Frank W. Takes. A community-aware approach for identifying
node anomalies in complex networks. In International Workshop on Complex Networks & Their
Applications, 2018.

[24] Thomas J Helling, Johannes C Scholtes, and Frank W Takes. A community-aware approach for identifying
node anomalies in complex networks. In Complex Networks and Their Applications VII: Volume 1
Proceedings The 7th International Conference on Complex Networks and Their Applications COMPLEX
NETWORKS 2018 7, pages 244–255. Springer, 2019.

[25] Ernst Hellinger. Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen.
Journal für die reine und angewandte Mathematik, 1909(136):210–271, 1909.

[26] Bogumił Kamiński, Łukasz Kraiński, Paweł Prałat, and François Théberge. A multi-purposed unsu-
pervised framework for comparing embeddings of undirected and directed graphs. Network Science,
10(4):323–346, 2022.

[27] Bogumił Kamiński, Tomasz Olczak, Bartosz Pankratz, Paweł Prałat, and François Théberge. Properties
and performance of the abcde random graph model with community structure. Big Data Research,
30:100348, 2022.

[28] Bogumił Kamiński, Bartosz Pankratz, Paweł Prałat, and François Théberge. Modularity of the abcd
random graph model with community structure. Journal of Complex Networks, 10(6):cnac050, 2022.

[29] Bogumił Kamiński, Paweł Prałat, and François Théberge. An unsupervised framework for comparing
graph embeddings. Journal of Complex Networks, 8(5):cnz043, 2020.

[30] Bogumił Kamiński, Paweł Prałat, and François Théberge. Artificial benchmark for community detection
(abcd)—fast random graph model with community structure. Network Science, pages 1–26, 2021.

22

https://arxiv.org/abs/2103.06857
https://arxiv.org/abs/1801.01489
http://www.jstor.org/stable/3033543
http://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1607.00653

[31] Bogumił Kamiński, Paweł Prałat, and François Théberge. Mining Complex Networks. Chapman and
Hall/CRC, 2021.

[32] Bogumił Kamiński, Paweł Prałat, and François Théberge. Artificial benchmark for community detection
with outliers (abcd+o). Applied Network Science, 8(1):25, 2023.

[33] Bogumił Kamiński, Paweł Prałat, and François Théberge. Hypergraph artificial benchmark for community
detection (h-abcd). Journal of Complex Networks, 11(4):cnad028, 2023.

[34] Bogumił Kamiński, Paweł Prałat, François Théberge, and Sebastian Zając. Classification supported
by community-aware node features. In Proceedings of the 12th International Conference on Complex
Networks and Their Applications COMPLEX NETWORKS 2023, pages 133–145. Springer, 2024.

[35] Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43, 1953.

[36] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in temporal
interaction networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 1269–1278, 2019.

[37] Renaud Lambiotte and M Schaub. Modularity and dynamics on complex networks. Cambridge University
Press, 2021.

[38] Andrea Lancichinetti and Santo Fortunato. Benchmarks for testing community detection algorithms on
directed and weighted graphs with overlapping communities. Physical Review E, 80(1):016118, 2009.

[39] Andrea Lancichinetti and Santo Fortunato. Limits of modularity maximization in community detection.
Physical Review E, 84(6), dec 2011. URL: https://doi.org/10.1103%2Fphysreve.84.066122, doi:
10.1103/physreve.84.066122.

[40] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing community
detection algorithms. Physical review E, 78(4):046110, 2008.

[41] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino, Jiliang Tang, and Huan
Liu. Feature selection: A data perspective. ACM computing surveys (CSUR), 50(6):1–45, 2017.

[42] Carsten Matke, Wided Medjroubi, and David Kleinhans. SciGRID - An Open Source Reference Model
for the European Transmission Network (v0.2), Jul 2016. URL: http://www.scigrid.de.

[43] Stan Matwin, Aristides Milios, Paweł Prałat, Amilcar Soares, and François Théberge. Generative methods
for social media analysis. SpringerBriefs in Computer Science, Springer, 2023.

[44] Karl Mosler. Data depth, pages 105–131. Springer New York, New York, NY, 2002. doi:10.1007/
978-1-4613-0045-8_4.

[45] Mark EJ Newman and Michelle Girvan. Finding and evaluating community structure in networks.
Physical review E, 69(2):026113, 2004.

[46] Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community detection. Physical Review
E, 74(1), jul 2006. URL: https://doi.org/10.1103%2Fphysreve.74.016110, doi:10.1103/physreve.
74.016110.

[47] Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo. Struc2vec: Learning node
representations from structural identity. Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 385–394, 2017. doi:10.1145/3097983.3098061.

[48] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal of
Complex Networks, 9(2):cnab014, 2021.

23

https://doi.org/10.1103%2Fphysreve.84.066122
https://doi.org/10.1103/physreve.84.066122
https://doi.org/10.1103/physreve.84.066122
http://www.scigrid.de
https://doi.org/10.1007/978-1-4613-0045-8_4
https://doi.org/10.1007/978-1-4613-0045-8_4
https://doi.org/10.1103%2Fphysreve.74.016110
https://doi.org/10.1103/physreve.74.016110
https://doi.org/10.1103/physreve.74.016110
https://doi.org/10.1145/3097983.3098061

[49] Benedek Rozemberczki and Rik Sarkar. Characteristic Functions on Graphs: Birds of a Feather, from
Statistical Descriptors to Parametric Models. In Proceedings of the 29th ACM International Conference
on Information and Knowledge Management (CIKM ’20), page 1325–1334. ACM, 2020.

[50] Benedek Rozemberczki and Rik Sarkar. Twitch gamers: a dataset for evaluating proximity preserving
and structural role-based node embeddings, 2021. arXiv:2101.03091.

[51] Jiliang Tang, Salem Alelyani, and Huan Liu. Feature selection for classification: A review. Data
classification: Algorithms and applications, page 37, 2014.

[52] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden: guaranteeing
well-connected communities. Scientific reports, 9(1):5233, 2019.

[53] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
393:440–442, 1988.

[54] Nicholas C Wormald et al. Models of random regular graphs. London Mathematical Society Lecture
Note Series, pages 239–298, 1999.

[55] J. Xiang, X.G. Hu, X.Y. Zhang, J.F. Fan, X.L. Zeng, G.Y. Fu, K. Deng, and K. Hu. Multi-resolution
modularity methods and their limitations in community detection. The European Physical Journal B,
85(352), 2012. URL: https://doi.org/10.1140/epjb/e2012-30301-2.

[56] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery & data mining, pages 974–983, 2018.

[57] Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal of
anthropological research, pages 452–473, 1977.

24

https://arxiv.org/abs/2101.03091
https://doi.org/10.1140/epjb/e2012-30301-2

	Introduction
	Using Null Models to Understand Community Structure
	Modularity Function

	Community-Aware Node Features
	Anomaly Score CADA
	Normalized Within-module Degree and Participation Coefficient
	Community Association Strength
	Distribution-Based Measures

	Experiments
	Graphs Used
	Synthetic ABCD+o Graphs
	Empirical Graphs

	Node Features Investigated
	Time complexity
	Results of the experiments
	Information Overlap
	One-way Predictive Power
	Combined Variable Importance for Prediction

	Concluding Remarks

