
Network Embedding Exploration Tool (NEExT)

Ashkan Dehghan1, Paweł Prałat1, and François Théberge2

1 Department of Mathematics, Toronto Metropolitan University, Toronto, ON,
Canada {ashkan.dehghan,pralat}@torontomu.ca

2 Tutte Institute for Mathematics and Computing, Ottawa, ON, Canada
theberge@ieee.org

Abstract. In this paper, we introduce NEExT(Network Embedding
Exploration Tool) for embedding collections of graphs via user-defined
node features. The advantages of the framework are twofold: (i) the abil-
ity to easily define your own interpretable node-based features in view of
the task at hand, and (ii) fast embedding of graphs provided by the Vec-
torizers library. In this exploratory work, we demonstrate the usefulness
of NEExT on collections of synthetic and real-world graphs.

1 Introduction

Many real-world as well as artificial systems and processes can be represented
as graphs. Such systems include social networks, financial transactions, supply
chains and molecular structures, to name a few. In many cases, one needs to
consider a collection of related graphs, whether they are the result of multi-
ple systems (e.g., different proteins) or are produced by a dynamic process of
the same network (e.g., evolution of a social network, graphs induced by dif-
ferent communities, or ego-nets around various nodes). A significant challenge
in most scenarios is the absence of ground-truth labels for graphs and nodes,
and therefore one needs to use unsupervised techniques to study various prop-
erties of such networks. To address these challenges, we introduce an Network
Embedding Exploration Tool (NEExT)3, which can be used to analyze collec-
tion of graphs in an unsupervised fashion.

Node embedding is a transformation of nodes of a network into a set of
vectors [1]. Due to their spectacular successes in various applications, they are
becoming increasingly popular in the ML community. There are over 100 algo-
rithms available to use and frameworks to evaluate them (such as [8]). Indepen-
dently, many analytic tasks (such as classification, clustering, and regression)
in various domains, including social networks, cybersecurity, bio- and chemo-
informatics, require representing graphs as fixed-length feature vectors [1]. For
example, embeddings of graphs representing program’s calls could be used to de-
tect malware [18], embeddings of graphs representing chemical compounds could
be used to predict properties of the associated compounds such as solubility and
anti-cancer activity [25, 19].
3 https://pypi.org/project/NEExT/

2 Ashkan Dehghan, Paweł Prałat, and François Théberge

Historically, graph kernels were considered to be a standard way to deal
with the above graph analytics tasks. In this approach, the similarity (kernel
value) between pairs of graphs is computed by recursively decomposing them
into simpler substructures (such as random walks, shortest paths, graphlets)
and defining similarity (kernel) between these substructures. After that, some
standard kernel methods, such as Support Vector Machines (SVMs), can be used
to classify or cluster graphs. Note that many algorithms of this nature do not
explicitly produce graph embeddings and so they cannot be immediately used
for general ML tasks.

To overcome this limitation, another powerful technique was introduced re-
cently in the literature [22, 16]. We start with extracting features of nodes of
a graph G via some node embedding algorithm. Such cloud of n points, corre-
sponding to vectors of features of n nodes of G, can be easily normalized so that
it can be viewed as the probability distribution on a metric space equipped with
a distance, such as the Euclidean distance. Then, the Wasserstein distance can
be used to measure the distance between two graphs by computing the distance
between the two corresponding probability distributions. The Wasserstein dis-
tance is a metric and is linked to the optimal transport problem [23] which aims
to find an optimal way to transport the probability mass associated with one
graph to the one associated with another one. This distance is sometimes re-
ferred to as the earth mover’s distance since in 2-dimensional case one can think
of it as moving piles of dirt. Finally, some algorithm is used to embed graphs
into k-dimensional space of vectors such that the Wasserstein distance between
graphs matches the distance between the corresponding vectors as much as pos-
sible. In this paper, we introduce a framework that builds on ideas from [22, 16].
On top of providing an efficient and user-friendly exploratory networks analysis
tool, our main contribution can be summarized as follows.

– The framework not only utilizes a number of standard classical and structural
node embeddings but allows to include hand-crafted, user-defined feature
vectors that, for example, measure the distribution of power (by including
Pagerank or some other centrality measures) or expansion of ego-nets around
nodes. This approach has a few immediate benefits: it is much faster to
compute such features than embed all nodes, the results are interpretable
and more robust.

– The framework utilizes various techniques and metrics for approximating
the distances between graphs such as Wasserstein distance and Sinkhorn
algorithms, in addition to a computationally efficient approximate Wasser-
stein vectorization approach. These tools are available and maintained in the
Vectorizers package.

– For supervised learning (when labels for graphs are available), the framework
selects (in an automated way) a subset of available node features and appro-
priately normalizes them for the best outcome of a given ML supervised task
at hand such as classification or regression. (Work in progress, not discussed
in this proceeding version of the paper.)

Network Embedding Exploration Tool (NEExT) 3

2 The Framework

Consider a collection of graphs G1, G2, . . . , Gm. Our approach follows the fol-
lowing steps (details are provided in the following subsections):

1. Pre-process the collection of graphs.
2. For each graph Gi with ni nodes, build k-dimensional vector representations

for all the nodes.
3. Given m collections of k-dimensional vectors, one collection for each graph,

compute d-dimensional embedding of the graphs via either the Wasserstein,
Sinkhorn, or ApproximateWasserstein distance.

Note: In the following description, individual components of the graph col-
lection (Gis), will be referred to as subgraphs.

2.1 Pre-processing

In the pre-processing layer, NEExT loads each subgraph into a GraphCollec-
tion object, assigning to each subgraph appropriate details such as graph labels,
graph statistics, etc. In this layer, we can also filter each subgraph for its largest
connected component.

2.2 Vectorizing the Nodes

Several methods to obtain vector representations for the nodes of each graph
are available in the framework. However, one advantage of NEExT is that it is
easy to add other vector representations for the nodes, which can be interpretable
and designed specifically for the types of graphs one wants to analyze and down-
stream Machine Learning task using the generated graph embedding. It can also
be used to easily test various families of node-based features in order to select
suitable ones. In the final implementation of NEExT (work in progress), if labels
are available for some graphs, then such selection can be done in a supervised
way. Node features can be computed recursively up to some maximum value k
(resulting a k dimensional feature vector) by averaging its values for neighbours
up to j hops away for 1 ≤ j ≤ k. Moreover, features can be concatenated to
obtained even higher dimensional representations.

LSME. One of the built-in structural embedding algorithms is called Local
Signature Matrix Embedding (LSME). This technique uses a random-walk
algorithm to capture local structural properties of nodes. The algorithm results in
a k-dimensional vector, where each element measures the transition probability
between various neighbourhoods around a given node4.

Centrality measures. We compute various commonly used centrality mea-
sures such as PageRank, Closeness Centrality, Degree Centrality, and
4 https://github.com/ashdehghan/LSME

4 Ashkan Dehghan, Paweł Prałat, and François Théberge

Eigenvector Centrality. Details for those measures can be found in, for ex-
ample, [11].

Expansion properties. For each node v, let m̂i be the number of neighbours at
distance i from v, for i ∈ {1, 2, . . . , k}. Our goal is to embed vertices of possibly
different degrees that expand in a similar way close to each other. Hence, we
consider the following feature vector for a node v:

E(v) =

(
m̂1

1 · d̄
,

m̂2

n1 · d̄
, . . . ,

m̂k

nk−1 · d̄

)
,

where d̄ = 1
N

∑
v∈V deg(v) = 2|E|

N is the average degree. For good expanders,
one would get a collection of vectors that are close to (1, 1, . . . , 1).

2.3 Embedding of the Graphs

Assume that we have a collection of graphs Gi, 1 ≤ i ≤ m, with respectively ni

nodes, and a k-dimensional vector representation for each node. Then, each graph
can be seen as a distribution of points over k-dimensional space, and we can use
some measure of distance between distributions to embed the graphs in some
vector space. One possible approach is to use the Wasserstein distance, which
is obtained by finding the optimal transport plan between distributions; this is
also known as the earth mover’s distance between distributions (i.e. measure
the amount of “work” to move mass from one distribution to the other); see, for
example, [22]. Embedding graphs this way is similar to the context of document
embedding5, where each word is represented by a vector (obtained via some word
embedding algorithm), and each document is a “bag of word vectors”.

Given m graphs, computing all such distances requires estimating O(m2)
pairwise distances, which has a high computational cost. One solution to this
issue is to define some reference distribution (for example via averaging the vec-
tors), and find the optimal transport plan from each graph’s “bag of vectors” to
this reference distribution. This is know as linear optimal transport (LOT) [23],
which is used, for example, in [16]. We use the implementation of this approach
from the easy to use and frequently maintained Vectorizers6 Python pack-
age, which solves the LOT and computes embeddings by computing the SVD
(Singular Value Decomposition) of the optimal transport plans.

Computing the Wasserstein distances, even using a reference distribution,
can still be prohibitive for some large problems. We therefore consider two faster
methods which are also implemented in Vectorizers. The first one uses the
Sinkhorn distance which is based on entropic regularization of the transport
plans; see [5]. The other one, ApproximateWasserstein, also solves the LOT but
using a single-point reference distribution obtained via averaging, as described
in [2]. Embeddings are obtained using SVD with scaling according to the singular
values.
5 https://vectorizers.readthedocs.io
6 https://pypi.org/project/vectorizers/

Network Embedding Exploration Tool (NEExT) 5

As a rule of thumb, when k ≪ m, one can use the Wasserstein or Sinkhorn
approach while for larger k, the ApproximateWasserstein can be used for better
performance.

3 Experiments

We illustrate the use of our framework to analyse synthetic as well as real-life
networks. The goal is to explore various capabilities of the framework for both
unsupervised and supervised applications. In the first subsection, we use the
Artificial Benchmark for Community Detection (ABCD) framework [10], to
generate synthetic graphs. The ABCD framework is a random graph model
framework with community structure and power-law distribution for both de-
grees and community sizes. The goal here is to explore and highlight various
properties of our framework in a controlled environment and showcase its use
from a practitioners point of view. Therefore, we consider idealized and syn-
thetically generated cases, while considering more real-world scenarios in the
following subsection.

3.1 Synthetic Graphs

The ABCD model, an alternative approach to the LFR model [17], allows us
to generate random graphs with control over power-law distribution of both
node degrees and of community sizes, fraction of outlier nodes, noise, and other
parameters. We leverage the Julia implementation7 to generate the synthetic
graphs used in this section. However, let us mention that for generating enormous
graphs there exists a faster implementation8 available that uses multiple threads
(ABCDe) [15].

Undirected variant of LFR and ABCD produce graphs with comparable
properties but ABCD/ABCDe is faster than LFR and can be easily tuned
to allow the user to make a smooth transition between the two extremes: pure
(disjoint) communities and random graph with no community structure. More-
over, it is easier to analyze theoretically—for example, in [9, 3] various theoret-
ical asymptotic properties of the ABCD model are investigated including the
modularity function and self-similarities of the ground-truth communities. More
importantly, the model is extremely flexible and allows to include outliers [12]
(ABCD+o) or generate hypergraphs [13] (h–ABCD).

To explore various properties of our framework, we designed three experi-
ments. The parameters used in each experiment are outlined in Table 1.

Experiment 1 – Varying Level of Noise. In the first experiment, we explore
the effect of noise that is controlled by parameter ξ in the ABCD model. We
designed this experiment to mimic a dynamic property of a graph in which
7 https://github.com/bkamins/ABCDGraphGenerator.jl
8 https://github.com/tolcz/ABCDeGraphGenerator.jl/

6 Ashkan Dehghan, Paweł Prałat, and François Théberge

Parameter Experiment 1 Experiment 2 Experiment 3
n 200 {200, 250, . . . , 400} 200
γ 3 3 3
δ 5 5 5
∆ 10 10 10
β 2 2 2
c 10 10 10
C 20 20 20
ξ {0.1, 0.101, . . . , 0.9} {0.1, 0.2, . . . , 0.5} 0.2
o 0 0 (150 x 10) + (150 x 50)

Table 1: ABCD Synthetic Graph Parameters. (The number of nodes is equal to n.
The degree distribution follows power-law with exponent γ, minimum δ and maximum
∆. The distribution of community sizes follows power-law with exponent β, minimum
c and maximum C. The level of noise is controlled by ξ. Finally, the number of outliers
is equal to o. For a more in depth description of each parameter and how it is utilized,
we refer the reader to the GitHub repository.)

an incremental change in a property of a parameter in the graph results in
the change in underlying graph structure. In a real world network, this could
resemble the change in the polarization of a network in which the boundaries
between communities slowly vanish. Of course, we have to note that our synthetic
experiment is an idealized version of such system.

We construct 801 graphs, with ξ ranging from 0.1 to 0.9 in steps of 0.001. In
the ABCD model, ξ controls the fraction of edges that fall into the background
graph (almost all of these edges are between nodes from different communities).
A sample of four graphs from the 801 generated ones are shown in Figure 1. We
then use ξ values as a label for each graph to be used for a regression task. Steps
of this experiment are as follows:

– Generate a collection of graphs with varying level of noise controlled by ξ.
– Generate feature vectors of size k=2 to k=8 for each graph.
– Use the features vectors to construct graph embeddings of dimension d = 2.
– Use the graph embedding vectors as features for a regression task to predict

the ξ values for each graph.

Once the graph collection is generated and loaded into our framework, we can
compute various graph properties on each graph in the collection. For this exper-
iment, we compute the following graph features: Expansion, LSME, PageR-
ank, Closeness Centrality, Degree Centrality, and Eigenvector Cen-
trality. For each feature, we construct a k dimensional vector. For example, for
PageRank as a feature with k = 3, for each node v we calculate the PageRank
value of v as well as the average PageRank values of neighbours at distance
i from v, where i ∈ {1, 2, . . . , k − 1}. We also construct larger feature vectors

Network Embedding Exploration Tool (NEExT) 7

by concatenating the vectors from multiple features. For example, a feature vec-
tor of Expansion + LSME with k = 3 is a concatenation of a 3 dimensional
LSME feature vector and 3 dimensional Expansion feature vector, resulting
in a 6 dimensional global feature vector.

Fig. 1: Examples of graphs generated using the ABCD synthetic graph for Ex-
periment 1, as detailed in Table 1, for ξ ∈ {0.1, 0.2, 0.35, 0.8}.

Having defined the feature generation process, we construct features of lengths
k from 2 to 8 based on the above list. We then use the approximate Wasserstein
technique to embed each graph in the collection into a two dimensional embed-
ding. We chose embedding dimension d = 2, since the approximate technique
has an upper limit of k for the dimension of the embedded space and the smallest
feature vector size is of dimension k = 2. Moreover, since our graph embeddings
are used in a downstream supervised regression task, we wanted to keep the
dimensionality of the embeddings the same to standardize the comparison of the
models.

In Figure 2 we show the two dimensional embedding of graphs build using the
Expansion, LSME, and PageRank features. In all three cases, the underlying
feature vectors have length k = 5. Each data point (graph embedding) is then
coloured based on the available label (ξ). It is clear that in all three cases there
is a relation between the value of ξ and the graph embedding vector. To explore
this relationship further, we use a regression model for graph embeddings that
are built using various graph features.

Using the two dimensional graph embeddings of the graphs, we train regres-
sion models using XGBoost9 to predict the value of ξ for the unlabeled graphs.
In our experiment, the train/test split is set to 70/30 and we repeat each exper-
iment 100 times to arrive at the average mean-absolute-error and the standard
deviation over the runs, shown as error bars in Figure 3. Here, the x-axis cor-
responds to k, the length of feature vectors computed for nodes of each graph,
and different colours correspond to combination of various types of features.

We start by highlighting the fact that the overall performance of the models
increases (the mean-absolute-error decreases) as the length of the underlying
feature vectors increases. This is expected, since increase in k corresponds to a
larger window for capturing structural properties of the underlying graph. We
9 https://xgboost.readthedocs.io/en/stable/

8 Ashkan Dehghan, Paweł Prałat, and François Théberge

Fig. 2: Two dimensional graph embeddings built using the approximate Wasser-
stein technique and graph features built using the Expansion, LSME, and
PageRank metrics. The dimension for all the above node embeddings is set to
k = 5.

show that this trend continues until the length of the feature vectors reaches the
diameter of the graphs. At this length scale, the feature vectors are capturing
global structural properties of the graph. We note that the diameter for our
synthetic graphs is relatively small, since we consider graphs of size n = 200 that
are relatively good expanders. Lastly, we note that models built on combination
of features perform the best, since each feature captures a different structural
property of the graph. We note that in this experiment we are not interested
in fine-tuning the XGBoost models to achieve the best performance, but rather
to illustrate the predictive power of various graph features and associated graph
embeddings.

Fig. 3: Mean-absolute-error measured for a regression model built to predict ξ
in Experiment 1, as defined in Table 1. The x-axis is the length of the feature
vectors computed on each graph. The final graph embedding is uniformly set to
d = 2.

Network Embedding Exploration Tool (NEExT) 9

Experiment 2 – Varying Network Size. In the second experiment, we ex-
plore the ability of our framework to capture structural similarities in collections
of graphs. In real systems, it is often important to identify structurally similar
graphs, regardless of the size of the network. This is often seen in self-similar
systems, such as social networks, where particular property presents itself at
different scales [20, 3]. To study this effect, we use the ABCD model to gener-
ate structurally similar networks of various sizes. We achieve this goal by tun-
ing two parameters: the level of noise (ξ) and the number of nodes in each
graph (n). As highlighted in Table 1, we build a collection of 25 graphs with
ξ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and n ∈ {200, 250, 300, 350, 400}. As it was done in
Experiment 1, we compute node features for each graph and use the approxi-
mate Wasserstein technique to build an embedding vector for each graph. We fix
the feature vector size to k = 4 and graph embedding size to d = 4. To visualize
the final embeddings, we use UMAP10 to map the final graph embedding into
two dimensions.

Fig. 4: Two dimensional representations of the approximate Wasserstein graph
embeddings built using LSME, Closeness Centrality, and Degree Central-
ity graph features. Colours correspond to different values of noise (ξ) and the
size of the underlying graphs (n) are shown inside each data point.

In Figure 4, we show the two dimensional representations of the graph em-
beddings, coloured and annotated using ξ and n, respectively. In the first chart
(left), the underlying feature vector was computed using the LSME structural
embedding algorithm. This technique captures structural properties of nodes
within each graph. Using LSME as features, the graph embeddings captures
similarities between structural properties of each graph. This can be seen in the
final two dimension representation of the embeddings, since graphs with simi-
lar structure (ξ value, colour-coded) are clustered together. It is interesting to
observe that the quality of the clusters (tightness) decreases as the noise (ξ)
increases.

10 https://umap-learn.readthedocs.io/en/latest/

10 Ashkan Dehghan, Paweł Prałat, and François Théberge

Similar behaviour is also captured by a more simple structural feature, Close-
ness Centrality. We can see in the middle chart in Figure 4 that Closeness
Centrality also groups graphs of similar property together, but with lower
quality compared to LSME. The decrease in clustering quality as a function
of the level of noise is more evident in this case. The important observation
in these cases points at the fact that the approximate Wasserstein technique
using LSME or Closeness Centrality preserves structural properties of the
embedded graphs such as level of noise.

Experiment 3 – Outlier Detection. In this experiment, we control the frac-
tion of outlier nodes in the graph. We construct two sets of graphs. In the first
one, 5% of nodes are outliers and in the second group there are more outliers,
namely, 25%. For each group, we generate 150 graphs. It is important to note
that, since the ABCD model is a randomized graph generator, each graph in
their respective groups are different due to a random nature of the model. This
is achieved by setting different random seeds while generating the graphs.

We compute various graph features on each subgraph and use them to con-
struct graph embeddings using the approximate Wasserstein techniques. Here,
we consider 9 different sub-groups of features, as defined in Table 2. Each feature
type has a dimension of k = 4 and we combine different features by concate-
nating their feature vectors. We note that in this experiment, we train binary
classifiers using XGBoost classifier with 70/30 train/test split, and repeat each
experiment 100 times to collect enough statistics for model performance.

Model Details
M-0 Expansion
M-1 LSME
M-2 PageRank
M-3 Degree Centrality
M-4 Closeness Centrality
M-5 Eigenvector Centrality
M-6 Expansion, LSME
M-7 Expansion, LSME, PageRank
M-8 Expansion, LSME, PageRank, Degree Centrality, Closeness Centrality,

Eigenvector Centrality

Table 2: ABCD outlier classification model.

In Figure 5 we show, on the left, the performance of binary-classifiers built for
each model (M-0 to M-8) measured using accuracy and (right) a two dimensional
clustering of the graph embeddings built using M-8 features. Starting with the
right figure, it is clear that the two dimensional representations of graph embed-
ding vectors form two well separated clusters. In an unsupervised setting, one

Network Embedding Exploration Tool (NEExT) 11

could use a technique such as DBSCAN [7] to identify these two clusters, even
if the underlying classes are not known. In this experiment however, we know
that the underlying graphs are generated using random graph technique with
two outlier settings. We show the fraction of outliers for each group as different
colours in this figure.

Next, we analyze the performance of binary classifiers trained on graph em-
bedding vectors built using different combinations of feature vectors (Table 2).
In Figure 5 (left), we show the model accuracy for each feature set. Focusing on
single feature models (M-0 to M-5), we can see that graph embeddings built on
top of Closeness Centrality (M-4) perform the best, while models built us-
ing Eigenvector Centrality (M-5) perform poorly. It is also worth mentioning
that Expansion (M-0), an easy and fast to compute node feature, does very
well. The predictive power of Closeness Centrality as a node feature comes
from the fact that outlier nodes are, on average, closer to other nodes in the net-
work, since they do not belong to any of the communities but rather randomly
connected to the entire network. Therefore, this can be a distinctive factor for
graphs with higher number of outlier nodes.

Fig. 5: Left: Accuracy of binary-classifiers built for models M-0 to M-8. Right:
two dimensional representation of graph embedding vectors built using features
in M-8.

Lastly, we consider composite models, where embeddings are generated from
a combination of feature vectors. In Figure 5 (left), models M-6, M-7, and M-8
are composite models (as defined in Table 2). For each one these models, we
run two sets of experiments. One in which we do not apply any dimensionality
reduction to the composite feature vectors, before passing them to the graph
embedding layer. And, another where we apply dimensionality reduction using
UMAP, to reduce the dimension of the composite feature vector to k = 4. We can
see that in all three cases, dimensionality reduction does not have a significant
effect on the performance of the models. One thing worth highlighting is that
the composite model (M-8) built using all features with k = 4 performs the best.

12 Ashkan Dehghan, Paweł Prałat, and François Théberge

This hints at the fact that one could capture a wide variety of features in the
feature computation layer, then reducing the feature space using a technique
such as UMAP to allow for a better performance of a given machine learning
model at hand.

3.2 Real-World Networks

In this section, we explore the performance of our framework on a collection of
real-world networks. This collection was acquired from the Benchmark Data Set
provided by the department of computer science of TU Dortmund11. A summary
of networks used for our experiments are provided in Table 3. Here, we consider
five real-world networks (IMDB [25], MUTAG [6], NCI1 [24], BZR [21],
and PROTEINS [4]) with various sizes and source, which have sub-networks
that can be categorized into two classes. Therefore, a natural type of analysis
would be to investigate the performance of binary-classifiers trained on graph
embeddings generated by NEExT. In our analysis, we use the performance
of publicity available models as a benchmark for comparing NEExT to other
techniques. In this exploratory stage of our project, the goal is not to seek the
best performing model at all cost, but rather provide a framework that can
easily create models with reasonable performance compared to state-of-the-art
techniques, while keeping model explainability. Moreover, note that some models
are trained on additional metadata available for nodes as well es edges. We do not
do it at present but it would be easy to incorporate such additional information
in our model. It is expected that after appropriate selection of node features and
fine-tuning the model, the accuracy of the corresponding models should increase.

Name # of Graphs # of Classes Avg. # of Nodes/Edges
IMDB 1000 2 19.77/96.53

MUTAG 188 2 17.93/19.79
NCI1 4110 2 29.87/32.30
BZR 405 2 35.75/38.36

PROTEINS 1113 2 39.06/72.82

Table 3: Summary of Real-World Networks.

In our experiments on the real-networks listed in Table 3, we build d = 24
dimensional graph embeddings using the approximate Wasserstein technique on
top of k = 24 dimensional feature vectors computed on each sub-network. Here,
we use 4-dimensional concatenated LSME, Expansion, Degree Centrality,
Closeness Centrality, Load Centrality, and Eigenvector Centrality as
our feature vectors. We then train the XGBoost binary classifier on top of the

11 https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

Network Embedding Exploration Tool (NEExT) 13

d = 24 dimensional graph embedding feature vectors. Similarly to the approach
taken before, we keep a 70/30 train/test split, and repeat each experiment 100
times to build the statistics for our model performance. Lastly, we point out that
we do not balance the datasets in our models, to allow the classifiers to capture
statistical imbalances in the underlying data distribution.

Fig. 6: Accuracy of models built using NEExT framework (blue) and publicly
available models (red), for various real-world networks. The performance of other
models is collected from leaderboard chart available on-line.

Name Accuracy Precision Recall F1-Score LB Accuracy

IMDB 0.70+−0.02 0.71+−0.03 0.69+−0.04 0.69+−0.02 0.52-0.96
MUTAG 0.81+−0.05 0.70+−0.08 0.70+−0.08 0.69+−0.08 0.58-1.00

NCI1 0.83+−0.01 0.85+−0.02 0.79+−0.01 0.82+−0.01 0.64-0.88
BZR 0.83+−0.03 0.85+−0.03 0.95+−0.02 0.90+−0.02 0.87

PROTEINS 0.66+−0.02 0.59+−0.05 0.47+−0.04 0.52+−0.03 0.70-0.85

Table 4: Summary of Real-World Networks Classification Results. Here, LB Ac-
curacy refers to the range of accuracy of the models from the leaderboard.

In Figure 6 and Table 4, we show the performance of classifiers trained using
NEExT and benchmark models collected from leaderboard chart available on-
line12. Note that the LB accuracies are shown as the range of accuracies from
various models submited for each dataset. We see that the accuracy of models

12 https://paperswithcode.com/task/graph-classification

14 Ashkan Dehghan, Paweł Prałat, and François Théberge

built using NEExT is similar to other models, even without performing any
fine-tuning of our models.

4 Conclusion

In this paper, we introduce NEExT, the Network Embedding Exploration Tool
and show that it can be easily used for feature engineering toward embedding
of graphs. This is the beginning of a larger project but the initial experiments
we performed so far, some of them reported in this paper, are positive and
encouraging to do more work in this space. Here are some natural next steps
that we plan to do in the near future.

– Include and test more of our own, carefully designed and explainable, node
features. In particular, based on our own personal interests and applications
in mind, we plan to add various community-aware node features [14].

– Include more classical node features (such as other centrality measures,
degree-degree correlations) and node embeddings (especially structural node
embeddings).

– Design and implement an algorithm that automatically selects features and
normalizes them in an supervised process, provided that labels for graphs
are available.

– Do a grand study comparison with the state-of-the-art methods for graph
classification tasks (comparing both the quality of generated embeddings as
well as speed). Analyze which types of node features work best for graphs
from various domains (explainability).

– Design and implement sampling method which might be useful to embed a
large collection of large networks.

References

1. Aggarwal, M., Murty, M.N.: Machine learning in social networks: embedding nodes,
edges, communities, and graphs. Springer Nature (2020)

2. Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence
embeddings. In: International Conference on Learning Representations (2017)

3. Barrett, J., Kamiński, B., Pankratz, B., Prałat, P., Théberge, F.: Self-similarity of
communities of the abcd model. preprint, arXiv (2023)

4. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J.,
Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics
21(suppl_1), i47–i56 (2005)

5. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In:
Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Ad-
vances in Neural Information Processing Systems. vol. 26. Curran Associates, Inc.
(2013)

6. Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Han-
sch, C.: Structure-activity relationship of mutagenic aromatic and heteroaromatic
nitro compounds. correlation with molecular orbital energies and hydrophobicity.
Journal of medicinal chemistry 34(2), 786–797 (1991)

Network Embedding Exploration Tool (NEExT) 15

7. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: kdd. vol. 96, pp.
226–231 (1996)

8. Kamiński, B., Kraiński, Ł., Prałat, P., Théberge, F.: A multi-purposed unsuper-
vised framework for comparing embeddings of undirected and directed graphs.
Network Science 10(4), 323–346 (2022)

9. Kamiński, B., Pankratz, B., Prałat, P., Théberge, F.: Modularity of the abcd ran-
dom graph model with community structure. Journal of Complex Networks 10(6),
cnac050 (2022)

10. Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detec-
tion (abcd)—fast random graph model with community structure. Network Science
9(2), 153–178 (2021)

11. Kamiński, B., Prałat, P., Théberge, F.: Mining Complex Networks. CRC Press
(2022)

12. Kamiński, B., Prałat, P., Théberge, F.: Artificial benchmark for community detec-
tion with outliers (abcd+o). Applied Network Science 8(1), 25 (2023)

13. Kamiński, B., Prałat, P., Théberge, F.: Hypergraph artificial benchmark for com-
munity detection (h–abcd). Journal of Complex Networks 11(4), cnad028 (2023)

14. Kamiński, B., Prałat, P., Théberge, F., Zajac, S.: Predicting properties of nodes
via community-aware features. arXiv preprint 2311.04730 (2023), doi.org/10.
48550/arXiv.2311.04730

15. Kamiński, B., Olczak, T., Pankratz, B., Prałat, P., Théberge, F.: Properties and
performance of the abcde random graph model with community structure. Big
Data Research 30, 100348 (2022)

16. Kolouri, S., Naderializadeh, N., Rohde, G.K., Hoffmann, H.: Wasserstein embed-
ding for graph learning. In: International Conference on Learning Representations
(2021)

17. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Physical review E 78(4), 046110 (2008)

18. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y., Saminathan, S.: sub-
graph2vec: Learning distributed representations of rooted sub-graphs from large
graphs. arXiv preprint arXiv:1606.08928 (2016)

19. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal,
S.: graph2vec: Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005 (2017)

20. Song, C., Havlin, S., Makse, H.A.: Self-similarity of complex networks. Nature
433(7024), 392–395 (2005)

21. Sutherland, J.J., O’brien, L.A., Weaver, D.F.: Spline-fitting with a genetic al-
gorithm: A method for developing classification structure- activity relationships.
Journal of chemical information and computer sciences 43(6), 1906–1915 (2003)

22. Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., Borgwardt, K.: Wasserstein
weisfeiler-lehman graph kernels. Advances in neural information processing systems
32 (2019)

23. Villani, C., et al.: Optimal transport: old and new, vol. 338. Springer (2009)
24. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical

compound retrieval and classification. Knowledge and Information Systems 14,
347–375 (2008)

25. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and data mining.
pp. 1365–1374 (2015)

