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Abstract. This paper investigates the influence of market design, mar-
ket size, and trading network structure on market efficiency and trade
participation rate. The study considers two market designs: Zero Intel-
ligence Traders (ZIT) in Chamberlin’s bilateral haggling market and a
greedy matching of traders on a network. Sellers and buyers are embed-
ded in a random bipartite graph with varying network densities, and
markets vary in size from 20 to 2000 traders.
Simulations reveal that greedy matching generally leads to more efficient
allocations than ZIT trading networks. By increasing the average degree
of a trading network from 1 to 5 or 10, market efficiency can be sig-
nificantly improved for both market designs, achieving 89% and 95% of
maximum efficiency, respectively. The study also contradicts the common
belief that larger markets are better, as no significant impact of market
size was found. We discuss the policy implications of these results.

Keywords: Zero-Intelligence Traders · bilateral exchange · market ef-
ficiency · Hungarian Algorithm · greedy matching algorithm · network
science · agent-based simulation (ABM) · bipartite graph

1 Research Objective and Paper Structure

The primary objective of this research paper is to evaluate the collective impact
of market design, market size, and trading network structure on market efficiency
and trade participation rate. The research problems are identified in Section 2.
The paper embarks on a comparative analysis of two distinct market designs
described in detail in Section 3: the Zero Intelligence Traders (ZIT) model in
Chamberlin’s bilateral haggling market defined and characterized in Section 3.1
and a model based on the greedy matching of traders on a random bipartite
graph discussed in Section 3.2. This preliminary investigation aims to shed light
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on complex interplay between all three above factors of market design, market
size and trading network structure, and their implications for market perfor-
mance and trader engagement presented respectively in Sections 4.1 and 4.2.
Recommendations for policy makers can be found in Section 4.1. The final con-
clusions, along with the limitations of the research and directions for future
research, are discussed in Section 5.

2 Definition of Research Problem and its Motivation

The objective of this section is to delineate the research gaps and formulate
pertinent questions, derived from the literature review presented in this section
and the subsequent Section 3. These questions will be partially addressed in
Section 4.

Studies on bilateral trading, typically employing experimental or simulation
methods, have demonstrated a varied degree of market efficiency dependent on
market designs. These range from approximately 70% of market efficiency for
Chamberlin’s Bilateral Haggling Market, as shown in the experimental stud-
ies of [2,3], to 90% or more of market efficiency for the double auction market
mechanism. This high efficiency was demonstrated experimentally in [20,21] and
through simulation methods in [8]. Both mechanisms operate under the assump-
tion that traders can interact with everyone else. Although in practice, traders
may only interact with a few other traders, the theoretical possibility of univer-
sal interaction exists. In real-world scenarios, we typically do not have access to
everyone and must limit ourselves to a group of friends or acquainted traders.
This observation underscores the importance of social networks in trading, as
discussed in [10,6].

Given the observation that most of social interactions happen between a
limited group of friends or acquainted traders, see [9,10], suggests that a natural
extension of models proposed in the literature would be to embed traders in a
social network and assess how this feature of real-world phenomena would impact
key metrics of such markets, i.e. market efficiency and trade participation. To
achieve this objective, authors of this contribution propose the following research
agenda of traders on networks that is depicted in Figure 1.

Figure 1 summaries what has been already established in the literature and
what is still missing, i.e. constitutes a research gap, and what potential direction
of further research can be. This agenda is intended to investigate two drivers of
market efficiency:

– market design, i.e. how specific market mechanisms, e.g. Chamberlin’s hig-
gling market [2,3], greedy matching, Hungarian algorithm [5,6,19], perfect
competition [16,22], impact the market efficiency and trade participation,

– social network structure, i.e. how network structure, e.g. its density, size,
clustering [6,10,17], impact key market outcomes.

Two directions of intervention can be investigated separately or as a whole,
but still one would like to decompose the final effect into the effect of market
design and the effect of network structure.
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Fig. 1: Potential research agenda of traders on networks
Source: Own work

The market design dimension can be thought as a sequence of market de-
signs starting from the most demanding in terms of information load and in-
telligence power of social planner like perfect competition design or Hungarian
Algorithm [5,6,19] through less intelligent such as greedy matching defined in
8 in Section 3, to more emergent and bottom-up designs not requiring a social
planner like in Chamberlin’s higgling market [2,3].

The network structure dimension should be thought as network changes of
two natures: (1) binary type, i.e. weather possible interactions form the complete
graph or not, (2) continuous type, i.e. change in other network characteristics,
e.g. size, density, clustering.

The existing literature is primarily focusing on scenarios that do not involve
networks, which, to be more precise, is equivalent to the complete graph sce-
nario, for most basic economics model, e.g. perfect competition model [16,22]. For
Chamberlin’s higgling market, there are established experiment result, see [3],
and very preliminary simulation results in [2] presented in no systematic way.
Establishing a simulation or even analytical properties of Chamberlin’s higgling
market is an identified research gap, denoted by the point 1 in Figure 1, al-
though this point can be, of course, more broadly comprehended. Moreover,
embedding Chamberlin’s market traders in a social network and assessing net-
work impact is another research gap, denoted by point 3 in Figure 1. Changing
Chamberlin’s market design on network into more intelligent market design of
greedy matching on network and assessing its impact on the market is another
research gap, denoted by point 2 in Figure 1. All those three research gaps will
be addressed, to some limited extent, in the Section 4 of simulated results. More
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thorough analysis including analytical solutions, other market designs, e.g. Dou-
ble Auction [8,20,21] and more realistic network structures is the matter of future
research.

3 Market Designs on Complete and Sparse Bipartite
Graphs

The aim of this section is to delineate three distinct market designs that will
be scrutinized in Section 4. These include the benchmark perfect competition
model, Chamberlin’s higgling market (detailed in Section 3.1), and the greedy
matching approach (elucidated in Section 3.2). Furthermore, fundamental con-
cepts pertinent to market design, such as social welfare, market efficiency, and
bipartite graphs, will be systematically introduced in Subsections 3.1 and 3.2.

3.1 Chamberlin’s higgling market vs. perfect competition model

This subsection defines Chamberlin’s higgling market design [3], introduces con-
cepts of social welfare, market efficiency, and the ZIT model for use in Section 4.
It also evaluates this design using literature on human subject experiments and
simulations in comparison to the perfect competition model.

Economics experiments on human subjects. Unlike natural sciences, eco-
nomics and social sciences are ill-suited for laboratory experiments on economic
systems due to prohibitive costs [7]. Economists often resort to abstract and
mathematical models for experimentation [12,15]. While macroeconomic exper-
iments are prohibitive, microeconomic experiments have a track record [4,11].

Chamberlin in [3] discusses an experiment where students are divided into
sellers (S) and buyers (B). Assume that we have n ∈ N agents of each type.
Each seller i had a good to sell at a minimum price Si (this value is sellers cost),
and each buyer j wanted to buy a good at a maximum price Bj (this value
is buyers willingness to pay). To simplify further derivations, assume that all
values of Si and Bj are unique. Students negotiated transaction prices pij such
that Si ≤ pij ≤ Bj . This ensured non-negative profits (πi) and consumer surplus
(CSj), as well as non-negative value added from a transaction (i, j) (SW , we
also use the term social welfare to refer to this value):

πi = pij − Si ≥ 0,

CSj = Bj − pij ≥ 0,

SW ({(i, j)}) = πi + CSj = Bj − Si ≥ 0.

Additionally, if multiple transactions take place on the market, then they are
denoted as a set T of (i, j) tuples. The social welfare from all transactions in T
is defined as follows:
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Definition 1. We define social welfare as:

SW(T ) =
∑
t∈T

SW ({t})

and scaled social welfare as an average over n agents of each type:

SSW(T ) = SW(T )/n.

Having defined Bj and Si, we can specify a demand function as x(p) = |{j :
Bj ≥ p}|, i.e. the number of buyers willing to buy a good at price p, as well
as a supply function y(p) = |{i : Si ≤ p}|, i.e. the number of sellers willing to
sell at price p. Clearly, x(p) is a non-increasing function of p whereas y(p) is
non-decreasing. The perfect competition model defines the equilibrium price set
P ∗ = {p : x(p) = y(p)}. Note that this set is always non-empty as we assumed
that all Si and Bj are distinct. To simplify notation, without affecting further
results, we pick one element p∗ ∈ P ∗ and call it an equilibrium price. The equi-
librium volume is defined as x∗ = x(p∗) = y(p∗) [22]. Chamberlin constructed
demand and supply functions from Bj and Si respectively and calculated the
equilibrium price and volume. Chamberlin’s experiments showed that students
“traded too much”, with actual sales volume and price diverging from equilib-
rium predictions. This was due to the engagement of extramarginal traders in
transactions.

Definition 2 (Intramarginal and extramarginal traders). The set of in-
tramarginal sellers is defined as {i : Si ≤ p∗}, while the set of intramarginal
buyers is defined as {j : Bj ≥ p∗}. Traders not meeting these conditions are
extramarginal.

While increased trading volume may seem beneficial, the goal for market
designers should be to maximize the total social welfare SW(T ) from all trades
T that took place on the market. Market efficiency is the ratio of the achieved
social welfare to the maximum social welfare:

Definition 3 (Market efficiency).

Eff(T ) =
SW(T )

maxT ′ SW(T ′)
,

where the maximum in the denominator is taken over all possible trade sets T ′

that could take place on the market.

Markets with efficiency lower than 100% are called inefficient.
A few relevant properties are presented below to show the relationship be-

tween social welfare, market efficiency, prices, and volume. The first observation
is that social welfare is independent of prices since social welfare is driven by the
pairs of sellers and buyers engaged in transactions, but not particular transac-
tion prices. Note that the transaction price does not enter the formula for social



6 N. Arnosti et al.

welfare. Next, a well-known economic result is that the equilibrium price denoted
as p∗ implies maximum social welfare, see [22]. However, price equilibrium is not
a necessary condition for the maximum social welfare, as the maximum social
welfare is achieved if and only if all intramarginal traders are trading and nobody
else. Still, equilibrium volume is a necessary, although not sufficient, condition
for maximum social welfare. Since according of trading among intramarginal
pairs of sellers and buyers is a necessary condition for maximum social welfare,
so is the number of intramarginal pairs of sellers and buyers, which is fixed and
equal to the equilibrium volume. As a direct consequence of the above property,
one can conclude that trading more than the equilibrium volume destroys social
welfare since the equilibrium volume is the necessary condition for the maximum
social welfare.

Chamberlain’s results [3] showed that excess transactions involving extra-
marginal trades result in efficiency loss. This inefficiency, due to “too much
trading”, will be further explored in the next subsection.

Simulation of Zero-Intelligence Traders. The above results of loss efficiency
had been already reached by Chamberlin in 1933 in his seminal book of The
Theory of Monopolistic Competition [2], when he was among the first economists
to do the following following simulation manually:

Definition 4 (ZIT’s Chamberlin bilateral higgling simulation).
Initiate T - the set of trades made so far - to ∅.
Repeat:

1. sample the random pair (i∗, j∗) of: (a) a seller i∗ ∈ {i : ∀j(i, j) /∈ T} and
(b) a buyer j∗ ∈ {j : ∀i(i, j) /∈ T} such that neither of them has traded,

2. make the pair (i∗, j∗) trade, if Si∗ ≤ Bj∗ ,
3. if the pair (i∗, j∗) traded, than update the set: T ← T ∪ {(i∗, j∗)}

until no further trade is possible, i.e. mini:∀j(i,j)/∈T Si > maxj:∀i(i,j)/∈T Bj .

In this paper, the decision-making behaviour described in Definition 4, in which
there is no bargaining and a transaction takes place as soon as it satisfies a neces-
sary condition of Si ≤ Bj , is called Zero-Intelligence Traders (ZIT). The name
was coined in [8], in which ZIT simulation was employed to evaluate another
market design called Double Auction. Experimental evaluation of this market
design is reported in [20].

In our study, we will conduct an actual computer simulation for which the
above simulation defined in 4 is a special case, since our general model will as-
sume a non-complete bipartite graph of traders. For simulation purposes we will
assume that both consumers’ willingness to pay and sellers’ costs are following
identical independent uniform distributions, i.e. Si, Bj are distributed as iid ran-
dom variables taken from U(0, 1). For this specification, it is easy to show that
the maximum social welfare as number of traders n→∞ is n/4(1 + o(1)) with
trades taking part for p∗ = 1/2 + o(1).
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The maximum social welfare of n/4 (after ignoring the error term of o(n))
will serve as the benchmark for the evaluation of market designs and market
structures considered in this and next sections. The market efficiency will mea-
sure the social welfare of a particular market design and structure in the relation
to the value of maximum welfare.

Below we demonstrate that the market design of Chamberlin’s bilateral hig-
gling, as specified in Definition 4, is inefficient, as its market efficiency for iden-
tical uniform distributions of willingness to pay and costs as well as number of
traders n→∞ is approximately 73.6%, i.e. approximately 26.4% of value is not
achieved.

To show this, we use the following heuristic argument. Let us define the
function X : R+ × [0, 1]→ [0, 1] by the following differential equation:

∂

∂t
X(t, v) = −X(t, v)

∫ 1−v

0

X(t, z) dz,

X(0, v) = 1 for v ∈ [0, 1].

X(t, v) denotes the probability that at time t, a seller (or a buyer) with value v
(or 1− v, respectively) has not yet traded. At the beginning of the process, i.e.
t = 0, all traders (v ∈ [0, 1]) have not yet traded (X(0, v) = 1). Instantaneous
decrease of this probability, i.e. ∂

∂tX(t, v), is proportional to the amount of sellers
who have not yet traded, i.e. X(t, v), and the amount of buyers who have not

yet traded and would be willing to do so, i.e.
∫ 1−v

0
X(t, z) dz.

By monotonicity, it is clear that X̄(v) = limt→∞ X(t, v) exists. X̄(v) gives
the limiting probability (as n → ∞) that a seller with value v does not trade,
which is also the probability that a buyer with value 1− v does not trade. The
total fraction of participants who trade is given by:

TP = 1−
∫ 1

0

X̄(v) dv.

∫ 1

0
X̄(v) dv denotes the average non-participation fraction (averaged over all

traders with v distributed uniformly), so TP is the average market participation.
The total scaled social welfare SSW is:

SSW =

∫ 1

0

v(1− X̄(1− v))dv −
∫ 1

0

v(1− X̄(v))dv

=

∫ 1

0

(1− v)(1− X̄(v))dv −
∫ 1

0

v(1− X̄(v))dv

=

∫ 1

0

(1− 2v)(1− X̄(v))dv.

(1)

The last expression denotes the integral of the difference between inverse demand
and supply functions, i.e. (1 − v) − v = 1 − 2v, weighted by the participation
rate (1− X̄(v)).
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It seems that X̄(v) = 0 for v ≤ 1
2 , and X̄(v) ≥ 2v − 1 for v ≥ 1

2 (the actual
function has some curvature on the interval [1/2, 1]). The intuition is that all
intramarginal traders, both sellers and buyers, as defined in Definition 2, do
engage in trading, i.e. X̄(v) = 0 for v ≤ 1

2 . However, we see that also some
extramarginal traders do trade, i.e. X̄(v) ≥ 2v−1 for v ≥ 1

2 . From these bounds

we get that SSW ≥
∫ 1

0
max(2v − 1, 0)2 dv = 1/6, whereas the maximum SW is

1/4.
According to a numerical calculation, it turns out that T̄ ≈ 0.71 (71% of

participants trade), and SSW ≈ 0.184, which is approximately 73.6% of the
maximum social welfare, which constitutes the market efficiency. Conducted sim-
ulations for n = 1,000 in Section 4 confirm this asymptotic argument.

As mentioned above, the trade participation, i.e. fraction of traders engaged
in a transaction, is approximately 71%, instead of 50% as it would be in the
efficient situation. This 71% can be decomposed among:

– 50% are intramarginal traders,
– remaining ≈ 21% are extramarginal traders, i.e. sellers {i : Si > 1

2} and
buyers {j : Bj <

1
2} resulting in “too much trading” and inefficiency.

As a further potential research question would it be interesting to generalize
above two propositions and specify conditions regarding the class of demand and
supply functions, for which those qualitative and quantitative properties hold.

3.2 Greedy matching of traders on network

The aim of this subsection is to introduce another market design for a bilateral
exchange, i.e. greedy matching of traders, in order to compare it to Chamberlin’s
higgling market from the previous subsection, Subsection 3.1. The performance
of greedy matching algorithm is reported in Section 4.

Greedy matching of traders on a complete graph. Given a significant
efficiency loss in Chamberlin’s higgling market design discussed in Subsection 3.1,
there is a need to come up with another market design, which would result in
an efficiency gain and make it closer to perfect competition model’s outcomes.
Such mechanism would require so called social planner who would know traders’
evaluations, i.e. Bj and Si and would match traders according to a specified
algorithm, resulting in a higher social welfare than in Chamberlin’s higgling
market. One such algorithm is defined below:

Definition 5 (Greedy algorithm for traders’ matching).

1. sort sellers in non-decreasing order of Si,
2. sort buyers in non-increasing order of Bj,
3. match greedily until Bj < Si.

This is an efficient algorithm of a linear complexity with regard to the number
of traders resulting in the maximum social welfare, provided that each pair of
traders (i, j) can trade with each other.
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Greedy matching of traders on a non-complete bipartite graph. An
interesting extension of the algorithm in Definition 5 is to imagine that traders
are embedded onto a random (in particular, non-complete) bipartite graph, see
Definition 7. As a result, they cannot trade with everybody, as it would be
the case for the complete bipartite graph, see Definition 6, but only with those
traders with whom they have a connection to, i.e. there is an edge between them.

Definition 6 (Complete bipartite graph). Complete bipartite graph G =
(V,Ecomplete) is the pair of:

1. the set of vertices V = B ∪ S such that B ∩ S = ∅, i.e. the union of non-
overlapping sets of buyers and sellers,

2. the set of all possible connections (edges) between sellers and buyers , i.e.
Ecomplete = {(i, j) : j ∈ B, i ∈ S} = S ×B.

Definition 7 (Random bipartite graph with probability p). Random bi-
partite graph with probability p ∈ [0, 1] is defined as G = (V,Ep), i.e. the pair
of:

1. the set of vertices V = B ∪ S such that B ∩ S = ∅, i.e. the union of non-
overlapping sets of buyers and sellers,

2. the set of connections (edges) between sellers and buyers, which is constructed
in a way that for each pair of nodes (i, j) ∈ Ecomplete, we independently
introduce an edge (i, j) in Ep with probability p.

Here is the extension of the algorithm defined in 5 to work in non-complete
setting.

Definition 8 (Greedy matching of traders on network).

1. Initiate the set of trades T to ∅,
2. for each edge (i∗, j∗) ∈ Ep calculate the value SW ({(i∗, j∗)}) = Bj∗ − Sj∗ ,
3. sort the pairs (i∗, j∗) of sellers and buyers with respect to SW ({(i∗, j∗)}), in

a non-increasing order,
4. iterate over sorted pairs (i∗, j∗):

(a) if neither of them has traded, i.e. i∗ ∈ {i : ∀j(i, j) /∈ T} and j∗ ∈ {j :
∀i(i, j) /∈ T} as well as Si ≤ Bj then make the pair (i∗, j∗) trade and
update the set: T ← T ∪ {(i∗, j∗)}

until no further trade is possible, i.e. Si∗ > Bj∗ .

Since the most time consuming part of the aforementioned algorithm is sort-
ing the n2p pairs of sellers and buyers, the computational complexity of the
algorithm is O(n2p log(n2p)) = O(n2p log(n)), where n denotes the total count
of both sellers and buyers. Clearly, one may implement a faster algorithm but
we do not need it for our experiments.

Greedy algorithm defined in 8 does not guarantee to find a global optimum
and maximise the social welfare for a given bipartite graph, unless a graph is
complete, as stated before. However, the global optimum can be achieved by
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Hungarian algorithm [6] which is much more costly numerically and prohibitive
for large bipartite graphs, so it will not be evaluated in this paper. The perfor-
mance of the algorithm from Definition 8 is reported in Section 4.

Below, we provide a comprehensive summary of various market designs. We
focus on four designs in particular, two of which are compared in the results
section, and two others that are worth mentioning:

– Chamberlin’s Bilateral Haggling ZIT market (as defined in Defini-
tion 4) serves as our benchmark model. This model is simplistic, assuming no
top-down intervention and only bottom-up emergent behaviours of traders.
It does not attribute any intelligence to traders in terms of learning, informa-
tion collection, bargaining capabilities, etc. Consequently, as demonstrated
in Section 4 and in the literature [3], this market design suffers from losses
in social welfare and market efficiency,

– The Hungarian Algorithm is designed to identify market-clearing prices
that maximize social welfare within a given bipartite graph, see [5,6,19]. This
is achieved by enabling a regulator to dictate the trading partners. Despite its
advantages, the algorithm is characterized by high computational complexity
of O(n3).

– Greedy Matching (as defined in Definition 8) is our proposed efficient
heuristic algorithm. It stands between the two extremes in terms of both
computational requirements and resulting market efficiency. Similar to the
Hungarian Algorithm, it assumes a market regulator making top-down de-
cisions about who trades with whom. As presented in Section 4, greedy
matching exhibits high market efficiency.

– Double Auction should be positioned between ZIT’s Chamberlin bilateral
haggling and our greedy matching algorithm. It allows for some local infor-
mation exchange, but not to the global extent as in our greedy algorithm.
It assumes bottom-up trader behaviour with the institution of public price
quoting, facilitating information exchange. High efficiency of this market de-
sign for complete bipartite graphs has been demonstrated in [8,20], but there
is still no evidence in the literature for sparse bipartite graphs.

4 Simulation Results

This section is dedicated to addressing the research gaps identified and outlined
in the research agenda depicted in Figure 1. Specifically, it will showcase ex-
ploratory simulation results, with a focus on two fundamental characteristics of
markets:

1. market efficiency (Subsection 4.1),
2. trade participation (Subsection 4.2).

Those two metrics will be differentiated based on three main drivers: average
degree of trading network, market design and network size. The presented out-
comes of market efficiency and trade participation are calculated as the average
out of 1000 simulations.
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For each simulation, traders are embedded in a newly-generated graph. Since
traders are of two types, either seller or buyer, and there is no value from connec-
tions within sellers or within buyers as they can make transaction only between
(not within) them, it is natural to employ bipartite graph to model interactions
between agents, see [6,14]. In this study, random bipartite graph is generated
according to the definition 7.

The Julia code employed for this simulation experiment is available at GitHub4.

4.1 Market efficiency drivers

Figure 2 demonstrates how the market efficiency depends on:

– average degree of bipartite graph, i.e. average number of acquainted traders,
with whom an average trader is connected to, np ∈ [0.01, 1000],

– market design algorithm of decision making, either Zero-Intelligence Traders
or greedy matching of traders,

– market size, i.e. the number of sellers and buyers, n ∈ {10, 100, 1000}.

In the following subsections we describe the impact of each of these drivers
separately based on Figure 2.

Average degree of trading network. Average degree is the expected average
number of acquainted traders (= np), but it is also a partial measure of network
density, i.e. p, the probability of edge existence. Based on Figure 2a, the average
degree comes as the major driver of market efficiency. The basic observation is
that the larger the average degree, the higher market efficiency for both market
design decision mechanisms of ZIT and the greedy matching of traders regardless
of the number of traders.

The impact of average degree on market efficiency is not constant, but most
significant for degrees between 0.1 and 10, accounting for approximately 90%
of the change. This is evident from the steepest ascent of curves in Figure 2b.
Degrees less than 0.1 or greater than 10 have minimal effect on market efficiency.
An average degree of 5 and 10 achieves roughly 89% and 95% of potential market
efficiency5, respectively. This suggests that moderately dense markets with only
5 or 10 acquainted traders can achieve high potential market efficiency, which has
significant implications for policy makers and market designers. From a traders’
perspective, they should aim to have at least 5 acquainted traders to achieve
roughly 89% of potential profits or consumer surplus.

Market design. Two market designs are considered in Figure 2a:

– Zero-Intelligence Traders (ZIT) like in the Chamberlin’s higgling market,

4 https://github.com/Matzawisza/TradeInNetwork
5 Potential market efficiency is the maximum market efficiency in a complete graph

for a given market design, i.e., it is roughly 73.6% for ZIT and 100% for a greedy
matching of traders.

https://github.com/Matzawisza/TradeInNetwork
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– greedy matching of traders, as described in Definition 8.

The choice of market design has the enormous impact on the actual and
potential market efficiency. The choice is especially crucial for markets with the
average degree of at least 1, so nearly for all markets in practice. The market
efficiency of a greedy matching design in comparison to ZIT exhibits following
properties:

– greedy matching achieves higher market efficiency than ZIT for all (consid-
ered in simulations) values of the average degree and market sizes,

– greedy matching is able to achieve nearly 100% market efficiency, if the
trading network is dense enough, while the maximum market efficiency of
ZIT is only roughly 73.6% for a complete graph.

– the difference between greedy matching and ZIT starts widening significantly
from the average degree of 1 and continues this significant widening till 10 of
acquainted traders, when it achieves nearly the maximum difference between
two designs of roughly 26.4%.

Based on the above properties we come up with following recommendations
for policymakers, which depend on the average number of acquainted traders:

– for the average degree of at least 1, the greedy matching is strictly preferred
over ZIT market design, as the difference between the two is of significant
magnitude, i.e. at least 5 percentage points. The highest consequence of this
market design choice happens for the average degree of at least 10, where
the difference achieves nearly its maximum of 26.4%,

– for the average degree lower than 1, even though the greedy matching is
still better than ZIT, the difference between both market designs is of less
significant magnitude (although relatively it might still matter), so the choice
of any particular design is of less importance. In this case, a better policy
recommendation would be to increase the average degree of a network.

Market size. Market size denoted by parameter n seems to be a major char-
acteristics of all real-world markets. The intuition goes that the larger market
the more trading opportunities and stronger market forces push it to equilib-
rium state. Therefore, market size is one of tree parameters considered in our
simulation and its impact is depicted in Figure 2b.

The small market of 10 sellers and 10 buyers is marginally better performing
in terms of market efficiency than larger markets composed of 100 or 1000 sellers
and buyers although, the impact is of negligible size, i.e. maximum recorded
difference is 3.6% between n = 10 and n = 100 for average degree of 10. The
further increase of market size from 100 and 1000 does not decrease to the same
degree the market efficiency (the maximum difference is 0.6% for the average
degree of 75).

The difference of market efficiency due to market size is more pronounced
although still negligible for:
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– ZIT (the maximum within difference of 3.6%) rather than greedy matching
(the maximum within difference of 1.9%) market design,

– the average degree between 1 and 10 (the maximum difference within this
range is 3.6% for the average degree of 10) rather than outside this range
(the maximum difference outside this range is 1.6% for the average degree
of 0.8).

4.2 Trade participation drivers

Trade participation, i.e. the total volume of transactions out of all possible trans-
actions, is another metrics of interest to both researchers and policy makers. As
discussed in Subsection 3.1, the equilibrium volume is a necessary condition for
the market efficiency of 100%. For the parametrization of our simulation, the
equilibrium volume is equivalent to the trade participation of 50%. Hence, trad-
ing above or below this level will imply no market efficiency. The dependence
of trade participation on: (1) the average degree of trading network, (2) market
design algorithm of decision making, and (3) market size is depicted in Figure 3
and discussed in following subsections.

Average degree of trading network. Impact of the average degree of trading
network on trade participation is positive, as indicated in Figure 3a, although
the impact is not constant, but resembles logistic shape relationship.

For low values of the average degrees, up to 1, the participation is increasing
from roughly 0.5% for the average degree of 0.01 till roughly 30% of trade partic-
ipation for the average degree of 1 for the market design of either ZIT or greedy
matching. The low trade participation is due to the sparse trading network with
many traders having no connections to other traders and not being able to make
any transactions. Also, those traders who have 1 or a few more connections (but
not many) might find themselves unable to make a trade, if neither of possi-
ble trading pair can generate a social welfare-improving transaction. Hence, the
probability of trading is low.

For medium values of average degrees between 1 and 10, the trade partici-
pation is increasing further and achieving completely (for greedy matching) or
nearly (for ZIT) its maximum level at average degree of 10. However, this max-
imum level of participation is different for each market designs, which will be
discussed in the next subsection.

For large values of the average degrees, higher than 10, the ZIT market design
still grow to achieve its maximum level of roughly 71%, while greedy matching
is stable at the level of 50%.

The average degree can be as low as 2.5% to achieve 87.2% of maximum
participation market rate for greedy matching and only 5 acquainted traders for
achieving 97.5% of maximum trade participation.

Market design algorithm of decision making. Market design choice is a
major driver of the trade participation, especially for the average degree higher
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than 10, see Figure 3a. For the average degree lower than 1 both considered
market designs do not differ in terms of trading participation. The difference
starts widening from the average degree of roughly 1 on and achieves nearly its
maximum discrepancy at and above 10 of acquainted traders, which is 21%.

The greedy matching algorithm achieves optimal participation rate of 50%
at the average degree of 7.5%. The ZIT design, as we know already, results in
“too much trading” and the trade participation of roughly 71% for more dense
networks of 100 trading partners for each trader.

Market size. Analogously as for market efficiency, also here the market size is
of negligible impact, see Figure 3b. The largest impact of market size is noticed
when comparing ZIT designs of 10 and 100 traders. It turns out that smaller
market exhibits higher trade participation of 2.2%.

5 Conclusions and Further Research

This paper investigated the effects of market design, market size, and trading
network structure on market efficiency and trade participation rate. Two market
designs were considered: Zero-Intelligence Traders (ZIT) in Chamberlin’s bilat-
eral higgling market and a greedy matching of traders. Both sellers and buyers
were embedded in a random bipartite graph with varying network density. Mar-
ket sizes ranged from 20 to 2000 traders.

Simulations showed that greedy matching outperforms ZIT for non-sparse
trading networks. Market efficiency can be significantly improved for both mar-
ket designs by increasing the average degree of trading networking from 1 to 5 or
10, enabling greedy matching to achieve 89% and 95% of its maximum efficiency,
respectively. Contrary to popular belief, market size had no significant impact.

Our model, presented in this paper, offers a simplified representation of
traders in a bipartite random graph. However, it is important to acknowledge
that real-world scenarios are often more intricate and dynamic. Our model does
not incorporate several features observed in real-world markets, such as the
qualities of ties among traders, e.g. strong or weak ties, degree distribution of
bipartite graphs exhibiting power-law distributions, phenomena such as “rich get
richer”, communities, assortativity, homophily, aversion, and the dynamic nature
of such markets. These elements introduce complexities that our model may not
fully capture. Despite these limitations, the authors conjecture—though not ex-
plicitly proven or demonstrated—is that the inclusion of these more realistic
network features would primarily impact the quantitative results of our model,
while leaving the qualitative outcomes relatively stable. This conjecture is based
on fact that the qualitative results are usually more robust than quantitative
ones. However, it is crucial to interpret these results within the context of these
inherent complexities and limitations. Further research is needed to validate this
assumption and to quantify the potential impact of these real-world features on
our model’s outcomes.
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Our conducted simulations served as a tool to pinpoint intriguing issues. We
are now shifting our focus towards proving theorems about the processes that
were simulated. Looking ahead, our research will aim to evaluate the possibility
of obtaining analytical results for some manageable models of network, market
design, and decision process, offering a contrast to simulation results. This future
work will provide a more rigorous understanding of the systems under study.
Besides that, the conducted study did not fully exploit the research agenda
outlined in Figure 1. Future investigations could include:

– Enriching the network structure beyond a random bipartite graph to exhibit
more realistic features of real-world networks, such as “rich get richer” [1],
“birds of a feather flock together”, “six degrees of separation”, and small-
world property [23] or with community structure [18,13],

– Evaluating the impact of network structure on Double Auction design.
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