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Abstract. In this paper, we make a significant step toward designing
a scalable community detection algorithm using hypergraph modularity
function. The main obstacle with adjusting the initial stage of the classi-
cal Louvain algorithm is dealt via carefully adjusted linear combination
of the graph modularity function of the corresponding two-section graph
and the desired hypergraph modularity function. It remains to properly
tune the algorithm and design a mechanism to adjust the weights in
the modularity function (in an unsupervised way), depending on how
often nodes in one community share hyperedges with nodes from other
communities. It will be done in the journal version of this paper.

Keywords: Community Detection Algorithm · Hypergraphs · Modular-
ity Function.

1 Introduction

Many networks that are currently modelled as graphs would be more accurately
modelled as hypergraphs. This includes the collaboration network in which nodes
correspond to researchers and hyperedges correspond to papers that consist of
nodes associated with researchers that co-author a given paper.

After many years of intense research using graph theory in modelling and
mining complex networks [13, 15, 21, 31], hypergraphs start gaining considerable
traction [2–4, 6]. Standard but important questions in network science are revis-
ited in the context of hypergraphs. However, hypergraphs also create brand new
questions which did not have their counterparts for graphs. For example, how
hyperedges overlap in empirical hypergraphs [30]? Or how the existing patters
in a hypergraph affect the formation of new hyperedges [16]?

In this paper we concentrate on the classical problem of community detec-
tion in networks that can be represented using hypergraphs [1, 5, 8, 9, 18, 19, 25,
26, 34, 35]. Despite the fact that currently there is a vivid discussion around
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hypergraphs, the theory and tools are still not sufficiently developed to tackle
this problem directly within this context. Indeed, researchers and practitioners
often create the 2-section graph of a hypergraph of interest (that is, replace each
hyperedge with a clique) and apply classical tools designed for graphs. After
moving to the 2-section graph, one clearly loses some information about hyper-
edges of size greater than two and so there is a common belief that one can do
better by using the knowledge of the original hypergraph.

As mentioned earlier, there are some recent attempts to deal with hyper-
graphs in the context of clustering. For example, Kumar et al. [25, 26] still re-
duce the problem to graphs but use original hypergraphs to iteratively adjust
weights to encourage some hyperedges to be included in some cluster but dis-
courage other ones (this process can be viewed as separating signal from noise).
Moreover, in [18, 19] a number of extensions of the classic null model for graphs
are proposed that can potentially be used by true hypergraph algorithms.

Unfortunately, there are many ways such extensions can be done depending
on how often nodes in one community share hyperedges with nodes from other
communities. We believe that the underlying process that governs pureness of
community hyperedge is something that varies between networks at hand and
also potentially depends on the hyperedge sizes. Let us come back to the collab-
oration network we discussed earlier. Hyperedges associated with papers written
by mathematicians might be more homogeneous and smaller in comparison with
those written by medical doctors who tend to work in large and multidisciplinary
teams. Moreover, in general, papers with a large number of co-authors tend to
be less homogeneous, and other patterns can be identified [16]. In this paper,
we assume that the user has a knowledge which of the null models should be
chosen to analyze a given hypergraph at hand and, as a result, wants to use
the appropriate modularity function to identify communities in a hypergraph.
Eventually, our clustering algorithm will be able to automatically decide which
extension should be used but details will be provided in the journal version of
this paper.

A significant challenge in optimizing modularity functions is that these ob-
jective functions have their domains defined over all partitions of the set of nodes
and they are known to be extremely difficult to optimize. One of the most popu-
lar and efficient heuristic methods for modularity optimization for graphs is the
Louvain algorithm. In this paper, we show how this algorithm can be adapted
to optimize hypergraph modularity. One of the main challenges is the fact that,
when hyperedges of size two (edges) or three are not present in the hypergraph,
then the Louvain algorithm immediately gets stuck in its local minimum. More-
over, even if there are a few hyperedges of size two or three, then the algorithm
may get stuck almost immediately. Hence, in such situations, one cannot sim-
ply start optimizing the hypergraph modularity right from the beginning. More
importantly, we observe that even if hyperedges of size two are present in the hy-
pergraph, the algorithm often converges to a local optimum that is of low quality.
In order to address these two problems, we propose a method that works reason-
ably well in practice in which we optimize a weighted average of the 2-section
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graph modularity function and the hypergraph modularity function. For that we
adjust the Louvain algorithm in such a way that the weight of the hypergraph
modularity function increases during the optimization process.

The paper is structured as follows. We first introduce the necessary notation;
in particular, we state the definitions of graph and hypergraph modularity func-
tions (Section 2). Next, we discuss the classical Louvain algorithm and explain
why it is difficult to adjust it to directly optimize hypergraph modularity. Fol-
lowing this, we describe our algorithm that is considering a linear combination of
the 2-section graph modularity and the hypergraph modularity as objective func-
tion, and explain its implementation challenges (Section 3). Then, we present the
results of numerical experiments of using the proposed algorithm on synthetic
hypergraphs (Section 4). The paper is concluded with a summary of outlooks
for further research in this area that will be addressed in the journal version of
this paper (Section 5).

2 Modularity Functions

Let us start with some basic definitions. In the hypergraph H = (V,E), each
hyperedge e ∈ E is a multiset of V of any cardinality d ∈ N. Multisets in
the context of hypergraphs are natural generalization of loops in the context
of graphs. Hypergraphs are natural generalization of graphs in which edge is
a multiset of size two. Even though H does not always contain multisets, it is
convenient to allow them as they may appear in the random hypergraph that
will be used as the null model to “benchmark” the edge contribution component
of the modularity function. It will be convenient to partition the hyperedge set
E into {E1, E2, . . .}, where Ed consists of hyperedges of size d. As a result,
hypergraph H can be expressed as the disjoint union of d-uniform hypergraphs
H =

⋃
Hd, where Hd = (V,Ed). As for graphs, degH(v) is the degree of node

v, that is, the number of hyperedges v is a part of (taking into account the fact
that hyperedges are multisets). Finally, the volume of a subset of nodes A ⊆ V
is volH(A) =

∑
v∈A degH(v).

Graph Modularity The definition of modularity for graphs was first intro-
duced by Newman and Girvan in [33]. Despite some known issues with this
function such as the “resolution limit” reported in [14], many popular algorithms
for partitioning nodes of large graphs use it [11, 28, 32] and perform very well.
The modularity function favours partitions of the set of nodes of a graph G in
which a large proportion of the edges fall entirely within the parts (often called
clusters), but benchmarks it against the expected number of edges one would see
in those parts in the corresponding Chung-Lu random graph model [10] which
generates graphs with the expected degree sequence following exactly the degree
sequence in G.
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Formally, for a graph G = (V,E) and a given partition A = {A1, A2, . . . , Ak}
of V , the modularity function is defined as follows:

qG(A) =
∑
Ai∈A

eG(Ai)

|E|
−
∑
Ai∈A

(
volG(Ai)

volG(V )

)2

, (1)

where eG(Ai) is the number of edges in the subgraph of G induced by set Ai.
The first term in (1),

∑
Ai∈A eG(Ai)/|E|, is called the edge contribution and

it computes the fraction of edges that fall within one of the parts. The second
one,

∑
Ai∈A(volG(Ai)/volG(V ))2, is called the degree tax and it computes the

expected fraction of edges that do the same in the corresponding random graph
(the null model). The modularity measures the deviation between the two.

The maximum modularity q∗(G) is defined as the maximum of qG(A) over all
possible partitions A of V ; that is, q∗(G) = maxA qG(A). In order to maximize
qG(A) one wants to find a partition with large edge contribution subject to small
degree tax. If q∗(G) approaches 1 (which is the trivial upper bound), we observe
a strong community structure; conversely, if q∗(G) is close to zero (which is the
trivial lower bound), there is no community structure. The definition in (1) can
be generalized to weighted edges by replacing edge counts with sums of edge
weights.

Using Graph Modularity for Hypergraphs Given a hypergraph H =
(V,E), it is common to transform its hyperedges into complete graphs (cliques),
the process known as forming the 2-section of H, graph H[2], on the same set of
nodes as H. For each hyperedge e ∈ E with |e| ≥ 2 and weight w(e),

(|e|
2

)
edges

are formed, each of them with weight of w(e)/(|e| − 1). While there are other
natural choices for the weights (such as the original weighting scheme w(e)/

(|e|
2

)
that preserves the total weight), this choice ensures that the degree distribution
of the created graph matches the one of the original hypergraphH [26, 25]. More-
over, let us also mention that it also nicely translates a natural random walk on
H into a random walk on the corresponding H[2]. As hyperedges in H usually
overlap, this process creates a multigraph. In order for H[2] to be a simple graph,
if the same pair of vertices appear in multiple hyperedges, the edge weights are
added together.

One of the approaches for finding communities in hypergraphs that practi-
tioners use is to apply Louvain algorithm to graph H[2]. Despite the fact that
this procedure is simple, it has a drawback that the 2-section graph looses some
potentially useful information. Therefore, it is desired to define modularity for
a hypergraph and aim to optimize it directly.

Hypergraph Modularity For edges of size greater than 2, several definitions
can be used to quantify the edge contribution for a given partition A of the set of
nodes. As a result, the choice of hypergraph modularity function is not unique.
It depends on how strongly one believes that a hyperedge is an indicator that
some of its vertices fall into one community. The fraction of nodes of a given
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hyperedge that belong to one community is called its homogeneity (provided it is
more than 50%). In one extreme case, all vertices of a hyperedge have to belong
to one of the parts in order to contribute to the modularity function; this is the
strict variant assuming that only homogeneous hyperedges provide information
about underlying community structure. In the other natural extreme variant,
the majority one, one assumes that edges are not necessarily homogeneous and
so a hyperedge contributes to one of the parts if more than 50% of its vertices
belong to it; in this case being over 50% is the only information that is consid-
ered relevant for community detection. All variants in between guarantee that
hyperedges contribute to at most one part. Once the variant is fixed, one needs to
benchmark the corresponding edge contribution using the degree tax computed
for the generalization of the Chung-Lu model to hypergraphs proposed in [18].

The hypergraph modularity function is controlled by hyper-parameters wc,d ∈
[0, 1] (d ≥ 2, bd/2c+ 1 ≤ c ≤ d). For a fixed set of hyper-parameters, we define

qH(A) =
∑
d≥2

d∑
c=bd/2c+1

wc,d q
c,d
H (A), (2)

where

qc,dH (A) =
1

|E|
∑
Ai∈A

(
ed,cH (Ai)− |Ed| · Pr

(
Bin

(
d,

vol(Ai)

vol(V )

)
= c

))
;

ed,cH (Ai) is the number of hyperedges of size d that have exactly c members in
Ai, and Bin(d, p) is the binomial random variable.

Hyper-parameters wc,d give us a lot of flexibility and allow to value some
edges more than others depending on their size and homogeneity. However, there
are three natural hyper-parameters that one might consider, yielding three mod-
ularity functions to optimize:

– strict modularity : wd,d = 1 and wc,d = 0 for bd/2c+ 1 ≤ c < d,
– linear modularity : wc,d = c/d for bd/2c+ 1 ≤ c ≤ d,
– majority modularity : wc,d = 1 for bd/2c+ 1 ≤ c ≤ d.

3 Hypergraph Modularity Optimization Algorithm

3.1 Louvain Algorithm

Let us start by introducing one of the mostly used unsupervised algorithms for
detecting communities in graphs, namely, the Louvain algorithm [7]. It is a
hierarchical clustering algorithm that tries to optimize the modularity function
we described in Section 2.

In this algorithm, small communities are first found by optimizing modularity
locally on all nodes. Then, each small community is grouped into one node and
the original step is repeated on a smaller graph. The process stops when no
improvement on the modularity function can be further achieved.
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One pass of the algorithm consists of two phases that are repeated itera-
tively. Initially, each node in the network is assigned to its own community. For
each node v, we consider all neighbours u of v and compute the change in the
modularity function if v is removed from its own community and moved into the
community of u. It is important to mention that this value can be easily and ef-
ficiently calculated without the need to recompute the modularity function from
scratch. Once all the communities that v could belong to are considered, v is
placed into the community that resulted in the largest increase of the modular-
ity function. If no increase is possible, v remains in its original community. The
process is repeated for the remaining nodes following a given (typically random)
permutation of nodes. If no increase is possible after considering all nodes, a
local maximum value is achieved and the first phase ends.

During the second phase, the algorithm contracts all nodes that belong to one
community into a single node. All edges within that community are replaced by
a single weighted loop. Similarly, all edges between two communities are replaced
by a single weighted edge. Once the new network is created, the second phase
ends. The resulting graph is typically much smaller than the original graph. As a
result, the first pass is typically the most time consuming part of the algorithm.

3.2 Challenges with Adjusting the Algorithm to Hypergraphs

One could try to directly apply the Louvain algorithm to optimize hypergraph
modularity, since in both cases the goal is to find a partition of the set nodes.
However, as the algorithm moves only one node at a time, it creates a problem
in the case of hypergraphs.

Consider, for example, a hypergraph in which all hyperedges have size at least
four. In this case, regardless which two nodes u and v are considered for possible
merging into one community, the edge contribution would not change (that is, it
would stay equal to zero), even if u and v are part of some hyperedge. (Recall that
only hyperedges with majority of nodes from the same community may affect
the edge contribution). On the other hand, the degree tax would increase after
such a move and, as a result, the modularity function would decrease. Therefore,
no move would be made and the algorithm would get immediately stuck. This
problem can be referred to as a lift off from the ground problem.

The above, extreme, situation is not the only problem one should be aware
of. Consider this time a hypergraph that consists of a mixture of hyperedges
of various sizes, including edges of size two. In this scenario there is no prob-
lem with lifting off from the ground but small hyperedges clearly play a much
more important role than large ones during the initial merging in the first phase
of the algorithm. On the other hand, very large hyperedges would be mostly
ignored. This behaviour is not desirable either. In order to illustrate a poten-
tial danger, consider a hypergraph representing interactions between researchers
at some institution. Nodes in this hypergraph correspond to researchers and
hyperedges correspond to meetings of some groups of people. For simplicity,
assume that there are two communities, say, faculty of science and faculty of
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engineering. Many hyperedges within the two communities are large (e.g. hy-
peredges associated with departmental meetings) whereas hyperedges between
the two communities are mostly of size two (e.g. two members of different teams
meet individually from time to time). In this scenario, the algorithm would start
merging people from different communities during the first phase.

Finally, let us note that one could alternatively consider modifying the al-
gorithm and allow for not only merging two nodes into one community in a
single move but entire hyperedges. Again, this does not seem to be desirable as
hyperedges might consist of members from different communities and so such
operations would generate many incorrect merges too fast.

3.3 Our Approach to Hypergraph Modularity Optimization:
h-Louvain

In order to overcome the above mentioned challenges, we want to design an algo-
rithm that, as in the classical Louvain algorithm, merges single pairs of nodes
while, at the same time, takes into account information stored in hyperedges
of all sizes. To that end we propose to optimize a linear combination of the
hypergraph modularity qH(A) and the graph modularity of the corresponding
2-section graph H[2], that is, optimize function

q(A, α) := α · qH(A) + (1− α) · qH[2]
(A), (3)

where α ∈ [0, 1]. For simplicity, we will refer to our algorithm as h-Louvain.
To understand the motivation behind this approach, let us observe the follow-

ing. The hypergraph modularity, equation (2), is flexible and may approximate
well the graph modularity for the corresponding 2-section graph H[2]. Indeed, if
c vertices of a hyperedge e of size d and weight w(e) fall into one part of the par-
tition A, then the contribution to the graph modularity is w(e)

(
c
2

)
/(|e| − 1) (in

the variant of the 2-section where the degrees are preserved) or w(e)
(
c
2

)
/
(|e|
2

)
≈

w(e)(c/|e|)2 (if the total weight is preserved). Hence, the hyper-parameters of
the hypergraph modularity can be adjusted to approximate H[2] modularity. The
only difference is that (2) does not allow to include contributions from parts that
contain at most d/2 vertices which still contributes to the graph modularity of
H[2].

The observation justifies using q(A, α) for optimizing the hypergraph modu-
larity. It is a linear combination of the actual hypergraph modularity we want to
optimize, qH(A), and an approximation of the hypergraph modularity for special
values of hyper-parameters and without the restriction of hyperedge contribu-
tion, qH[2]

(A). The benefit of the second part is that it is sensitive to merging
two nodes and so it always gives some indication of how nodes should be merged.
In short, it resolves the lifting off from the ground problem. If α is close to zero,
then we concentrate mostly on the approximation part, while if α is close to
one, then we mostly concentrate on the actual hypergraph modularity we aim
to optimize.
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The above discussion leads us to the conclusion that the parameter α ∈ [0, 1]
should be appropriately tuned during the algorithm. The main questions are: a)
when the change should be made, and b) what values of this parameter should
be used? The main goal of this paper is to answer these two questions.

Given the theoretical derivation we presented above, the following hypotheses
(that will be verified in Section 4) can be formulated:

– the optimization process should be started with low values of the parameter
α (to let the process lift off from the ground) and then it should be gradually
increased till it reaches one by the end of the process (since for this value, we
reduce the problem to optimizing the function we actually want to optimize);

– the algorithm should start increasing parameter α when the communities
induce enough edges so that merging additional nodes makes a difference
in the edge contribution of the qH function value; this, in particular, means
that since the strict hypergraph modularity pays attention to only pure hy-
peredges (all members belong to one community), in this case, the algorithm
needs to start with lower values of α and increase it slower than for the ma-
jority or the linear counterparts of the hypergraph modularity for which it
is enough that over 50% of nodes in some hyperedge are captured in one
community.

4 Results

4.1 Synthetic Hypergraph Model: h-ABCD

There are very few datasets with ground-truth identified and labelled. As a re-
sult, there is need for synthetic random graph models with community structure
that resemble real-world networks in order to benchmark and tune clustering
algorithms that are unsupervised by nature. Since we are at the initial stage of
developing our algorithm, we concentrate on experiments on synthetic networks
but real-world ones will be investigated in the journal version of this paper.

The situation for graphs is rather clear. The LFR (Lancichinetti, Fortunato,
Radicchi) model [29, 27] generates networks with communities and at the same
time it allows for the heterogeneity in the distributions of both node degrees
and of community sizes. It became a standard and extensively used method
for generating artificial networks. The Artificial Benchmark for Community
Detection (ABCD) [20] was recently introduced and implemented5, including
a fast implementation6 that uses multiple threads (ABCDe) [24]. Undirected
variant of LFR and ABCD produce graphs with comparable properties but
ABCD/ABCDe is faster than LFR and can be easily tuned to allow the user
to make a smooth transition between the two extremes: pure (disjoint) commu-
nities and random graph with no community structure. Moreover, it is easier to
analyze theoretically—for example, in [17] various theoretical asymptotic prop-
erties of the ABCD model are investigated including the modularity function,
5 https://github.com/bkamins/ABCDGraphGenerator.jl/
6 https://github.com/tolcz/ABCDeGraphGenerator.jl/
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arguably, the most important graph property of networks in the context of com-
munity detection.

Situation for hypergraphs is not as clear as for graphs. There are not only very
few real-world datasets available to use but also there are not so many synthetic
hypergraphs one can use. Fortunately, the building blocks in the ABCD model
are flexible and may be adjusted to satisfy different needs. For example, the
model was adjusted to include potential outliers in [23] resulting in ABCD+o
model. Adjusting the model to hypergraphs is more complex but it was also
done recently [22] resulting in h-ABCD model. We will use this model for our
experiments.

4.2 Exhaustive Search for the Best Strategy

As discussed in Section 3, one hypothesis that was identified for our h-Louvain
algorithm is that one should avoid decreasing the values of α in q(A, α) (see
equation (3)) as the algorithm progresses. In this first set of experiments, we
consider h-ABCD synthetic hypergraphs on 1,000 nodes of degrees in the range
[5, 20] (with average around 8) and community sizes in the range [10, 30] (with
average around 18), where both distributions follow a power law. The hyperedges
are of size between 2 and 5, inclusively, and the linear option for community
hyperedges in the h-ABCD generator. The noise level is set at ξ = 0.3, the
proportion of hyperedges which are sampled randomly from the set of all nodes,
regardless of community memberships.

We ran an exhaustive search for every sequence of length 5 for the values
of α, namely (α1, . . . , α5) which are chosen from the set {0, 0.25, 0.5, 0.75, 1}5.
For each sequence, we run a test with 5 different random seeds, for a total of
5 · 55 = 15,625 distinct runs of the h-Louvain algorithm.

One key question is when the value of parameter α should be changed, that
is, when to move from αi to αi+1 for 1 ≤ i ≤ 4. After running several empirical
tests, we reached the conclusion that the best results are achieved when the
change is made when the number of communities reaches n/zi, where n equals
the initial number of nodes and z ∈ R, z > 1, is a tuneable parameter. In
our experiments, parameter z is set experimentally to z = 2.3 but in the final
version of the algorithm its value will be appropriately tuned and, in particular,
it will depend on the hyperedge size distribution in a given hypergraph at hand.
One instance of running the h-Louvain algorithm is shown in Figure 1, where
we show the evolution of two quantities: the number of communities and the
modularity functions. More examples can be found in the associated appendix
available online7.

In Figures 2–4, we show the results of the exhaustive search using, respec-
tively, three different hypergraph modularity functions: strict, linear, and major-
ity. In the top plots, we compare the resulting modularity values for monotonic
(that is, non-decreasing) sequences of α’s versus all remaining sequences, while
in the bottom plots, we restrict the non-decreasing sequences to the ones where
7 https://math.torontomu.ca/˜pralat/research.html
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α3 < 1 and α5 = 1, thus forcing sequences of non-decreasing values spanning
a wider range. For example, this avoids the non-decreasing sequence in which
αi = 1 for all i. Based on those figures, we see that the non-decreasing sequences
generally yield better results, and forcing the extra conditions greatly reduces
the variability of the results. We also notice that the gain in choosing such a
strategy is more visible in the case of the strict modularity, and less so for the
linear modularity. This is to be expected as the linear hypergraph modularity
bears more similarity to the 2-section graph modularity function.
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Fig. 1. Visualisation of the h-Louvain process for the sequence (0.0, 0.25, 0.5, 0.75, 1)
of α changes and maximization of the linear hypergraph modularity. The x-axis corre-
sponds to the passes of the algorithm. For each pass, the iterations (based on checking
all nodes in random order) of the modularity optimization phase are denoted by con-
secutive numbers, whereas the phase of node collapsing (community aggregation) is
marked by [X].
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Fig. 2. Results of the exhaustive search for the case of strict hypergraph modularity.
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Fig. 3. Results of the exhaustive search for the case of linear hypergraph modularity.

4.3 Comparing Basic Policies for Different Modularity Functions

For the following experiments, we consider the h-ABCD model with the same
set of parameters used in Section 4.2 and with three different ways to gener-
ate community edges: (i) strict, (ii) linear, and (iii) majority. In each case, we
generated 10 different hypergraphs (starting with different random seeds).

We consider simple policies where we use some value α1 for the first pass
of the h-Louvain algorithm, α2 for the second pass, and α3 for all subsequent
passes. Note that in all runs, there were never more than 5 passes. Thus, for ex-
ample, policy (α1, α2, α3) = (0, 0, 0) amounts to optimizing the 2-section graph
modularity during the entire process, while policy (1, 1, 1) amounts to optimizing
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Fig. 4. Results of the exhaustive search for the case of majority hypergraph modu-
larity.

the hypergraph modularity throughout. Each policy is tested 5 times with dif-
ferent random seeds for each of the 10 hypergraphs. We considered 19 different
policies either with constant αi, or non-decreasing sequences with α3 = 1.

We use Friedman-Nemenyi statistical test described in detail in [12] to val-
idate whether the performance difference between compared policies is statisti-
cally significant. We follow the same procedure for the three investigated cases,
i.e., strict, linear, and majority modularity optimization. First, for every gener-
ated hypergraph, we rank the policies based on the average modularity obtained
in 5 runs so that the policy with the highest score is ranked 1 while the one
with the worst score is ranked 19. Then, the Friedman test based on the av-
erage ranks is used to analyze if the differences between all compared policies
on multiple hypergraphs are statistically significant. For each investigated case,
the calculated Friedman rank sum test statistics was greater than the critical
value for the assumed level of confidence α = 0.05, so the conclusion is that the
null hypothesis that there is no difference between the policies could be rejected,
and the post-hoc Nemenyi test can be conducted. The Nemenyi test aims to
investigate the difference between each pair of individual policies. According to
the test assumptions, the difference between a given pair of policies is regarded
as statistically significant if it is bigger than the critical difference CD (for an as-
sumed confidence level 0.05) calculated based on formulas presented in [12] (in
our case equal to 2.03). We used the most popular way to visualize the Nemenyi
test results proposed originally in [12]. The three diagrams presented in Fig-
ures 5–7 illustrate the ranked performances of the compared policies along with
the critical difference CD when optimizing strict, linear, and majority modularity
functions. The central axis presented in the diagrams is used to plot the average
ranks of compared policies sorted in decreasing order (with the best policy at the
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right). Moreover, in order to support the results’ interpretation, the horizontal
bolt lines are added below the main axis to connect the groups of policies that
are not significantly different.

In general, when the strict modularity is optimized, it is important to start
with low values of the parameter α, while this is not as important when opti-
mizing linear or majority modularity functions. Other general observations are
that it is best to increase α3 to its maximum value of 1, and never to start with
α1 = 1 right away.

Further results using the other h-ABCD hypergraphs as well as more nu-
merical details can be found in the associated appendix available online8. The
conclusions remain the same.
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Fig. 5. Visualization of Friedman and Nemenyi test results for strict modularity
with linear h-ABCD.
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Fig. 6. Visualization of Friedman and Nemenyi test results for linear modularity
with linear h-ABCD.

8 https://math.torontomu.ca/˜pralat/research.html
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Fig. 7. Visualization of Friedman and Nemenyi test results for majority modularity
with linear h-ABCD.

5 Conclusions

In this paper, we proposed a modification of the classical Louvain algorithm
that allows us to optimize the hypergraph modularity, h-Louvain. Our ap-
proach is to optimize a weighted average of the 2-section graph modularity and
the hypergraph modularity, with an increasing weight of hypergraph modularity
component as the optimization process progresses. We have presented both the-
oretical arguments as well as empirical evidence that the approach of increasing
the weight of hypergraph modularity component improves the results of the op-
timization process in comparison to trying to optimize hypergraph modularity
directly using the Louvain algorithm, or using a different weight change policy.

In this proceeding version of the paper, we concentrate on presenting the
main ideas behind the proposed algorithm and the results showing that, indeed,
it gives performance improvements. However, the key element of the algorithm
is the schedule how the weight of the hypergraph modularity component should
be changed (that is, what value should be taken and when to make the change).
In the initial experiments we selected parameter α (the weight) from a fixed
set of possible values and change it in discrete time steps governed by parame-
ter z (fixed in our experiments). In the extended, journal version of this paper,
more sophisticated algorithm will be presented and experimented with that will
perform auto-tuning of these parameters based on various hypergraph charac-
teristics and the type of hypergraph modularity that is optimized.

Additionally, let us mention about another important and interesting aspect.
Since in h-Louvain the optimization process is stochastic by nature, the results
of a single optimization pass can be easily improved by running many such
optimizations in parallel. Therefore, an important extension to the algorithm is
for allowing it to learn how to dynamically set the tuneable parameters when
multiple optimization processes are executed.



Modularity Based Community Detection in Hypergraphs 15

One final extension that we plan to do is to allow for auto-discovery of which
version of modularity function best fits the analyzed hypergraph. In the current
version of the algorithm the user has to specify this information explicitly.
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A Appending – Additional Experiments – Not to be
Included in the Proceeding Paper
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Fig. 8. Visualisation of the Louvain process for the cases of α changes correspoding to
sequence (0.0, 0.25, 0.5, 0.75, 1) and maximization of strict hypergraph modularity.
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Fig. 9. Visualisation of the Louvain process for the cases of α changes correspoding to
sequence (0.0, 0.25, 0.5, 0.75, 1) and maximization of majority hypergraph modularity.
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Table 1. Detailed results of experiments from Sec. 4.3 for the case of strict modu-
larity with strict h-ABCD (means and standard deviations of 5 executions).

Policy name Mean Std
policy-0.0-1.0-1.0 0.550054 0.000843
policy-0.0-0.5-1.0 0.549909 0.000458
policy-0.0-0.25-1.0 0.549798 0.001588
policy-0.0-0.75-1.0 0.549738 0.000780
policy-0.25-0.5-1.0 0.549566 0.001710
policy-0.25-0.75-1.0 0.549514 0.001933
policy-0.25-0.25-1.0 0.549067 0.001750
policy-0.0-0.0-1.0 0.548944 0.001170
policy-0.25-1.0-1.0 0.548707 0.001583
policy-0.75-0.75-1.0 0.547741 0.000542
policy-0.5-1.0-1.0 0.547677 0.001303
policy-0.5-0.5-1.0 0.547676 0.000701
policy-0.75-1.0-1.0 0.547637 0.000635
policy-0.75-0.75-0.75 0.547615 0.000640
policy-0.5-0.75-1.0 0.547405 0.000906
policy-0.25-0.25-0.25 0.546696 0.001704
policy-0.5-0.5-0.5 0.545957 0.001298
policy-0.0-0.0-0.0 0.544068 0.000984
policy-1.0-1.0-1.0 0.473480 0.005054
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Fig. 10. Visualization of Friedman and Nemenyi test results for strict modularity
with strict h-ABCD.
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Table 2. Detailed results of experiments from Sec. 4.3 for the case of strict modu-
larity with linear h-ABCD (means and standard deviations of 5 executions).

Policy name Mean Std
policy-0.0-0.75-1.0 0.481523 0.001433
policy-0.5-0.75-1.0 0.481497 0.001208
policy-0.0-0.5-1.0 0.481055 0.001018
policy-0.0-0.0-1.0 0.480840 0.001109
policy-0.75-0.75-1.0 0.480819 0.000937
policy-0.25-0.5-1.0 0.480813 0.000532
policy-0.0-1.0-1.0 0.480773 0.001592
policy-0.25-0.75-1.0 0.480625 0.000862
policy-0.5-1.0-1.0 0.480434 0.001432
policy-0.25-1.0-1.0 0.480343 0.001297
policy-0.5-0.5-1.0 0.480257 0.001892
policy-0.75-1.0-1.0 0.480220 0.001290
policy-0.75-0.75-0.75 0.480127 0.000894
policy-0.0-0.25-1.0 0.479862 0.001072
policy-0.25-0.25-1.0 0.479861 0.001039
policy-0.5-0.5-0.5 0.478779 0.001717
policy-0.25-0.25-0.25 0.476036 0.001234
policy-0.0-0.0-0.0 0.474350 0.001066
policy-1.0-1.0-1.0 0.430973 0.003849
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Fig. 11. Visualization of Friedman and Nemenyi test results for strict modularity
with linear h-ABCD.
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Table 3. Detailed results of experiments from Sec. 4.3 for the case of strict modu-
larity with majority h-ABCD (means and standard deviations of 5 executions).

Policy name Mean Std
policy-0.0-0.75-1.0 0.462403 0.001284
policy-0.0-1.0-1.0 0.461853 0.001658
policy-0.0-0.5-1.0 0.461712 0.002091
policy-0.25-1.0-1.0 0.461485 0.001839
policy-0.25-0.5-1.0 0.461008 0.001429
policy-0.0-0.25-1.0 0.460910 0.000614
policy-0.25-0.75-1.0 0.460675 0.001485
policy-0.0-0.0-1.0 0.460318 0.001109
policy-0.5-0.5-1.0 0.459948 0.001773
policy-0.25-0.25-1.0 0.459884 0.001718
policy-0.5-0.75-1.0 0.459498 0.000945
policy-0.5-1.0-1.0 0.459138 0.000507
policy-0.75-0.75-1.0 0.458213 0.000909
policy-0.5-0.5-0.5 0.457937 0.001059
policy-0.75-1.0-1.0 0.457812 0.001357
policy-0.75-0.75-0.75 0.457552 0.001113
policy-0.25-0.25-0.25 0.456586 0.001603
policy-0.0-0.0-0.0 0.454287 0.002027
policy-1.0-1.0-1.0 0.423735 0.002701
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Fig. 12. Visualization of Friedman and Nemenyi test results for strict modularity
with majority h-ABCD.
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Table 4. Detailed results of experiments from Sec. 4.3 for the case of linear modu-
larity with strict h-ABCD (means and standard deviations of 5 executions).

Policy name Mean Std
policy-0.75-0.75-1.0 0.583035 0.001914
policy-0.75-0.75-0.75 0.582899 0.001873
policy-0.75-1.0-1.0 0.582889 0.001530
policy-0.25-0.75-1.0 0.582140 0.001025
policy-0.25-1.0-1.0 0.582111 0.001596
policy-0.25-0.5-1.0 0.581496 0.000684
policy-0.5-0.75-1.0 0.581150 0.001163
policy-0.5-1.0-1.0 0.580949 0.001418
policy-0.0-0.75-1.0 0.580588 0.000930
policy-0.0-0.5-1.0 0.580580 0.000528
policy-0.0-1.0-1.0 0.580555 0.000855
policy-0.5-0.5-1.0 0.580505 0.001403
policy-0.5-0.5-0.5 0.580387 0.001384
policy-0.25-0.25-1.0 0.580097 0.000839
policy-0.25-0.25-0.25 0.579939 0.000922
policy-0.0-0.25-1.0 0.579437 0.000648
policy-1.0-1.0-1.0 0.577242 0.001350
policy-0.0-0.0-1.0 0.576973 0.000936
policy-0.0-0.0-0.0 0.576508 0.000877
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Fig. 13. Visualization of Friedman and Nemenyi test results for linear modularity
with strict h-ABCD.
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Table 5. Detailed results of experiments from Sec. 4.3 for the case of linear modu-
larity with linear h-ABCD (means and standard deviations of 5 executions).

Policy name Mean Std
policy-0.75-1.0-1.0 0.553803 0.001448
policy-0.75-0.75-1.0 0.553197 0.001006
policy-0.75-0.75-0.75 0.553059 0.001106
policy-0.25-1.0-1.0 0.552988 0.001151
policy-0.5-1.0-1.0 0.552743 0.000897
policy-0.25-0.75-1.0 0.552738 0.000709
policy-0.5-0.75-1.0 0.552715 0.000576
policy-0.25-0.5-1.0 0.552109 0.000612
policy-0.5-0.5-1.0 0.551876 0.000768
policy-0.0-1.0-1.0 0.551628 0.000996
policy-0.5-0.5-0.5 0.551426 0.000847
policy-0.25-0.25-1.0 0.551390 0.000797
policy-0.0-0.75-1.0 0.551355 0.000865
policy-0.0-0.5-1.0 0.550627 0.000697
policy-0.25-0.25-0.25 0.550586 0.000901
policy-0.0-0.25-1.0 0.549692 0.001195
policy-0.0-0.0-1.0 0.548950 0.000909
policy-0.0-0.0-0.0 0.548078 0.000855
policy-1.0-1.0-1.0 0.544506 0.001861
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Fig. 14. Visualization of Friedman and Nemenyi test results for linear modularity
with linear h-ABCD.
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Table 6. Detailed results of experiments from Sec. 4.3 for the case of linear modu-
larity with majority h-ABCD (means and standard deviations of 5 executions).

Policy name Mean Std
policy-0.25-1.0-1.0 0.547888 0.001088
policy-0.25-0.75-1.0 0.547571 0.000680
policy-0.25-0.5-1.0 0.547143 0.001239
policy-0.5-1.0-1.0 0.546262 0.001120
policy-0.25-0.25-1.0 0.545856 0.001329
policy-0.0-0.75-1.0 0.545830 0.001385
policy-0.5-0.5-1.0 0.545795 0.001643
policy-0.0-1.0-1.0 0.545691 0.001544
policy-0.5-0.75-1.0 0.545676 0.001328
policy-0.5-0.5-0.5 0.545565 0.001642
policy-0.25-0.25-0.25 0.545422 0.001330
policy-0.75-1.0-1.0 0.545278 0.000913
policy-0.0-0.5-1.0 0.544920 0.002246
policy-0.75-0.75-1.0 0.544874 0.000948
policy-0.75-0.75-0.75 0.544769 0.000977
policy-0.0-0.25-1.0 0.543846 0.001442
policy-0.0-0.0-1.0 0.542411 0.001098
policy-0.0-0.0-0.0 0.540734 0.001448
policy-1.0-1.0-1.0 0.536671 0.002150
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Fig. 15. Visualization of Friedman and Nemenyi test results for linear modularity
with majority h-ABCD.
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Table 7. Detailed results of experiments from Sec. 4.3 for the case of majority mod-
ularity with strict h-ABCD (means and standard deviations of 5 executions).

Policy name Mean Std
policy-0.75-1.0-1.0 0.612747 0.001802
policy-0.75-0.75-1.0 0.612150 0.001969
policy-0.75-0.75-0.75 0.612096 0.001919
policy-0.5-1.0-1.0 0.608267 0.001878
policy-0.5-0.75-1.0 0.607718 0.002146
policy-0.5-0.5-1.0 0.60506 0.001352
policy-0.5-0.5-0.5 0.604750 0.001497
policy-0.25-1.0-1.0 0.604107 0.000963
policy-0.25-0.75-1.0 0.603918 0.001421
policy-0.25-0.5-1.0 0.601904 0.001243
policy-0.0-1.0-1.0 0.600812 0.001374
policy-0.25-0.25-1.0 0.600524 0.001663
policy-0.25-0.25-0.25 0.600475 0.001647
policy-0.0-0.75-1.0 0.600407 0.001374
policy-0.0-0.5-1.0 0.598773 0.001388
policy-0.0-0.25-1.0 0.597274 0.001621
policy-1.0-1.0-1.0 0.594255 0.002331
policy-0.0-0.0-1.0 0.592029 0.001623
policy-0.0-0.0-0.0 0.591359 0.001798
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Fig. 16. Visualization of Friedman and Nemenyi test results for majority modularity
with strict h-ABCD.
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Table 8. Detailed results of experiments from Sec. 4.3 for the case of majority mod-
ularity with linear h-ABCD (means and standard deviations of 5 executions).

Policy name Mean Std
policy-0.75-1.0-1.0 0.597977 0.000477
policy-0.75-0.75-1.0 0.597941 0.000506
policy-0.75-0.75-0.75 0.597785 0.000530
policy-0.5-1.0-1.0 0.596106 0.000527
policy-0.5-0.75-1.0 0.595675 0.001127
policy-0.5-0.5-1.0 0.595044 0.001336
policy-0.5-0.5-0.5 0.594313 0.001562
policy-0.25-1.0-1.0 0.593421 0.001284
policy-0.25-0.75-1.0 0.593265 0.001347
policy-0.25-0.5-1.0 0.592274 0.000883
policy-0.0-1.0-1.0 0.590636 0.001040
policy-0.0-0.75-1.0 0.590026 0.000994
policy-0.25-0.25-1.0 0.588817 0.001188
policy-0.0-0.5-1.0 0.588693 0.001420
policy-0.25-0.25-0.25 0.587252 0.001363
policy-0.0-0.25-1.0 0.585226 0.000935
policy-0.0-0.0-1.0 0.581413 0.000949
policy-0.0-0.0-0.0 0.579814 0.001368
policy-1.0-1.0-1.0 0.569114 0.004407
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Fig. 17. Visualization of Friedman and Nemenyi test results for majority modularity
with linear h-ABCD.
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Table 9. Detailed results of experiments from Sec. 4.3 for the case of majority mod-
ularity with majority h-ABCD (means and standard deviations of 5 executions).

Policy name Mean Std
policy-0.75-0.75-1.0 0.597348 0.001625
policy-0.75-0.75-0.75 0.597231 0.001678
policy-0.75-1.0-1.0 0.596774 0.002238
policy-0.5-1.0-1.0 0.595842 0.001810
policy-0.5-0.5-1.0 0.594842 0.002028
policy-0.5-0.75-1.0 0.594772 0.001488
policy-0.5-0.5-0.5 0.594548 0.001998
policy-0.25-0.75-1.0 0.593974 0.001597
policy-0.25-1.0-1.0 0.593305 0.001469
policy-0.25-0.5-1.0 0.593166 0.002182
policy-0.25-0.25-1.0 0.589855 0.001012
policy-0.0-0.75-1.0 0.588934 0.003178
policy-0.0-1.0-1.0 0.588051 0.002486
policy-0.25-0.25-0.25 0.587908 0.001176
policy-0.0-0.5-1.0 0.587540 0.003597
policy-0.0-0.25-1.0 0.585785 0.002777
policy-0.0-0.0-1.0 0.580150 0.004308
policy-0.0-0.0-0.0 0.576749 0.004342
policy-1.0-1.0-1.0 0.561960 0.005419
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Fig. 18. Visualization of Friedman and Nemenyi test results for majority modularity
with majority h-ABCD.


