
Community Detection Supported by Node
Embeddings

(Searching For a Suitable Method)

Bartosz Pankratz1,2, Bogumi l Kamiński2, and Pawe l Pra lat1

1 Department of Mathematics, Toronto Metropolitan University, Toronto, ON,
bartosz.pankratz@ryerson.ca

pralat@ryerson.ca
2 Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw,

Poland
bpankra@sgh.waw.pl

bkamins@sgh.waw.pl

Abstract. Most popular algorithms for community detection in graphs
have one serious drawback, namely, they are heuristic-based and in many
cases are unable to find a near-optimal solution. Moreover, their results
tend to exhibit significant volatility. These issues might be solved by
a proper initialization of such algorithms with some carefully chosen
partition of nodes.
In this paper, we investigate the impact of such initialization applied to
the two most commonly used community detection algorithms: Louvain
and Leiden. We use a partition obtained by embedding the nodes of
the graph into some high dimensional space of real numbers and then
running a clustering algorithm on this latent representation. We show
that this procedure significantly improves the results. Proper embedding
filters unnecessary information while retaining the proximity of nodes
belonging to the same community. As a result, clustering algorithms ran
on these embeddings merge nodes only when they are similar with a high
degree of certainty, resulting in a stable and effective initial partition.

Keywords: machine learning, community detection, complex networks,
network embedding methods

1 Introduction

The main trait of most empirical complex networks is the fact that they tend
to display a modular organization where one can easily separate sets of nodes
(subgraphs) with considerably larger density of edges between nodes in such
sets than between two different sets. This property is widely referred to as a
community structure [8]. Finding such partitions is interesting not only from a
theoretical perspective. Indeed, often communities that are extracted, or nodes
inside them, exhibit different properties than the entire graph, so identifying
them might give a meaningful insight into the data. However, in most cases such

2 Bartosz Pankratz et al.

underlying structure is unknown beforehand, thus we must use an unsupervised
algorithm that is able to detect it. There are many existing solutions; the most
common ones are built around a heuristic optimization of some carefully chosen
score function.

Communities are somewhat elusive; without the full knowledge about the
graph generating process (which is obviously the case for most real-world net-
works) it is not clear what score function or measure should be used to assess
them and, consequently, what algorithm should be used to detect them, espe-
cially since no algorithm can uniquely solve community detection task [25]. This
problem is widely discussed, see, for example, [19, 34, 21], and plenty of differ-
ent score functions were proposed up to them. The modularity function [23] is
possibly the most often used one.

Modularity measures the difference between the number of the edges within
groups induced by a given partition A and the expected number of such edges
given by an appropriately selected null-model, usually Chung-Lu random graph
model [1]. For a graph G = (V,E) and a given partition A = {A1, A2, . . . , A`},
the modularity function is defined as follows:

qG(A) =
1

|E|
∑
Ai∈A

(
eG(Ai)− EG′∼G(d)[eG′(Ai)]

)
, (1)

where |E| is the number of edges in G, eG(Ai) = |{vjvk ∈ E : vj , vk ∈ Ai}| is the
number of edges in the subgraph of G induced by set Ai, and EG′∼G(d)[eG′(Ai)]
is the corresponding expectation in the null-model.

However, optimizing modularity function is a NP-hard problem [5]; thus,
basically all proposed solutions are heuristic in nature. One of the most popular,
fastest, and best performing [18] ones is the Louvain algorithm [4]. Its core idea
is simple yet effective, it is a two-step technique: it first moves each node to
the community that provides the largest increase of the score function, ensuring
that the score will be locally optimal; during the second step, it aggregates the
communities into super-nodes. Then, both phases are repeated until there is no
improvement of the score function. By default, the Louvain algorithm starts
from a singleton partition in which each node belongs to its own community but
it is possible to initialize the algorithm with a preexisting partitioning.

Despite the fact that Louvain is a great algorithm, it has some serious and
known drawbacks. First, the obtained results are heavily stochastic, that is,
each run of the algorithm on the same network may lead to the vastly differ-
ent partitions. Moreover, it may create a weakly connected or even internally
disconnected communities [32]. These problems are caused by two factors, both
inherent to the nature of the algorithm. It is a greedy algorithm; sometimes,
especially on early iterations, nodes might be added to communities that they
should not belong to because the algorithm finds the local best solution without
considering the broader structure of the graph. Then, during the second phase, it
merges the community into a supernode which makes it impossible to backtrack
and fix these bad early connections.

Community Detection Supported by Node Embeddings 3

This shortcoming might be addressed in two manners; either by allowing the
algorithm to backtrack and refine the created communities in each step, which
was proposed by Leiden algorithm [32] or by ensuring that the initial partition-
ing is stable and contains the nodes that certainly belong to the same community,
as in ECG (Ensemble Clustering algorithm for Graphs) algorithm [27].

The latter idea is the center of this work, namely, we want to propose a
method of community detection based on the modularity optimization with a
spectral clustering initialization step. The procedure starts with an embedding
of the nodes of the graph in the high dimensional space of real numbers, then
the clustering algorithm is run on the obtained representation. The algorithm is
fine-tuned to obtain many small clusters where only nodes that are very close in
the latent space are merged together. As a result, we obtain a stable partition
which is finally used to initialize the Louvain algorithm. In the same manner,
such initial partition might also be used to improve other greedy optimization
algorithms such as the Leiden one. In the experiments presented in this paper,
we will test both of them but when describing the reasoning behind the proposed
method we will use the Louvain algorithm as an example.

Our motivation is simple; we believe that carefully selected embeddings pre-
serve the proximity of nodes belonging to the same community and clearly sepa-
rate them from the other ones, reducing the chance of misguided connections at
the early stages of the algorithm. Having said that, relying only on the embedded
representation is causing problems on its own; by their nature (typically local),
embeddings preserve some properties of the nodes but filter some other ones,
resulting in the inherent information loss that might induce a significant bias if
we decide to run the clustering algorithm only on the embedded data and use it
as the final partition. Therefore, the most promising approach that we propose
in this paper is to combine both methods.

The goal of this paper is to test this premise. In order to do this, we perform
an experiment aimed to answer the following four questions:(1) How the proposed
method performs compared to the other extensions of the Louvain algorithm
(Leiden and ECG)? (2) How stable is the proposed method? How volatile are the
results compared to the Louvain algorithm? (3) Is this method able to improve
the Leiden algorithm? (4) Which embedding methods and clustering algorithms
give the best results? What is the relation between the graph’s properties and the
way how it is embedded into the latent space?

The rest of the paper is organized as follows. In Section 2 we further describe
the proposed method and motivate it. Sections 3 and 4 introduce an experi-
ment designed to test the hypothesis and, respectively, present obtained results.
Finally, Section 5 provides some concluding remarks.

2 Method Description

Let G = (V,E) be a graph on the set of n nodes V = {v1, v2, . . . , vn} and
the set of m edges E = {e1, e2, . . . , em}. In order to find the partition A =

4 Bartosz Pankratz et al.

{A1, A2, . . . , A`} of V that tries to maximize the modularity function qG(A), we
perform the following three steps:

Step 1: Find the embedding function E : V → Rs which embeds each node
of graph G into a s-dimensional latent vector E(v) = {z1, z2, . . . , zs}, where
s� n.
Step 2: Run the clustering algorithm on the obtained latent representation
E to get the partition C = {C1, C2, . . . , Ck}. The goal is to use C as an ini-
tializing partitioning for the Louvain (or Leiden) algorithm so the number
of clusters k should be significantly larger than the desired number of parts
in the partition A: k � `.
Step 3: Run the Louvain (or Leiden) algorithm on graph G using the
partition C as a starting point. The result of this procedure, partition A, is
the outcome of our algorithm.

2.1 Motivation

First of all, let us discuss the reasons why one might want to use the embed-
dings at all. One issue is a nature of graphs as data structures; they are discrete
objects, which reduces the number of possible approaches to the problem of com-
munity detection. It basically forces one to use the heuristic-based approaches
such as the classical Louvain algorithm. On the other hand, embedded latent
representation is a vector of real numbers which creates new possibilities, mostly
because there are more algorithms designed for working with real numbers and
they are often more efficient [2]. Also, properly selected embeddings might be
considered as a form of “denoising” data; they retain only the properties of nodes
that are important for the task at hand, removing the remaining useless rela-
tions, resulting in a representation of data that is significantly lower dimensional
and possibly easier to cluster.

In the case of community detection algorithms these advantages are clearly
visible. Instead of greedily merging nodes into communities, we merge them
when that are close in the latent space, ensuring that the connections are more
stable (not merely a result of a random enumerating). Indeed, equipped with a
properly selected embedding, nodes that are close in the latent space will almost
surely be part of the same community.

However, experimental results (see: [30]) show that using only an embed-
ded representation to obtain the desired partition is not enough. An obvious
explanation is a fact that embeddings are usually too reductive, that is, the rep-
resentation gap between the graph G and its latent representation E is too large.
Indeed, embeddings preserve some proximity of nodes but remove other useful
global information that might be crucial to achieve a satisfactory result. Over-
coming this issue is the main reason why the proposed solution consists of two
separated partitioning steps. The reasoning is pretty straightforward: starting
the Louvain with a visibly smaller starting set of nodes in which most sen-
sitive elements are already connected should improve the results and decrease
the volatility of the method. Similarly, it is expected that these ideas will also

Community Detection Supported by Node Embeddings 5

improve the quality of the results obtained by the Leiden algorithm—because
of the additional refinement stage it gives a significantly better results compared
to Louvain algorithm but still it is a greedy algorithm with all the inherent
issues mentioned above.

Starting any of the two clustering algorithms from a properly generated ini-
tial partition seems to be a good idea but there are two problematic issues that
we need to deal with: selection of the embedding E and selection of clustering
algorithm. There are plenty of different embedding methods to choose from (see,
for example, [6, 11, 9, 17]), that measure the proximity between nodes in different
manners, which makes the selection of the algorithm a demanding task, often
requiring a domain expert knowledge or time-consuming experiments. One of
the goals of this work is to look at various embedding algorithms and test their
behaviour in this particular task in order to find the best solution to create
a guidance for future users. We also want to compare the results with diver-
gence scores obtained by the CGE [15, 12]—unsupervised framework created to
compare and asses different embeddings. We believe that this framework might
become a useful tool, significantly simplifying the selection process of a suitable
embedding.

Similarly, finding a clustering algorithm for the first step might be challeng-
ing. There are plenty of the well-known, efficient, and scalable algorithms; they
might result in vastly different behaviour of the initial partitioning. For exam-
ple, density-based algorithms will cluster only the points occupying the same
densely connected regions whereas the points in the sparsely inhabited areas
will be considered as noise and will not be assigned to any cluster. Thus, the
initial partition C will contain only the nodes which are almost surely the parts
of the same communities, leaving the more ambiguous nodes for the Louvain or
Leiden algorithm. On the other hand, distribution-based methods of clustering
will return the probability of a node belonging to each cluster, not a fixed assign-
ment. As a result, one might fine-tune the certainty of the partition C instead of
leaving it to the algorithm. Obviously, it is necessary to validate the described
above intuitions which will be an important part of the experiment described in
the next section.

3 Experiment Design

The main body of the experiment was written in Julia 1.7.0 programming lan-
guage with additional code and packages written in Python 3.7.10. The code
for execution and analysis of the experiments is available on GitHub repos-
itory3, and so are Jupyter notebooks with a more details and further result
analysis4. The experimental design was as follows. At the beginning, a com-
prehensive family of graphs with various properties was generated using the
ABCDe (Artificial Benchmark for Community Detection) model [16, 13] and

3 https://github.com/bartoszpankratz/ECCD
4 https://github.com/bartoszpankratz/ECCD/blob/main/Embedding-Clustering

Community Detection Experiment.ipynb

6 Bartosz Pankratz et al.

following parameter sweep: the number of nodes n = 1000, exponents of the
power-law distributions for community sizes β ∈ {1.1, 1.5, 1.9} and degree dis-
tributions γ ∈ {2.1, 2.5, 2.9}, community sizes cmin = 0.005n and cmax = 0.2n,
the minimum degree δ ∈ {1, 2, 5}, the maximum degree ∆ =

√
n and, finally,

we set the mixing parameter ξ ∈ {0.15, 0.25, 0.35, 0.5, 0.65, 0.75, 0.85} that con-
trols the level of noise in the resulting graph. Detailed explanation on how these
parameters impact the graph structure is available in [16, 14, 13].

Louvain, Leiden, and ECG algorithms were each run 50 times for every
given graph in order to obtain the baseline for the comparison. Then, every graph
was embedded using the following algorithms taken from the Python OpenNE 5

package: Locally Linear Embedding (LLE) [29], Laplacian Eigenmaps
(LE) [3], deepWalk [26], node2vec [10], LINE [31], SDNE [33], GraRep [7]
and HOPE [24]. For each of the selected algorithms, we tested dimensions
d ∈ {8, 16, 32, 64, 128, 256}. To find the most suitable clustering algorithm and
get the best initial partitioning C, for every embedding E we tested the follow-
ing three methods: k-means [20], HDBSCAN [22] and Gaussian Mixture
Model (GMM) [28]. Parameters of all the embedding and clustering algo-
rithms used in this experiment are further described in the aforementioned ac-
companying Jupyter notebook. Finally, every partition C was used as the initial
partitioning for both Leiden and Louvain algorithm. To achieve comparable
results, both methods were run 50 times on every C.

Roughly 55,000 different embeddings were tested with more than 1,500,000
initial partitions. Experiments were performed on the machines with 32 Intel
Xeon Processors (Cascadelake) 2.30 GHZ vCPUs with 160GB RAM memory,
120GB disk space and Ubuntu 20.04.1 operating system. Computations were run
simultaneously on eight machines for five consecutive days, totalling in around
960 vCPU hours.

4 Results

Figure 1 presents the results for one representative set of parameters: ξ = 0.35,
β = 1.5, γ = 2.5, and δ = 5. As one can easily see, the results obtained by
Louvain after using a better initialization procedure are clearly improved. Both
ECG and EC–Louvain6 are able to improve over the vanilla Louvain. In
some rare cases, EC–Louvain is able to achieve performance similar to Leiden.
But what is the most interesting, adding the initial partitioning C to Leiden
significantly improves its quality and reduces the volatility.

The presented figure shows the results only for a single case; Table 1 shows
how different values of ξ impact the performance of the algorithms. The relation
here is pretty obvious; ξ is a noise parameter, it controls the expected fraction of
edges between communities. As a result, with an increasing value of ξ one should

5 https://github.com/thunlp/OpenNE
6 EC stands for Embedding–Clustering and denotes the proposed extension of
Louvain and Leiden algorithms. If not otherwise stated, the results for the EC
algorithm uses the best possible initial partitioning C.

Community Detection Supported by Node Embeddings 7

Louvain ECG Leiden EC-Louvain EC-Leiden

0.44

0.45

0.46

0.47

Modularity

Fig. 1. Comparison of the modularity function for a single but representative set of
parameters: ξ = 0.5, β = 1.5, γ = 2.5, and δ = 5.

expect the modularity to decrease, but also relative better performance of the
augmented methods. We could see that EC–Louvain gives a relatively small
improvement over the baseline Louvain, but Leiden with initial partitioning is
able to outclass the rest of the algorithms with a large margin. Also it reduces
the volatility to the negligible levels. Interestingly, for ξ = 0.75 ECG gives
worse results than Louvain; ECG seems to be very sensitive to the graph’s
parametrization. In some cases it performs very well (see, for example, Figure 1),
but it can also be weaker than Louvain. In comparison, it is never a case for
the EC methods—in the worst case scenario, they return the same value of the
modularity as Louvain.

Table 1. Comparison of the algorithms for different values of ξ (β = 1.5, γ = 2.5,
and δ = 5). Column Louvain (baseline) shows the average modularity obtained by this
algorithm. Other columns present the average difference between the results of each
algorithm and Louvain. Standard deviation is given in parenthesis.

ξ Louvain (baseline) ECG Leiden EC–Louvain EC–Leiden

0.35
0.58132 0.00027 0.0029 0.00145 0.00302

(0.00502) (0.00019) (0.00042) (0.00237) (0.0)

0.5
0.45263 0.00907 0.01593 0.00596 0.0192

(0.00847) (0.00124) (0.00289) (0.00696) (0.0002)

0.75
0.30533 -0.01987 0.01955 0.00976 0.03096

(0.00357) (0.00279) (0.0029) (0.00448) (0.00206)

8 Bartosz Pankratz et al.

One can see similar pattern for other parameters of the ABCD model7: when
change of the parameter distorts the community structure of the graph, then the
advantage from using the augmented methods is more visible. However, in almost
all cases EC–Louvain gives small to mediocre improvement, but EC–Leiden
gives a significant performance boost. Why is this happening? The answer is
pretty straightforward and lies in the very nature of both algorithms, Louvain
and Leiden.

As it was mentioned before, Louvain merges two nodes if such move max-
imizes the modularity locally, without any broader context. The initial parti-
tioning C was designed to overcome this issue, guaranteeing the stability of the
first step of the algorithm. But this problem is prevailing in later steps until the
algorithm reaches the stage when the communities are large enough. As a result,
the impact of the initial “good” partitioning is minimized. This problem might
be fixed by repeating the embedding process after every iteration up to the mo-
ment when the algorithm reaches its stable stage but obviously such procedure
would be unfeasible for large graphs as it is very time consuming.

On the other hand, refinement stage in Leiden solves this issue. After every
iteration, when communities are created in the same manner as in Louvain, they
are split and recombined into new, better partitions, ensuring that all nodes are
optimally assigned in the context of the given subgraph induced by a single
community. But still, Leiden backtracks only in a limited scope; early on, when
initialized with a singleton partition, it might still merge nodes that should not
belong to the same community and that will be irreversible. By initializing it
with a fine-tuned initial partitioning C we ensure that this will not happen.

The last question remaining concerns the way how one should design the pro-
cedure. Clearly, proper selection of embedding and clustering gives a significant
boost of the performance of Leiden (and to the lesser extend Louvain), but
how should one chooses them?

Figure 2 shows the relation between the modularity and the CGE scores
obtained by the unsupervised framework for comparing graph embeddings [15,
12], both local and global. Results show some interesting behavior. Let is first
focus on the EC–Louvain. As can be seen on the two upper plots, the relation
between the quality of the embedding and the achieved modularity is pretty
insignificant, basically any kind of the reasonable embedding could give us a
similar performance. These observations are in line with previous results showing
that the inherent volatility of Louvain decreases the relevance of the initial
partitioning C. However, it is not a case for EC–Leiden. We could clearly see
that there is a strong relation between the quality of the embedding and the
final modularity value. Moreover, plots show that node2vec is usually the best
performing embedding algorithm. It is quite intuitive; it represents the nodes
through the use of random walks and in the case of the community detection it
is a natural form of representing proximities—nodes that are parts of the same

7 For details please refer to: https://github.com/bartoszpankratz/ECCD/blob/main/
Embedding-Clustering Community Detection Experiment.ipynb

Community Detection Supported by Node Embeddings 9

communities are likely to be present close to each other in the associated random
walks.

0.450 0.452 0.454 0.456 0.458
Modularity

0.00

0.02

0.04

0.06

0.08

Gl
ob
al
 C
GE

 S
co
re

Louvain algorithm
LLE
LE
deepWalk
node2vec
LINE
SDNE
GraRep
HOPE

0.450 0.452 0.454 0.456 0.458
Modularity

0.0

0.1

0.2

0.3

Lo
ca
l C

GE
 S
co
re

Louvain algorithm
LLE
LE
deepWalk
node2vec
LINE
SDNE
GraRep
HOPE

0.4690 0.4695 0.4700 0.4705 0.4710 0.4715
Modularity

0.00

0.02

0.04

0.06

0.08

Gl
ob
al
 C
GE

 S
co
re

Leiden algorithm
LLE
LE
deepWalk
node2vec
LINE
SDNE
GraRep
HOPE

0.4690 0.4695 0.4700 0.4705 0.4710 0.4715
Modularity

0.0

0.1

0.2

0.3
Lo
ca
l C

GE
 S
co
re

Leiden algorithm
LLE
LE
deepWalk
node2vec
LINE
SDNE
GraRep
HOPE

Fig. 2. Comparison of the modularity function and Global/Local CGE scores for dif-
ferent embedding algorithms and a single set of parameters: ξ = 0.5, β = 1.5, γ = 2.5,
and δ = 5.

Let us now briefly comment on the performance of different clustering algo-
rithms. HDBSCAN was usually the best one, which was somewhat foreseeable—
this density based algorithm clusters nodes only when they are certainly a part
of the same community. Figure 3 shows the result for an example but representa-
tive parametrization. Further analysis of the impact of parametrization of both
embeddings and clustering algorithms is available in the accompanying Jupyter
notebook.

5 Final Remarks

The results presented in this paper show that the usage of the initial partitioning
C obtained by clustering of nodes in graph embeddings improves the results of
the popular community detection algorithms. In the case of Louvain the im-
pact is rather small, almost negligible, but the initial partitioning of Leiden

10 Bartosz Pankratz et al.

K-Means HDBSCAN GMM

0.47075

0.47100

0.47125

0.47150

0.47175

0.47200

Modularity

Fig. 3. Comparison of the modularity function for a graph embedded with node2vec
into a 16–dimensional space and one set of parameters: ξ = 0.5, β = 1.5, γ = 2.5, and
δ = 5.

significantly improves its performance and reduce the volatility. We also pro-
vided results showing that there are some certain classes of embeddings (such
as node2vec) and clustering algorithms (such as HDB-SCAN) that are the
most suitable for this particular task.

6 Acknowledgments

Hardware used for the computations was provided by the SOSCIP consortium8.
Launched in 2012, the SOSCIP consortium is a collaboration between Ontario’s
research-intensive post-secondary institutions and small- and medium-sized en-
terprises (SMEs) across the province. Working together with the partners, SOSCIP
is driving the uptake of AI and data science solutions and enabling the devel-
opment of a knowledge-based and innovative economy in Ontario by supporting
technical skill development and delivering high-quality outcomes. SOSCIP sup-
ports industrial-academic collaborative research projects through partnership-
building services and access to leading-edge advanced computing platforms, fu-
elling innovation across every sector of Ontario’s economy.

References

1. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: Pro-
ceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing.
p. 171–180. STOC ’00, Association for Computing Machinery, New York, NY, USA
(2000), https://doi.org/10.1145/335305.335326

2. Bartz-Beielstein, T., Zaefferer, M.: Model-based methods for continuous and dis-
crete global optimization. Applied Soft Computing 55, 154–167 (2017), https:
//www.sciencedirect.com/science/article/pii/S1568494617300546

8 https://www.soscip.org/

Community Detection Supported by Node Embeddings 11

3. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: Proceedings of the 14th International Conference on Neural
Information Processing Systems: Natural and Synthetic. p. 585–591. NIPS’01, MIT
Press, Cambridge, MA, USA (2001)

4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Ex-
periment 2008(10), 10008 (2008)

5. Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wag-
ner, D.: On modularity clustering. IEEE Transactions on Knowledge and Data
Engineering 20(2), 172–188 (2008)

6. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embed-
ding: Problems, techniques and applications (2018)

7. Cao, S., Lu, W., Xu, Q.: Grarep: Learning graph representations with global struc-
tural information. In: Proceedings of the 24th ACM International on Conference
on Information and Knowledge Management. p. 891–900. CIKM ’15, Association
for Computing Machinery, New York, NY, USA (2015), https://doi.org/10.1145/
2806416.2806512

8. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174
(feb 2010), https://doi.org/10.1016\%2Fj.physrep.2009.11.002

9. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: A survey. Knowledge-Based Systems 151, 78–94 (Jul 2018), http://dx.doi.
org/10.1016/j.knosys.2018.03.022

10. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks (2016)
11. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: Meth-

ods and applications (2018)
12. Kamiński, B., Kraiński, l., Pra lat, P., Théberge, F.: A multi-purposed unsupervised

framework for comparing embeddings of undirected and directed graphs (2021),
https://arxiv.org/abs/2112.00075

13. Kamiński, B., Olczak, T., Pankratz, B., Pra lat, P., Théberge, F.: Properties and
performance of the abcde random graph model with community structure (2022),
https://arxiv.org/abs/2203.14899

14. Kaminski, B., Pankratz, B., Pralat, P., Theberge, F.: Modularity of the abcd ran-
dom graph model with community structure (2022), https://arxiv.org/abs/2203.
01480

15. Kamiński, B., Pra lat, P., Théberge, F.: An unsupervised framework for comparing
graph embeddings. Journal of Complex Networks 8(5), cnz043 (2020)

16. Kamiński, B., Pra lat, P., Théberge, F.: Artificial benchmark for community detec-
tion (abcd)—fast random graph model with community structure. Network Science
pp. 1–26 (2021)

17. Kamiński, B., Pra lat, P., Théberge, F.: Mining Complex Networks. Chapman and
Hall/CRC (2021)

18. Lancichinetti, A., Fortunato, S.: Community detection algorithms: A compara-
tive analysis. Physical Review E 80(5) (Nov 2009), http://dx.doi.org/10.1103/
PhysRevE.80.056117

19. Leskovec, J., Lang, K.J., Mahoney, M.W.: Empirical comparison of algorithms for
network community detection (2010), https://arxiv.org/abs/1004.3539

20. Lloyd, S.P.: Least squares quantization in pcm. IEEE Transactions on Information
Theory 28, 129–137 (1982)

21. McCarthy, A.D., Chen, T., Ebner, S.: An exact no free lunch theorem for com-
munity detection. In: Complex Networks and Their Applications VIII, pp.

12 Bartosz Pankratz et al.

176–187. Springer International Publishing (nov 2019), https://doi.org/10.1007%
2F978-3-030-36687-2 15

22. McInnes, L., Healy, J., Astels, S.: hdbscan: Hierarchical density based clustering.
Journal of Open Source Software 2(11), 205 (2017), https://doi.org/10.21105/joss.
00205

23. Newman, M.E.J.: Modularity and community structure in networks. Proceedings
of the National Academy of Sciences 103(23), 8577–8582 (May 2006), http://dx.
doi.org/10.1073/pnas.0601602103

24. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity pre-
serving graph embedding. In: Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. p. 1105–1114.
KDD ’16, Association for Computing Machinery, New York, NY, USA (2016),
https://doi.org/10.1145/2939672.2939751

25. Peel, L., Larremore, D.B., Clauset, A.: The ground truth about metadata and
community detection in networks. Science Advances 3(5), e1602548 (May 2017),
http://dx.doi.org/10.1126/sciadv.1602548

26. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk. Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining (Aug
2014), http://dx.doi.org/10.1145/2623330.2623732

27. Poulin, V., Théberge, F.: Ensemble clustering for graphs: comparisons and ap-
plications. Applied Network Science 4(1) (Jul 2019), http://dx.doi.org/10.1007/
s41109-019-0162-z

28. Rasmussen, C.E.: The infinite gaussian mixture model. In: Proceedings of the 12th
International Conference on Neural Information Processing Systems. p. 554–560.
NIPS’99, MIT Press, Cambridge, MA, USA (1999)

29. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear
embedding. Science 290(5500), 2323–2326 (2000), https://science.sciencemag.org/
content/290/5500/2323

30. Tandon, A., Albeshri, A., Thayananthan, V., Alhalabi, W., Radicchi, F., Fortu-
nato, S.: Community detection in networks using graph embeddings. Phys. Rev. E
103, 022316 (Feb 2021), https://link.aps.org/doi/10.1103/PhysRevE.103.022316

31. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line. Proceedings of
the 24th International Conference on World Wide Web (May 2015), http://dx.doi.
org/10.1145/2736277.2741093

32. Traag, V., Waltman, L., van Eck, N.J.: From louvain to leiden: guaranteeing well-
connected communities. Scientific Reports 9, 5233 (03 2019)

33. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 1225–1234. ACM (2016)

34. Yang, J., Leskovec, J.: Defining and evaluating network communities based on
ground-truth (2012), https://arxiv.org/abs/1205.6233

