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Abstract

We investigate two types of query games played on a graph, pair queries and edge queries. We
concentrate on investigating the two associated graph parameters for binomial random graphs,
and showing that determining any of the two parameters is NP-hard for bounded degree graphs.

1 Introduction

Consider a query game played on a graph whose goal is to locate a vertex v∗ that is unknown to an
adaptive query algorithm. Each query points to a pair of vertices u and v, and the reply provides an
answer that indicates which of those vertices is closer to v∗, breaking ties arbitrarily. The aim is
to construct an algorithm performing as few queries as possible in the worst case. In this work we
consider two types of queries: edge queries in which u and v need to be adjacent and pair queries in
which there is no restriction on the choice of u and v. The latter have not been considered in the
literature before while the former have been extensively studied but only for trees. We note that
both models generalize the classical binary search on a path to arbitrary graphs.

The game is formally defined in Subsection 1.1. Our results are summarized in Subsection 1.3
and previously known results are highlighted in Subsection 1.4. We provide three types of results.
First, we reformulate the problem of finding an invisible target in the language of combinatorial game
theory in which two perfect players play the game having complete information (Subsection 2.1). We
also show some universal bounds and provide a construction that shows the two graph parameters
related to edge and, respectively, pair queries can be drastically different (Subsection 2.2). Then,
we investigate the behaviour of the two parameters in binomial random graphs G(n, p) (Section 3).
For a wide range of the parameter p = p(n), the two graph parameters are predictable with high
probability and turn out to be of the same order. Finally, we show that determining any of the two
parameters is NP-hard for bounded degree graphs (Section 4).
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1.1 Problem Statement

For an arbitrary simple graph G, we consider two types of query games, which differ by the types
of allowed queries. We first define the dynamics of the game and then we define the queries. The
game is played between an (adaptive) algorithm and an adversary. The adversary picks in advance
a vertex v∗ of G, that we call the target. The target is unknown to the algorithm and its goal is
to locate v∗ by asking as few queries as possible. In each step of the game the algorithm performs
a query by selecting two vertices u and v as outlined below depending on the type of the query.
Then, the adversary reveals which of those vertices is closer to v∗, providing any of them when
their distance to the target is the same. The distance dG(u, v) between any two vertices u and v
is measured as the length of any shortest path between u and v in G. The vertex pointed by the
adversary is called the reply to the query. Note that the algorithm is adaptive in the sense that it is
making its next query based on the graph and the replies to the previous queries.

In this work we consider two types of graph queries for the game played on G. The more general
one, called a pair query, selects two arbitrary vertices u and v of G. The second one, called an edge
query, selects two adjacent vertices u and v. Let pq(G) be the least integer t such that the algorithm
can locate the target in at most t pair queries, regardless of the strategy of the adversary. The graph
parameter eq(G) is defined similarly with the only difference that the algorithm has to perform edge
queries instead. Since the latter version puts more restriction on the algorithm, for any graph G we
have pq(G) ≤ eq(G).

The above definition of the process might suggest that this is an incomplete information game
in which the target vertex is selected by one of the players (the adversary) but is hidden from the
other player (the algorithm). However, because we concentrate on the worst-case scenario (that is,
we search for the least number of queries that guarantees success, regardless where the target is
and regardless of the strategy of the adversary), we can alternatively think about this game as a
combinatorial game in which both players have perfect information. In particular, it implies that the
graph parameters pq(G) and eq(G) are well-defined. We reformulate the process in this language in
Subsection 2.1.

1.2 Notation

In this paper, we present results obtained for the binomial random graph G(n, p). More precisely,
G(n, p) is a distribution over the class of graphs with vertex set [n] := {1, . . . , n} in which every
pair {i, j} ∈

(
[n]
2

)
appears independently as an edge in G with probability p. Note that p = p(n)

may (and usually does) tend to zero as n tends to infinity. We say that G(n, p) has some property
asymptotically almost surely or a.a.s. if the probability that G(n, p) has this property tends to 1 as n
goes to infinity. For more about this model see, for example, [5, 28, 29].

Given two functions f = f(n) and g = g(n), we will write f(n) = O(g(n)) if there exists an
absolute constant c ∈ R+ such that |f(n)| ≤ c|g(n)| for all n, f(n) = Ω(g(n)) if g(n) = O(f(n)),
f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)), and we write f(n) = o(g(n)) or f(n)� g(n)
if limn→∞ f(n)/g(n) = 0. In addition, we write f(n) � g(n) if g(n) = o(f(n)) and we write
f(n) ∼ g(n) if f(n) = (1 + o(1))g(n), that is, limn→∞ f(n)/g(n) = 1.

We will use log n to denote a natural logarithm of n. For a given n ∈ N := {1, 2, . . .}, we will use
[n] to denote the set consisting of the first n natural numbers, that is, [n] := {1, 2, . . . , n}. Finally,
as typical in the field of random graphs, for expressions that clearly have to be an integer, we round
up or down but do not specify which: the choice of which does not affect the argument.
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1.3 Our Results

Let us start with presenting results for binomial random graphs. The behaviour of pq(G) and eq(G)
change drastically when the random graph changes its diameter. In order to control when this
happens, we will use the following well-known result.

Lemma 1.1 ([5], Corollary 10.12). Suppose that d = pn� log n and for some i = i(n) ∈ N,

di+1/n− 2 log n→∞ and di/n− 2 log n→ −∞.

Then the diameter of G(n, p) is equal to i+ 1 a.a.s.

This result was proved in [4, Theorem 6] for graphs with d� log3 n but in [5, Corollary 10.12]
the condition was relaxed and it is now required only that d� log n.

In order to state the results in a simple form, let us concentrate on relatively dense graphs (that
is, d > nε for some ε > 0) and values of d for which we are relatively far away from the places when
the diameter changes its value.

Corollary 1.2. Suppose that d = pn = nξ+o(1), where ξ ∈ ( 1
i+1 ,

1
i ) for some i ∈ N (i is an arbitrarily

large but fixed constant). Then, the following properties hold a.a.s. for G ∈ G(n, p).

pq(G) = Θ
(
eq(G)

)
= Θ

(
n log n

di

)
.

Note that for any ξ ∈ ( 1
i+1 ,

1
i ) there exists ε = ε(ξ) > 0 such that di/n = niξ−1+o(1) ≤ n−ε =

o(1) � log n whereas di+1/n = n(i+1)ξ−1+o(1) ≥ nε � log n. So, by Lemma 1.1, the diameter
of G(n, p) is equal to i + 1 a.a.s. More importantly, it implies that the assumptions stated in
Theorems 3.2, 3.4, and 3.5 are satisfied. The first of them yields the desired lower bound for pq(G)
whereas the last two yield upper bounds for pq(G) and, respectively, eq(G). The corollary implies
that a.a.s. both pq(G) and eq(G) are equal to nf(ξ)+o(1), where the function f(ξ) is depicted in
Figure 1.
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Figure 1: An illustration for Corollary 1.2: the function f(ξ)
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The above corollary ignores the cases when ξ = 1/i for some constant i ∈ N and very sparse
graphs (that is, when d = no(1)). The three theorems mentioned above provide some useful bounds
for these regimes but not everything is known. For example, to keep the argument relatively short,
we did not consider the cases when i = i(n) is the largest natural number such that di = o(n)
but also di+1/n − 2 log n → −∞ (say, di+1 = cn for some constant c > 0). Having said that, we
provided a short argument dealing with a rather simple case when p ∈ (0, 1) is a fixed constant.
The next corollary follows immediately from Theorem 3.7 which states an explicit upper bound and
Observation 2.1 which provides a trivial lower bound but of matching order.

Corollary 1.3. Fix p ∈ (0, 1). The following property holds a.a.s. for G = (V,E) ∈ G(n, p):

pq(G) = Θ
(
eq(G)

)
= Θ (log n) .

In terms of complexity, we prove the following result.

Theorem 1.4. Given a graph of diameter at most 3 and an integer `, deciding whether pq(G) ≤ `
or eq(G) ≤ ` is NP-complete.

1.4 Related Work

The edge query model has been studied for trees and paths as a special case. This is due to the fact
that the problem for paths is the classical binary search, where most of the focus has been on noisy
comparison models, see e.g. [3, 15, 18, 19, 24, 30]. As for the case of trees, they generalize binary
search to searching partial orders with some interesting applications e.g. in automated program
testing [2]. It turns out that eq(T ) for a tree T can be computed in linear time [37]. Interestingly,
this problem re-appeared under various different names like minimum height elimination trees [34],
LIFO-search [26], tree-depth [38], or edge ranking. Due to the latter connection, a linear-time
algorithm has been independently shown for trees in [32]. Edge queries in trees are also of interest
in applications like parallel database query processing, where one wants to find a spanning tree T of
the graph representing a database query that minimizes eq(T ) [35]. For some research on random
partial orders in this context see [11].

It is natural to further generalize edge queries to the weighted variant, where the weight of an
edge represents the duration of a query [31]. Such an extension turns out to be NP-complete for
some quite narrow subclasses of trees [13, 14, 16]. On the other hand, there has been a series of
results on approximation algorithms [13, 14, 16] with the best approximation ratio to date being
O(
√

log n) that was proved in [17]. Finally, let us mention another generalization of binary search in
linear orders to graphs [23, 19] with some interesting applications in machine learning [22].

Another related graph parameter is the the centroidal dimension of a graph [25], which may
be viewed as a variant of the well known metric dimension [27, 40] that provides less information.
Indeed, the idea is similar to the pair query model but the goal is to localize the hidden target by
just a single query (usually involving more than two vertices), minimizing the number of vertices to
probe. For the metric dimension, the reply returns a vector of distances between the target and
each of the examined vertices. On the other hand, for the centroidal variant, the reply informs
the player when the distance is zero; otherwise, for every pair of examined vertices the result of
comparison of distances is returned (that is, which vertex is closer or whether distances are equal).
Game theoretical variants of the above parameters have recently been intensively studied: the
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localization game [7, 10, 12, 39] and centroidal localization game [9]. During the game, more queries
are considered but the target can move to a neighbouring vertex between queries. The main goal is
typically to minimize the number of vertices examined in each round but the number of rounds may
also be minimized [1].

Although the query games have not yet been studied for random graphs, there are some known
results for the closely related graph parameters mentioned above. An asymptotic behaviour of
the metric dimension of dense binomial random graphs G(n, p) is obtained in [6], while for sparse,
subcritical G(n, p) and uniform random trees and forests, its asymptotic distribution is shown in [36].
The localization number for dense binomial random graphs (in particular, in the regime in which
G(n, p) has diameter two a.a.s.) was studied in [21]. The bounds for dense graphs were consecutively
improved in [20], and the arguments were extended to sparse graphs. The localization game was also
recently studied for random geometric graphs [33]. We direct the reader to the book [8] for more
graph searching games in the context of random graphs.

2 Preliminaries

2.1 Reformulation of the Process

In this subsection, we provide a reformulation of the game that will be easier to deal with when
proving our results. In particular, this reformulation will show that the process can be viewed as a
combinatorial game. Indeed, it is convenient to think about this game as the target is not selected a
priori by the adversary but rather as a process in which after a t-th query the set Vt of potential
targets is maintained by both players.

Let us denote by dG(u, v) the distance between u and v in a given graph G = (V,E). For any
pair of vertices u and v, let

C(u, v) = {x ∈ V
∣∣ dG(u, x) ≤ dG(v, x)},

that is, C(u, v) is the set of vertices that are closer to u than to v, or at the same distance from both
u and v. For a reply u to the query on u, v, we say that a vertex x is compatible with the reply if
x ∈ C(u, v).

With these definitions at hand, we may formally define Vt to be the set of vertices of G that are
compatible with each of the first t replies. In other words, each vertex from the set Vt satisfies all
inequalities associated with the first t queries and the corresponding replies. On the other hand,
no vertex from V \ Vt has this property. The game starts with V0 = V . At the beginning of round
t ∈ N, the first player (the algorithm) presents a pair of vertices (ut, vt) which partitions Vt−1, the
set of potential targets from the previous round, into three sets:

• V <
t := Vt−1 ∩ (C(ut, vt) \ C(vt, ut)), the set of vertices of Vt−1 that are closer to ut than to vt,

• V >
t := Vt−1 ∩ (C(vt, ut) \ C(ut, vt)), the set of vertices of Vt−1 that are closer to vt than to ut,

• V =
t := Vt−1 ∩ (C(ut, vt) ∩ C(vt, ut)), the set of vertices of Vt−1 that are at the same distance

from both ut and vt.

The second player (the adversary) has now two options: fix Vt = Vt−1 ∩ C(ut, vt) = V <
t ∪ V =

t (that
is, reply with vertex ut) or fix Vt = Vt−1 ∩ C(vt, ut) = V >

t ∪ V =
t (that is, reply with vertex vt). After
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making the decision, the round is over and we move to the next round. The game ends when |Vt| = 1
since the only element in Vt must be the target. With this point of view, one may think about the
adversary as also being adaptive in the sense that the goal of the adversary is to provide replies
which result in maximizing the value of t for which Vt is a singleton.

2.2 Some Basic Properties

In order to warm-up, let us start with a few simple observations highlighting some properties of the
two graph parameters we are concerned with in this paper.

Observation 2.1. For any connected graph G on n vertices,

log2 n ≤ pq(G) ≤ eq(G) ≤ n− 1.

In fact, there exists a strategy of the algorithm that in each round eliminates at least one vertex from
the search space. (This, of course, implies an upper bound of n− 1.)

Proof. The inequality pq(G) ≤ eq(G) follows immediately from the fact that pair queries are more
general than edge queries. Hence, any strategy asking edge queries can be used by more flexible
algorithm asking pair queries.

The lower bound of log2 n is due to the fact that there exists a strategy (simple and greedy) for
the adversary that guarantees that each pair query reduces the search space by at most half. Indeed,
recall that in round t ∈ N, set Vt−1 is partitioned into three sets, V <

t , V >
t , and V =

t (the partition
depends on the algorithm) and then Vt = V <

t ∪ V =
t or Vt = V >

t ∪ V =
t (the choice belongs to the

adversary). Hence, indeed, there exists a strategy for the adversary that guarantees that for each
t ∈ N we have |Vt| ≥ |Vt−1|/2. Hence, |Vt| ≥ |V0|/2t = n/2t implying that |Vt| > 1 if t < log2 n. The
lower bound holds.

To prove the upper bound of n− 1, let us present another simple strategy for the algorithm, this
time performing edge queries, that guarantees that in each round at least one vertex is eliminated
from the search space. Assume that |Vt−1| ≥ 2, and let x, y, x 6= y, be any two vertices from Vt−1.
Let (x = z0, z1, . . . zk = y) be any shortest path between x and y. The algorithm, for example, may
select vertices ut = x = z0 and vt = z1 as its edge query to eliminate x or y from the search space,
giving |Vt| ≤ |Vt−1| − 1. This finishes the proof of the observation.

The next observation shows that the two easy bounds we proved above are sharp. We leave it
as an easy exercise for the reader and only provide a hint that edge queries can mimic the binary
search on a path.

Observation 2.2. For any n ∈ N\{1}, eq(Kn) = pq(Kn) = n−1, eq(K1,n−1) = pq(K1,n−1) = n−1,
eq(Pn) = pq(Pn) = dlog2 ne.

The last observation shows that the difference between the two variants of the game may be
asymptotically as large as possible.

Observation 2.3. For any n ∈ N \ {1}, there exists a graph G on Θ(n) vertices such that eq(G) =
Ω(n) and pq(G) = O(log n).
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Proof. For a fixed n ∈ N \ {1}, let k = k(n) = blog2 nc. Let Tk be a full binary tree of height k.
(The height is measured as the length of a path from the root to any of the leaves.) We say that the
vertices at distance i from the root in Tk are at level i, i ∈ {0, . . . , k}. We denote the set of vertices
at level i by Li; in particular, Lk is the set of the leaves of Tk and L0 consists of only one vertex,
the root of Tk. It will be convenient to use Tk(x), x ∈ V (G), to denote the subtree of Tk induced by
the set consisting of x and all of its descendants in Tk.

We construct a graph G = Gk on the same vertex set as Tk (that is, V (Gk) = V (Tk)). Note that
|V (Gk)| = 2k+1 − 1, hence n ≤ |V (Gk)| < 2n. The edge set E(Gk) is defined as follows. First of all,
we join any two leaves of Tk by an edge, that is, the set Lk induces a complete graph in Gk. Then,
for any non-leaf u of Tk (that is, u ∈ V (Tk) \ Lk) we join u to all the leaves of the subtree Tk(u) of
Tk rooted at u. Note that not all edges of tree Tk are present in Gk—see Figure 2 for an example of
this construction.

Figure 2: The graph G3. The dashed edges are edges of T3 that are not present in G3.

Let us start with providing a strategy for the algorithm that proves that pq(Gk) ≤ 2k, hence
pq(Gk) = O(log n). We will distinguish two phases. During the first phase the algorithm performs k
pair queries starting from vertices that are close to the root and moving toward the leaves, each
time essentially removing one branch of Tk from the search space.

Formally, as always, the algorithm starts with V0 = V (Gk) = V (Tk) and u0 being the root of
Tk. In the first round, the algorithm queries two children of u0 that we denote by v10 and v20. By
symmetry of graph Gk, without loss of generality we may assume that the reply is v10 . Note that all
vertices in Tk(v10) are closer to v10 than to v20. The only vertex that is at the same distance from
both v10 and v20 is the root of Tk (that is, V =

1 = {u0}). Hence, the algorithm moves to the next
round with V1 = V0 ∩ C(v10, v20) = V0 \ V (Tk(v

2
0)) and we prepare ourselves for the next round by

fixing u1 = v10 . Note that V1 = V (Tk(u1)) ∪ {u0}, where {u0} is the set of ancestors of u1 in Tk. We
recursively follow the same strategy as for the first round. Suppose that at the end of round t, for
some 1 ≤ t < k, we have a vertex ut at level t identified such that Vt = V (Tk(ut)) ∪ {u0, . . . ut−1},
where ui is the ancestor of ut at level i < t. At round t+ 1, the algorithm queries two sons of ut, v1t
and v2t . As before, because of symmetry, without loss of generality we may assume that the reply is
v1t . Then, we fix ut+1 = v1t such that

Vt+1 = Vt ∩ C(v1t , v2t ) = Vt \ V (Tk(v
2
t )) = V (Tk(ut+1)) ∪ {u0, . . . ut}.
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It follows that after k pair queries, regardless of the strategy of the adversary, the algorithm learns
that the target is hidden in the set Vk = {u0, . . . , uk} where uk is some leaf of Tk, while ui for i < k
is the ancestor of uk at level i.

During the second phase, by Observation 2.1, the algorithm may eliminate at least one vertex at
a time. The target is then identified in at most k additional rounds and so the total number of pair
queries is at most 2k = O(log n).

We now move to the proof of the fact that eq(Gk) = Ω(n). In order to simplify the argument,
we assume that the algorithm is provided with some additional information, namely, that the target
is in Lk. (In other words, we start the game with V0 = Lk instead of V0 = V (Gk).) We will show
that even with this additional information, the algorithm cannot quickly identify the target.

Consider a query to an edge uu′ ∈ E(Gk). Since each edge of Gk has at least one leaf from Tk,
without loss of generality we may assume that u′ ∈ Lk. If u 6∈ Lk, then the adversary might reply
with u′ which provides no new information to the algorithm. Thus, the algorithm is forced to query
edges within the complete graph induced by Lk. However, since all vertices in Lk are at distance
one from each other, each such query eliminates at most one vertex from the search space. It follows
that the number of edge queries that is needed to identify the target is at least |Lk| − 1 = 2k− 1 ≥ n

2 .
This finishes the proof of the lower bound of eq(Gk) and so also the proof of the observation.

3 Random Graphs

Let us first state a specific instance of Chernoff’s bound that we will find often useful. Let
X ∈ Bin(n, p) be a random variable with the binomial distribution with parameters n and p. Then,
a consequence of Chernoff’s bound (see e.g. [28, Corollary 2.3]) is that

P
(
|X − E[X]| ≥ ε E[X]

)
≤ 2 exp

(
−ε

2 E[X]

3

)
(1)

for 0 < ε < 3/2. However, at some point we will need need a stochastic upper bound for X when
E[X] is small. In such situations the following bound can be applied instead of (1) (see e.g. [28,
Theorem 2.1]):

P(X ≥ E[X] + u) ≤ exp

(
− u2

2(E[X] + u/3)

)
. (2)

3.1 Lower Bound

Let us start with the following expansion properties of random graphs. For a vertex v ∈ V , let
Ni(v) and N≤i(v) =

⋃i
j=0Ni(v) denote the set of vertices at distance i from v and the set of

vertices at distance at most i from v, respectively. For any Z ⊆ V , let Ni(Z) =
⋃
v∈Z Ni(v) and

N≤i(Z) =
⋃
v∈Z N≤i(v).

Lemma 3.1. Suppose that ω log n ≤ d = pn ≤ n/ω = o(n), where ω = ω(n) is any function tending
to infinity as n→∞ such that ω ≤ log n.

Then, the following properties hold a.a.s. for G = (V,E) ∈ G(n, p).

(a) Suppose that for some i = i(n) ∈ N and Z ⊆ V with z = |Z| we have zdi = o(n). Then,

|N≤i(Z)| =
(

1 +O
(

1√
ω

)
+O

(
zdi

n

))
di|Z| ∼ di|Z|,
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and so also

|Ni(Z)| =
(

1 +O
(

1√
ω

)
+O

(
zdi

n

))
di|Z| ∼ di|Z|.

(b) Let i = i(n) ∈ N be the largest integer such that di = o(n). Let

z :=
n

di
log(di)

(
1− 1

ω1/3

)
= Θ

( n
di

log n
)
.

Then, for any Z ⊆ V with |Z| = z there are at least two vertices at distance at least i+ 1 from
Z, that is, |N≤i(Z)| ≤ n− 2.

Proof. In order to investigate the expansion property of neighbourhoods, let Z ⊆ V , z = |Z|, and
consider the random variable X = X(Z) = |N≤1(Z)|. We will bound X in a stochastic sense. There
are two things that need to be estimated: the expected value of X, and the concentration of X
around its expectation.

Since for x = o(1) we have (1− x)z = e−xz(1+O(x)) and also e−x = 1− x+O(x2), it is clear that

E[X] = n−
(

1− d

n− 1

)z
(n− z)

= n− exp

(
−dz
n

(1 +O(d/n))

)
(n− z)

= dz(1 +O(dz/n)), (3)

provided dz = o(n). It follows from Chernoff’s bound (1) applied with ε = 3/
√
ω that the expected

number of sets Z satisfying ∣∣|N≤1(Z)| − E[|N≤1(Z)|]
∣∣ > εd|Z|

is at most

2

(
n

z

)
exp

(
− ε2dz

3 + o(1)

)
≤ 2nz exp

(
−ε

2(ω log n)z

3 + o(1)

)
= 2nz exp

(
− (3 + o(1))z log n

)
= o(1),

since d ≥ ω log n. Hence the statement holds for i = 1 a.a.s.
Now, we will estimate the cardinalities of N≤i(Z) up to the i’th iterated neighbourhood, provided

zdi = o(n) and thus i = O(log n/ log log n). Suppose then that for some i ≥ 2, Y = N≤i−1(Z)
satisfies |Y | ∼ di−1z and |Y | = o(n/d). It follows from (3) and (1) (this time applied with
ε = 4d−(i−1)/2ω−1/2) that with probability at least 1− β,

|N≤1(Y )| = d|Y |
(

1 +O (d|Y |/n) +O
(
d−(i−1)/2ω−1/2

))
,

where the bounds in O() notation are uniform. The failure probability is at most

β = 2 exp

(
− ε2d|Y |

3 + o(1)

)
= 2 exp

(
− ε2diz

3 + o(1)

)
≤ exp (−5dz/ω) ≤ exp(−5z log n) ≤ n−zn−4.

As we want a result that holds a.a.s., we may assume this statement holds deterministically, since
there are only O(nz log n) choices for Z and i.
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Given this assumption, we have good bounds on the ratios of the cardinalities of N≤1(Z),
N≤1(N≤1(Z)) = N≤2(Z), and so on. Since i = O(log n/ log logn) and

√
ω ≤ (log n)1/2, the

cumulative multiplicative error term is

(1+O(dz/n) +O(1/
√
ω))

i∏
j=2

(
1 +O

(
djz/n

)
+O

(
ω−1/2d−(j−1)/2

))

= (1 +O(1/
√
ω) +O(diz/n))

i−2∏
j=5

(
1 +O

(
log−2 n

))
= (1 +O(1/

√
ω) +O(diz/n)),

and the proof of part (a) is complete.

In order to prove part (b), let us fix any set of vertices Z ⊆ V of size

|Z| = z =
n

di
log(di)

(
1− 1

ω1/3

)
,

where i = i(n) ∈ N is the largest integer such that di = o(n). Note that, by the definition of i,(
1

2
+ o(1)

)
n log n

di
≤ z ≤ n log n

di
.

Since zdi−1/n = O(log n/d) = O(ω−1), we may expose N≤i−1(Z) and based on part (a) we may
assume that

|N≤i−1(Z)| = (1 +O(ω−1/2)) zdi−1.

There are (1 +O(ω−1))n vertices outside of N≤i−1(Z). The probability that a given one of them is
not adjacent to any vertex of N≤i−1(Z) is (1− p)(1+O(ω−1/2)) zdi−1 and so the probability that all of
them belong to N≤i(Z) (that is, Ni+1(Z) = ∅) is equal to

q =
(

1− (1− p)(1+O(ω−1/2)) zdi−1
)(1+O(ω−1))n

=

(
1− exp

(
−(1 +O(ω−1/2)) zdi

n

))(1+O(ω−1))n

=

(
1− exp

(
−
(

1− 1 + o(1)

ω1/3

)
log(di)

))(1+O(ω−1))n

.

Since log(di) = Θ(log n) and ω ≤ log n, (1 + o(1)) log(di)/ω1/3 ≥ 3 log log n and so

q ≤
(
1− exp

(
− log(di) + 3 log log n

))(1+O(ω−1))n

=

(
1− log3 n

di

)(1+O(ω−1))n

= exp

(
−(1 + o(1))

n log3 n

di

)
.
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Similarly, the probability that all but exactly one vertex outside of N≤i−1(Z) belong to N≤i(Z) is
equal to

(1 + o(1))n (1− p)(1+O(ω−1/2)) zdi−1
(

1− (1− p)(1+O(ω−1/2)) zdi−1
)(1+O(ω−1))n

≤ nq ≤ exp

(
−(1 + o(1))

n log3 n

di

)
.

On the other hand, the number of sets of size z is, trivially, at most(
n

z

)
≤ nz = exp (z log n) ≤ exp

(
n log2 n

di

)
= o(nq).

We get that the expected number of sets Z ⊆ V with |Z| = z with the property that at most one
vertex is at distance at least i+ 1 from Z is equal to o(1) and so the desired property holds a.a.s. by
the first moment method. This finishes part (b) and the proof of the lemma.

Now, we are ready to prove a lower bound for pq(G).

Theorem 3.2. Suppose that ω log n ≤ d = pn ≤ n/ω = o(n), where ω = ω(n) is any function
tending to infinity as n→∞ such that ω ≤ log n. Let i = i(n) ∈ N be the largest integer such that
di = o(n). Suppose that di+1/n− 2 log n→∞.

Then, the following property holds a.a.s. for G = (V,E) ∈ G(n, p):

eq(G) ≥ pq(G) ≥ k :=
n

2di
log(di)

(
1− 1

ω1/3

)
= Ω

(
n log n

di

)
.

Proof. Note that we assumed that di+1/n− 2 log n→∞ and by definition of i we get that di/n−
2 log n→ −∞. Hence, by Lemma 1.1 we get that the diameter of G(n, p) is equal to i+ 1 a.a.s.

Typically, in order to establish lower bounds for the length of the game, one needs to show a
strategy for the second player (the adversary) and prove that this strategy guarantees that the
game is not over after k rounds. However, our “board” (random graph G(n, p)) has nice expansion
properties that guarantee that the game cannot finish earlier regardless of what the adversary does.

Suppose then that the first player (the algorithm) presents a sequence of pairs of vertices
(ut, vt)t∈[k] during the first k rounds of the game. Let

Z = {ut : t ∈ [k]} ∪ {vt : t ∈ [k]}

be the set of all vertices presented during this part of the game. Clearly, |Z| ≤ 2k. We may add
some additional vertices to Z, if needed, so that |Z| = 2k. By Lemma 3.1(b), we may assume that
there are at least two vertices (say, x and y) that are at distance at least i+ 1 from Z. Since the
diameter of G is equal to i+ 1, these two vertices are at distance exactly i+ 1 from any vertex in Z
and so, in particular, from any vertex that was presented up to this point of the game. We get that
{x, y} ⊆ V =

t for all t ∈ [k], which implies that x and y are compatible with all replies so far. As
a result, regardless of what the adversary does, {x, y} ⊆ Vk and so the game is not over yet. This
finishes the proof of the theorem.
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3.2 Upper Bounds

As usual, let us start with some useful expansion properties of random graphs.

Lemma 3.3. Suppose that ω log n ≤ d = pn ≤ n/ω = o(n), where ω = ω(n) is any function tending
to infinity as n→∞ such that ω ≤ log n. Let i = i(n) ∈ N be the largest integer such that di = o(n).
Finally, let ω̂ = ω̂(n) = min(

√
ω, n/di)→∞ as n→∞.

The following properties hold a.a.s. for G = (V,E) ∈ G(n, p). For any vertices x, y ∈ V (x 6= y)
we partition the set of vertices V into the following 4 parts:

X = Ni(x) \N≤i(y)

Y = Ni(y) \N≤i(x)

Z = V \N≤i({x, y})
R = V \ (X ∪ Y ∪ Z) = (Ni(x) ∩Ni(y)) ∪N≤i−1({x, y}).

Then, the following holds:

(a) |X| =
(
1 +O

(
ω̂−1

))
di ∼ di.

(b) |Y | =
(
1 +O

(
ω̂−1

))
di ∼ di.

(c) |Z| = n−
(
2 +O

(
ω̂−1

))
di ∼ n.

(d) |R| = O
(
ω̂−1

)
di = o(di).

Moreover, the following holds, provided that di+1/n� ω̂ log n:

(e) Each vertex in X ∪ Y ∪ Z has O
(
ω̂−1

)
di+1/n neighbours in R.

(f) Each vertex in X ∪ Z has
(
1 +O

(
ω̂−1/2

))
di+1/n ∼ di+1/n neighbours in Y .

(g) Each vertex in Y ∪ Z has
(
1 +O

(
ω̂−1/2

))
di+1/n ∼ di+1/n neighbours in X.

Proof. Parts (a)–(d) follow immediately and deterministically from Lemma 3.1(a). Since we aim for
a statement that holds a.a.s., we may assume that the property stated in Lemma 3.1(a) holds for
any set Z ⊆ V with |Z| ≤ 2:

|Ni(Z)| =

(
1 +O

(
1√
ω

)
+O

(
di

n

))
di|Z| ∼ di|Z|, (4)

|N≤i(Z)| =

(
1 +O

(
1√
ω

)
+O

(
di

n

))
di|Z| ∼ di|Z|. (5)

Now, for a given x, y ∈ V (x 6= y) we may apply (4)–(5) with Z = {x, y}, Z = {x}, and Z = {y} to
get the desired properties. This finishes the proof of parts (a)–(d).

In order to prove part (e), let us concentrate on any pair of vertices x, y ∈ V (x 6= y). We first
expose edges up to the (i− 1)th neighbourhood of {x, y}. Since we aim for a statement that holds
a.a.s., by Lemma 3.1(a) we may assume that |N≤i−1({x, y})| ∼ 2di−1 = O

(
ω̂−1

)
di. For any vertex

v /∈ N≤i−1({x, y}), let Q be the number of neighbours of v in N≤i−1({x, y}). Clearly, Q is a binomial
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random variable with expectation equal to |N≤i−1({x, y})|d/n = O
(
ω̂−1

)
di+1/n. It follows from

Chernoff’s bound (2) that

P(Q ≥ E[Q] + ω̂−1di+1/n) ≤ exp
(
−Ω

(
ω̂−1di+1/n

))
= o(1/n3),

since it is assumed that di+1/n � ω̂ log n. By the union bound over x, y, and v, we may assume
that all vertices outside of N≤i−1({x, y}) have O

(
ω̂−1

)
di+1/n neighbours in N≤i−1({x, y}).

Let us now expose edges up to the ith neighbourhood of {x, y}, which identifies sets X, Y , Z, and
R. Since we aim for a statement that holds a.a.s., we may assume that properties (a)–(d) hold. More

x y

X Y

Ni(x) ∩Ni(y)

Z

N≤i−1({x, y})

R

Figure 3: An illustration of the partition of V : X,Y, Z, and R = (Ni(x) ∩Ni(y)) ∪N≤i−1({x, y})
(grey area).

importantly, note that edges within V \N≤i−1({x, y}) = X ∪Y ∪Z ∪ (Ni(x)∩Ni(y)) are not exposed
yet—see Figure 3 for an illustration. For any v ∈ X ∪ Y ∪ Z, the expected number of neighbours
of v in Ni(x) ∩ Ni(y) is at most |R|d/n = O

(
ω̂−1

)
di+1/n. After applying Chernoff’s bound (2)

again we get that a.a.s., for all x, y, all vertices in X ∪ Y ∪ Z have O
(
ω̂−1

)
di+1/n neighbours in

Ni(x)∩Ni(y). This, together with the previous observation, implies the same bound for the number
of neighbours in R = (Ni(x) ∩Ni(y)) ∪N≤i−1({x, y}), which concludes the proof of part (e).

To prove part (f), let us expose edges up to the ith neighbourhood of {x, y} and fix any v ∈ X∪Z.
Let Q be the number of neighbours of v in Y . Clearly, E[Q] = |Y |d/n =

(
1 +O

(
ω̂−1

))
di+1/n�

ω̂ log n. The conclusion follows from Chernoff’s bound (1) (applied with ε = ω̂−1/2), since

P
(
|Q− E[Q]| ≥ ε E[Q]

)
≤ 2 exp

(
−Ω(ε2E[Q])

)
= o(1/n3).

The proof of part (g) is exactly the same. This finishes the proof of the lemma.

Let us start with a proof of an upper bound for pq(G). Of course, since pq(G) ≤ eq(G), any
upper bound for eq(G) implies the same bound for pq(G). There are two reasons why we present
them independently. First of all, the corresponding strategies for the first player (the algorithm) are
slightly different but the proofs that they are winning strategies are almost identical. We present
details for a slightly easier proof for pq(G) and then we will discuss how to adjust it to deal with
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eq(G). Moreover, the second proof requires slightly stronger assumptions for an asymptotic value of
di+1/n.

Theorem 3.4. Suppose that ω log n ≤ d = pn ≤ n/ω = o(n), where ω = ω(n) is any function
tending to infinity as n→∞ such that ω ≤ log n. Let i = i(n) ∈ N be the largest integer such that
di = o(n). Suppose that di+1/n− 2 log n→∞.

Then, the following property holds a.a.s. for G = (V,E) ∈ G(n, p):

pq(G) ≤ k := (2 + o(1))
n log n

di
= O

(
n log n

di

)
.

Proof. Note that we assumed that di+1/n− 2 log n→∞ and by definition of i we get that di/n−
2 log n→ −∞. Hence, by Lemma 1.1 we get that the diameter of G(n, p) is equal to i+ 1 a.a.s.

Let ω̂ = ω̂(n) = min(
√
ω, n/di). Clearly, ω̂ →∞ as n→∞. We say that a graph G = (V,E) is

nice if for any x, y ∈ V (x 6= y) we have

|Ni(x) \N≤i(y)| =
(
1 +O

(
ω̂−1

))
di ∼ di,

|N≤i(x) ∩N≤i(y)| = O
(
ω̂−1

)
di = o(di).

We will show that for any nice graph G, pq(G) ≤ k (deterministically). This will finish the proof
since, by Lemma 3.3(a), a.a.s. G ∈ G(n, p) is nice.

Let us then move away from random graphs and concentrate on any (deterministic) nice graph
G = (V,E) on n = |V | vertices. The first player (the algorithm) will use a randomized strategy
to play the game for the first k rounds. We will show that this strategy is a winning one with
probability at least 1/2. By the trivial probabilistic method, it will imply that there exists a winning
strategy and the bound pq(G) ≤ k will be established. To that end, it is enough to show that for any
pair of vertices x and y, regardless of what the second player (the adversary) does, the randomized
strategy eliminates at least one of them from being the target with probability at least 1 − n−2.
Formally, we need to show that

P ({x, y} ⊆ Vk) ≤ n−2 for any x, y ∈ V . (6)

Indeed, if (6) is established, then by the union bound

P(the strategy fails) = P (|Vk| ≥ 2) = P (∃x, y ∈ V : {x, y} ⊆ Vk) ≤
(
n

2

)
n−2 ≤ 1/2.

Let us now describe the randomized strategy the algorithm is going to use. Fix b > 1, an
arbitrarily large but fixed real number. The strategy consists of a log n independent phases, where
a = 2/(b− 1). Each phase will last for bn/di rounds so the total number of rounds is equal to

k = (a log n)
bn

di
=

2b

b− 1

n log n

di
.

Since 2b/(b− 1)→ 2 as b→∞, we will get the desired upper bound.
At the beginning of each phase, the algorithm generates a sequence of bn/di + 1 random vertices,

each of them selected independently and uniformly at random from V , all available vertices. During
the first round, the algorithm presents the first two vertices from the sequence. Then, in each
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consecutive round, the algorithm presents the vertex the adversary replied with in the previous
round together with the next vertex from the random sequence.

It remains to show that (6) holds. Let us fix any x, y ∈ V . We partition the set of vertices V
into the following 4 parts:

X = Ni(x) \N≤i(y)

Y = Ni(y) \N≤i(x)

Z = V \N≤i({x, y})
R = V \ (X ∪ Y ∪ Z) = (Ni(x) ∩Ni(y)) ∪N≤i−1({x, y}).

Since the diameter of G is i+ 1, we get that

(i) vertices in X are at distance i from x and at distance i+ 1 from y,

(ii) vertices in Y are at distance i+ 1 from x and at distance i from y,

(iii) vertices in Z are at distance i+ 1 from both x and y,

(iv) vertices in R are at distance i from both x and y or less than i for at least one of x of y.

Since G is nice, we have that both X and Y consist of
(
1 +O

(
ω̂−1

))
di ∼ di vertices and |R| =

O
(
ω̂−1

)
di = o(di). As a result, |Z| = n− (2 + o(1))di ∼ n.

A given phase is good if the following three properties hold for the random sequence of bn/di + 1
vertices the algorithm generates at the beginning of that phase:

(1) the sequence consists of only vertices from X ∪ Y ∪ Z,

(2) the sequence has at least one vertex from X and at least one vertex from Y ,

(3) the first vertex in the sequence is from Z.

First, let us note that if a phase is good, then the strategy guarantees that at least one of x and
y is eliminated during that phase. Indeed, the properties (1)–(3) of being good, and the strategy
used, imply that at some round during this phase, (ut, vt) is presented with ut ∈ Z and vt ∈ X ∪ Y .
By symmetry, without loss of generality, we may assume that vt ∈ X. If the adversary replies with
ut, then x gets eliminated: x is closer to vt than to ut. So assume that the adversary replies with
vt which does not eliminate any of the two vertices: x is closer to vt than to ut and y is at the
same distance from both of them. Vertex vt is kept by the algorithm and reused in the next round.
During the following rounds, vt can be presented together with some other vertices from Z but the
only chance for x not to be eliminated is that the adversary keeps replying with a vertex from X.
(Trivially, a vertex from X is transferred to the next round when two vertices from X are presented.)
However, eventually, a vertex from X will be presented together with a vertex from Y eliminating
either x or y.

Now, we will show that at least one phase must be good with probability at least 1− n−2. Let ζ
be the random variable counting the number of vertices from R that occur during a given phase.
Clearly,

E[ζ] =
|R|
n

(
bn

di
+ 1

)
= O

(
di

nω̂

bn

di

)
= O(ω̂−1) = o(1).
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Hence, by the first moment method, the probability that a given phase does not satisfy property (1)
can be estimated as follows:

P(ζ ≥ 1) ≤ E[ζ] = O(ω̂−1) = o(1).

On the other hand, by the union bound, the probability that a given phase does not satisfy
property (2) is at most(

1− |X|
n

)bn/di+1

+

(
1− |Y |

n

)bn/di+1

≤ 2 exp

(
−d

i

n

bn

di
(1 + o(1))

)
= 2e−b + o(1).

Trivially, property (3) is not satisfied with probability o(1). Hence, all independent phases fail to be
good with probability at most(

2e−b + o(1)
)a logn

= exp
((

(log 2− b)a+ o(1)
)

log n
)

= exp

(
−2
(b− log 2

b− 1
+ o(1)

)
log n

)
≤ exp (−2 log n) = 1/n−2.

This finishes the proof of (6) and so also the entire proof of the theorem.

Now, let us adjust the proof of Theorem 3.4 to claim the same upper bound for eq(G(n, p)).

Theorem 3.5. Suppose that ω log n ≤ d = pn ≤ n/ω = o(n), where ω = ω(n) is any function
tending to infinity as n→∞ such that ω ≤ log n. Let i = i(n) ∈ N be the largest integer such that
di = o(n). let ω̂ = ω̂(n) = min(

√
ω, n/di)→∞ as n→∞. Finally, suppose that di+1/n� ω̂ log n.

Then, the following property holds a.a.s. for G = (V,E) ∈ G(n, p):

eq(G) ≤ k := (2 + o(1))
n log n

di
= O

(
n log n

di

)
.

Proof. We will use the same notation as in the proof of Theorem 3.4. As before, we will have a log n
independent phases, each phase lasting for bn/di rounds. Since the first player (the algorithm) has
to present edges, we need to modify the strategy slightly. During the first round of each phase, the
algorithm presents a vertex selected uniformly at random from V . Then, in each consecutive round,
the algorithm presents the vertex the adversary replied with in the previous round together with
a random neighbour of that vertex. That is the only modification that is required. As before, we
investigate any deterministic nice graph and independently consider each pair of vertices x, y (x 6= y).
The goal, as before, is to show that with probability at least 1− n−2, at the end of the last phase
the target cannot be hidden in both x and y.

As before, a given phase is good if only vertices from X ∪ Y ∪Z are played during that phase, at
least one vertex from X and at least one vertex from Y were played, and the first vertex is from
Z. By Lemma 3.1(a), we may assume that each vertex has degree asymptotic to d. To show that
a.a.s. at least one phase must be good, and so a.a.s. the strategy is a winning strategy, we will
use Lemma 3.3. Let us concentrate on any given phase. By property (c), a.a.s. the first vertex is
selected from Z. By property (e), provided that the first endpoint of an edge is in X ∪ Y ∪ Z, the
second endpoint is in R with probability o(di+1n−1)/d = o(di/n), which is of the same order as
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|R|/n. Since there are O(n/di) rounds in that phase, as in the previous proof, a.a.s. no vertex from
R is presented during that phase. Similarly, by properties (f)–(g), provided that the first endpoint
of an edge is in X ∪ Z (X ∪ Z, respectively), the second endpoint is in Y (X, respectively) with
probability asymptotic to (di+1n−1)/d ∼ di/n, and so asymptotically the same as |Y |/n (|X|/n,
respectively). Hence, conditioning on the fact that no vertex from R is presented, the probability
that no vertex from Y (X, respectively) is presented is at most(

1− (1 + o(1))
di

n

)bn/di+1

≤ e−b + o(1).

We get that a given phase fails with probability at most 2e−b + o(1) and the argument continues as
before. This finishes the proof of the theorem.

Finally, let us deal with very dense random graphs, that is, when p ∈ (0, 1) is a fixed constant. The
following observation follows immediately from the Chernoff’s bound (1) (applied with ε = c

√
log n/n,

where c = c(p) is a sufficiently large constant) and the union bound. Since the reader is already
warmed-up, we skip a simple proof and leave it as an exercise.

Lemma 3.6. Fix p ∈ (0, 1). The following properties hold a.a.s. for G = (V,E) ∈ G(n, p).

(a) For any vertex x ∈ V , deg(x) = |N1(x)| = (1 +O(
√

log n/n)) pn ∼ pn.

(b) For any vertices x, y ∈ V (x 6= y), |N1(x)\N≤1(y)| = (1+O(
√

log n/n)) p(1−p)n ∼ p(1−p)n.

(c) For any vertices x, y, u ∈ V (pairwise distinct),

|N1(u) ∩ (N1(y) \N≤1(x))| = (1 +O(
√

log n/n)) p2(1− p)n ∼ p2(1− p)n.

Now, we are ready to prove our last upper bound.

Theorem 3.7. Fix p ∈ (0, 1). The following property holds a.a.s. for G = (V,E) ∈ G(n, p):

pq(G) ≤ eq(G) ≤ k :=
3

p2(1− p)2
log n = O (log n) .

Proof. We continue using the same proof strategy as in the previous two theorems, Theorems 3.4
and 3.5, but the strategy and the proof that it is a winning strategy a.a.s. are much easier than
before. There are a log n rounds, where a = 3p−2(1 − p)−2. In each round, the first player (the
algorithm) presents an edge that is generated at random, that is, the first vertex, u, is selected
uniformly at random from V and then a neighbour of u, vertex v, is selected uniformly at random
from all neighbours of u. As in the previous two proofs, since we aim for a statement that holds
a.a.s., we may assume that properties stated in Lemma 3.6 hold deterministically (that is, our graph
is “nice”). We need to show that for any pair of vertices x, y (x 6= y), the above strategy guarantees
that with probability at least 1− n−2 the target cannot be hidden in both vertices.

Let us fix any pair of vertices x, y (x 6= y). If u ∈ N1(x) \ N≤1(y) but v ∈ N1(y) \ N≤1(x)
(or vice-versa), then the goal is achieved, regardless what the second player (the adversary) does.
By Lemma 3.6(b), u ∈ N1(x) \N≤1(y) with probability asymptotic to p(1− p). Conditioning on
this event, by Lemma 3.6(c), u has (1 + o(1))p2(1− p)n neighbours in N1(y) \N≤1(x). Hence, by
Lemma 3.6(a), the (conditional) probability that v ∈ N1(y) \ N≤1(x) is asymptotic to p(1 − p).
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We get that u ∈ N1(x) \N≤1(y) but v ∈ N1(y) \N≤1(x) happens with probability asymptotic to
p2(1− p)2. By symmetry, the same is true if u and v are swapped. It follows that the strategy fails
with probability at most(

1− (2 + o(1))p2(1− p)2
)a logn ≤ exp

(
−(2 + o(1))p2(1− p)2a log n

)
≤ n−2,

since a = 3p−2(1− p)−2. This finishes the proof of the theorem.

4 NP-hardness

In this section, we prove that computing the parameters pq(G) and eq(G) is NP-hard for a general
family of graphs, that is, for graphs of diameter at most 3. This is done by a reduction from the
3-EXACT SET COVER problem: given a set of elements A = {a1, . . . , an}, where n = 3k for
some natural number k, a family of sets S = {S1, . . . , Sm}, for Si ⊆ A, |Si| = 3 for i ∈ [m] and⋃
i∈[m] Si = A, the question is whether there exists a sub-family SC = {Si1 , . . . , Sik} such that⋃
j∈[k] Sij = A. Note that, since n = 3k, if the answer to the above question is positive, then the

sets in SC are pairwise disjoint.
For each instance of the problem, we construct a graph G defined as follows. The vertex set of G

is defined as follows:

V (G) = {x, y} ∪

⋃
t∈[5]

At

 ∪
⋃
t∈[5]

St
 ∪ L,

where At,St, for t ∈ [5], are copies of the sets A and S, respectively, and |L| = 5n(5(m− k)− 3) =
n(25(m− k)− 15). The edge set of G is defined as follows (see Figure 4 for an illustration):

1. G
[
{y} ∪

⋃
t∈[5]A

t
]
induces a star centred at y (isomorphic to K1,5n),

2. each vertex a ∈
⋃
t∈[5]A

t is adjacent to 5(m− k)− 3 leaves that belong to L,

3. G
[
{x} ∪

⋃
t∈[5] St

]
induces a star centered at x (isomorphic to K1,5m),

4. for t ∈ [5], i ∈ [n], j ∈ [m], vertices ati ∈ At and Stj ∈ St are adjacent if and only if ai ∈ Sj in
the corresponding instance of the problem.

For any i ∈ [n] and t ∈ [5], we define Lti = {ati} ∪
(
N1

(
ati
)
∩ L
)
, that is, the vertex set of a star

centred at ati (isomorphic to K1,5(m−k)−3) defined by the second condition above.

Lemma 4.1. Suppose that n > m > k + 3 = n/3 + 3 for some natural number k. For the graph G
defined above, one has pq(G) ≤ eq(G) ≤ 5m if and only if there exists a set cover of size k for the
corresponding instance of the 3-EXACT SET COVER problem.

Proof. (⇐=) Suppose that the desired set cover SC = {Si1 , . . . , Sik} exists. We introduce the
following search strategy for the first player (the algorithm) implying that eq(G) ≤ 5m. Query the
5k edges of the form xStij for t ∈ [5], j ∈ [k]. If every single reply is x, then the target is on a star

induced by the graph G
[
{x} ∪

⋃
t∈[5] St \

⋃
t∈[5],j∈[k]

{
Stij

}]
(isomorphic to K1,5(m−k)), and can be

easily localized in the next 5(m− k) rounds. (Actually, it can be done faster by querying edges of
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Figure 4: A reduction from the 3-EXACT SET COVER

the form yati for some carefully selected values of t ∈ [5] and i ∈ [n].) The target is found in at most
5m rounds in total, yielding the desired upper bound for eq(G).

Suppose then that the adversary replies with vertex Stij at some round of the initial 5k queries.
Without loss of generality, we may assume that it was S1

1 and that this vertex is adjacent to a11, a12,
and a13. It is easy to see that the target must be in S1

1 , y, or at a vertex of some star L1
i centered

at a1i (i ∈ [3]). To locate it, the algorithm queries the 3 edges adjacent to S1
1 , namely, edges S1

1a
1
i

(i ∈ [3]). If S1
1 is the target, then S1

1 is replied 3 times in a row. On the other hand, if y is the target,
then S1

1 is not selected by the adversary even once. Suppose then that the target is located in some
vertex of a star L1

i (i ∈ [3]). Clearly, the adversary replies with a1i when this vertex is queried and,
otherwise, S1

1 is selected. The algorithm learns which star needs to be investigated and the target
can be found in the remaining 5(m− k)− 3 queries. This proves that eq(G) ≤ 5m and the claim
follows immediately from Observation 2.1.

(=⇒) We will prove the implication using proof by contraposition. Suppose that there is no set
cover of size k for the corresponding instance of the problem. Our goal is to show that pq(G) ≥ 5m+1.
To that end, we will provide a strategy for the second player (the adversary) that guarantees that
the target is not found after 5m rounds of the game, that is, |V5m| ≥ 2. In fact, we will help the first
player (the algorithm) slightly and announce at the beginning of the game that the target is hidden
in the set

V0 = L ∪
⋃
t∈[5]

At =
⋃

i∈[n],t∈[5]

Lti ⊆ V

(instead of starting with V0 = V ). Note that G[V0] is a family of 5n independent stars, each
isomorphic to K1,5(m−k)−3. Even with that additional information, the algorithm will not be able to
find the target in 5m rounds.

We consider two phases of the game. The first phase lasts for 5k + 4 rounds. We will show that
at the end of this phase, there exists at least one star Lti with the property that the target can be at
any vertex of that star; that is, Lti ⊆ V5k+4. Here is a strategy for the adversary. Suppose that for
some i ∈ [5k + 4] the algorithm queried a pair ui and vi at round i.
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1. ui = y and vi = atj for some j ∈ [n], t ∈ [5]. The adversary replies with y. Then, Vi−1 \ Vi =
Vi−1 \ C(y, atj) ⊆ Ltj . At most one star is eliminated.

2. ui = y and vi 6∈
⋃
t∈[5]A

t. The adversary replies with y. Then, only vi is eliminated, provided
vi ∈ L. At most one star is (partially) eliminated.

3. ui = x and vi ∈ Ltj for some j ∈ [n], t ∈ [5]. The adversary replies with x. Then, Vi−1 \ Vi =
Vi−1 \ C(x, vi) ⊆ Ltj . At most one star is eliminated.

4. ui = x and vi = St` for some ` ∈ [m], t ∈ [5]. Let S` = {a`1 , a`2 , a`3}. The adversary replies
with x. Then, Vi−1 \ Vi = Vi−1 \ C(x, St`) ⊆ Lt`1 ∪L

t
`2
∪Lt`3 . At most three stars are eliminated.

5. ui = St` and vi = Ssj for some `, j ∈ [m] and t, s ∈ [5]. Let S` = {a`1 , a`2 , a`3}. The adversary
replies with vi. Then, Vi−1 \ Vi = Vi−1 \ C(vi, St`) ⊆ Lt`1 ∪ L

t
`2
∪ Lt`3 . At most 3 stars are

eliminated. Note that this is equivalent to the previous case (x vs. St`).

6. ui = St` and vi ∈ Lsj for some `, j ∈ [m] and t, s ∈ [5]. Let S` = {a`1 , a`2 , a`3}. The adversary
replies with vi. Then, Vi−1 \ Vi = Vi−1 \ C(vi, St`) ⊆ Lt`1 ∪ L

t
`2
∪ Lt`3 . At most 3 stars are

eliminated. Again, note that this is equivalent to the previous case (x vs. St`), provided t 6= s
or aj 6∈ S`. If t = s and aj ∈ S`, then at most two stars are eliminated.

7. ui = atj and vi ∈ Ls` for some j, ` ∈ [m] and t, s ∈ [5]. The adversary replies with atj . Then
Vi−1 \ Vi = Vi−1 \ C(atj , vi) ⊆ Ls` , that is, at most one star is eliminated. When s = t and j = `
then only vi is eliminated. In any case, at most one star is (partially) eliminated.

8. {ui, vi} ∈ L. Let vi ∈ Ltj for some j ∈ [n], t ∈ [5]. The adversary replies with ui. Then
Vi−1 \ Vi = Vi−1 \ C(ui, vi) ⊆ Ltj . (In particular, if ui ∈ Ltj , then only vi is eliminated.) At
most one star is (partially) eliminated.

Note that each query described above eliminates at most three stars, either entirely or partially.
Moreover, all stars that are eliminated belong to one of the five copies of the sets A. More importantly,
since there is no cover set of size k for the corresponding instance of the problem, the algorithm
cannot eliminate all 3k stars from one copy in k queries (restricted to those that affect this copy).
Hence, after 5k + 4 rounds, there is at least one star (say, Ltj centered at atj) that may hide the
target, that is, Ltj ⊆ V5k+4.

The strategy for the second phase is very easy. In every round of this phase, the adversary replies
with a vertex that is closer to atj (or any vertex if both vertices that are queried are at the same
distance from atj). Clearly, at most one vertex of Ltj is eliminated in each round. Hence, since the
star consists of 5(m− k)− 2 vertices, after 5(m− k)− 4 additional rounds, at least two vertices are
still left in V5m and so the game is not over yet. This finishes the proof that pq(G) ≥ 5m+ 1, and
we are done.

Since both our search problems are in NP (the strategy length is trivially bounded from above
by the order of the graph; see also Observation 2.1), Lemma 4.1 implies immediately Theorem 1.4.
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