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Abstract. We investigate a combinatorial optimization problem that involves
patrolling the edges of an acute triangle using a unit-speed agent. The goal is
to minimize the maximum (1-gap) idle time of any edge, which is defined as
the time gap between consecutive visits to that edge. This problem has roots in
a centuries-old optimization problem posed by Fagnano in 1775, who sought
to determine the inscribed triangle of an acute triangle with the minimum
perimeter. It is well-known that the orthic triangle, giving rise to a periodic and
cyclic trajectory obeying the laws of geometric optics, is the optimal solution
to Fagnano’s problem. Such trajectories are known as Fagnano orbits, or more
generally as billiard trajectories. We demonstrate that the orthic triangle is also
an optimal solution to the patrolling problem.
Our main contributions pertain to new connections between billiard trajecto-
ries and optimal patrolling schedules in combinatorial optimization. In par-
ticular, as an artifact of our arguments, we introduce a novel 2-gap patrolling
problem that seeks to minimize the visitation time of objects every three visits.
We prove that there exist infinitely many well-structured billiard-type optimal
trajectories for this problem, including the orthic trajectory, which has the spe-
cial property of minimizing the visitation time gap between any two consecu-
tively visited edges. Complementary to that, we also examine the cost of dy-
namic, sub-optimal trajectories to the 1-gap patrolling optimization problem.
These trajectories result from a greedy algorithm and can be implemented by
a computationally primitive mobile agent.
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1 Introduction

Patrolling refers to the perpetual monitoring, protection, and supervision of a do-
main or its perimeter using mobile agents. In a typical patrolling problem involving
one mobile agent, the agent must move through a given domain in order to monitor
or check specific locations or objects. The objective is to find a trajectory that satis-
fies certain constraints and/or that addresses quantitative objectives, such as min-
imizing the total distance traveled or maximizing the frequency of visits to certain

⋆ The full version of this paper appears on arXiv [20].
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areas. The purpose of patrolling could be to detect any intrusion attempts, moni-
tor for possible faults or to identify and rescue individuals or objects in a disaster
environment, and for this reason, such problems arise in a variety of real-world ap-
plications, such as security patrol routes, autonomous robot navigation, and wildlife
monitoring. Overall the subject of patrolling has seen a growing number of appli-
cations in Computer Science, including Infrastructure Security, Computer Games,
perpetual domain-surveying, and monitoring in 1D and 2D geometric domains.

In addition to its practical applications, patrolling has emerged (not as a com-
binatorial optimization problem) in the context of theoretical physics. In particular,
the problem of finding periodic trajectories in billiard systems has been a topic of in-
terest for many years. A billiard system is a model of a particle or a waveform moving
inside a domain (typically polygonal, but also elliptical, convex, or even non-convex
region) and reflecting off its boundaries according to the laws of elastic collision. The
problem of finding periodic trajectories in a billiard system is equivalent to finding a
closed path in the domain that satisfies certain geometric conditions.

One important example of a periodic trajectory in billiard systems is the so-called
Fagnano orbit on acute triangles, a periodic, closed (and piece-wise linear) curve
that visits the three edges of an acute triangle. Fagnano orbits, named after the Ital-
ian mathematician Giulio Fagnano who first studied them in the mid-18th century,
arise as solutions to the optimization problem which asks for the shortest such curve.
In this work we explore further connections between billiard trajectories and pa-
trolling as a combinatorial optimization problem. In particular, we are asking what
are the patrolling strategies for the edges of an acute triangle that optimize standard
frequency-related objectives are. Our findings demonstrate that a family of Fagnano
orbits are actually optimal solutions to the corresponding combinatorial optimiza-
tion problems, revealing this way deeper connections between the seemingly dis-
parate areas of combinatorial patrolling and billiard trajectories.

2 Related Work

Patrolling problems are a fundamental class of problems in computational geome-
try, combinatorial optimization, and robotics that have attracted significant research
interest in recent years. Due to their practical applications, they have received exten-
sive treatment in the realm of robotics, see for example [1,6,14,15,22,31,41], as well
as surveys [3,23,35]. When patrolling is seen as part of infrastructure security, it leads
to a number of optimization problems [27], with one particular example being the
identification of network failures or web pages requiring indexing [31].

Combinatorial trade-offs of triangle edge visitation costs have been explored in [19].
In contrast, the current work pertains to the cost associated with the perpetual moni-
toring of the triangle edges by a single unit speed agent. Numerous variations of sim-
ilar patrolling problems have been explored in computational geometry, which vary
depending on the application domain, patrolling specifications, agent restrictions,
and computational abilities. Many efficient algorithms have been developed for sev-
eral of these variants, utilizing a range of techniques from graph theory, computa-
tional geometry, and optimization, see survey [10] for some recent developments.
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Some examples of studied domains include the bounded line segment [25], net-
works [42], polygonal regions [38], trees [11], disconnected boundaries of one dimen-
sional curves [8], arbitrary polygonal environments [33] (with a reduction to graphs),
or even 3-dimensional environments [16].

Identifying optimal patrolling strategies can be computationally hard [12], while
even in seemingly easy setups the optimal trajectories can be counter-intuitive [26].
The addition of combinatorial specifications has given rise to multiple intriguing
variations, including the requirement of uneven coverage [7,34] or waiting times [13],
the presence of high-priority segments [32], and patrolling with distinct speed agents [9].
Patrolling has also been studied extensively from the perspective of distributed com-
puting [30], while the class of these problems also admit a game-theoretic interpre-
tation between an intruder and a surveillance agent [2,18].

Maybe not surprisingly, the optimal patrolling trajectories that we derive are in
fact billiard-type trajectories, that is, periodic and cyclic trajectories obeying the stan-
dard law of geometric optics, and which are referred to as Fagnano orbits specifically
when the underlying billiard/domain is triangular. Fagnano orbits have been studied
extensively both experimentally [28] and theoretically [39]. Billiard-type trajectories
have been explored in equilateral triangles [4], obtuse triangles [21], as well as poly-
gons [40]. More recently, there have been studies on ellipses [17] and general convex
bodies [24], or even fractals [29] and polyhedra [5], with the list of domains or trajec-
tory specifications still growing.

3 Main Definitions and Results

A patrolling schedule S (or simply a schedule) for triangle ∆ with edges (line seg-
ments) E = {α,β,γ} is an infinite sequence {si }i≥0, where each si is on a line segment
of E that we also denote by e(si ), i.e. e(si ) ∈ E for each i ≥ 0. When e(si ) = δ ∈ E we
say that segment δ and point si are visited at step i of the schedule. We will only be
studying feasible schedules, i.e. schedules for which eventually all segments in E are
visited (and infinitely often).

For simplicity, our notation above is tailored to points si that are not vertices of
∆. When si is a vertex of ∆ we assume that both incident edges are visited. We also
think of schedule S as the trajectory of a unit speed agent, and hence we refer to the
time between the visitation of s j , s j+ℓ as the summation of the lengths of segments
s j+i s j+i+1 over i ∈ {0, . . . ,ℓ−1}.

A schedule S is called:
- cyclic if {e(s0),e(s1),e(s2)} = E and e(si+3) = e(si ), for every i ≥ 0, and
- k-periodic (for k ≥ 3) if si+k = si , for every i ≥ 0.

For any segment δ ∈ E we define its t-gap sequence, g t (δ), that records the vis-
itation time gaps of δ over every t + 1 consecutive visitations. In particular, t = 1
corresponds to the standard idle time considered previously, and that measures the
additional time it takes for each object to be revisited, after each visitation. Formally,
let e(s j ) = e(s j ′ ) = δ and suppose that points s j , s j ′ are the k-th and (k + t )-th visita-
tion of δ, respectively. Then the time between the visitations of s j , s j ′ is exactly the
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value of k-th element of sequence g t (δ). From this definition, it is also immediate
that

(
g t (δ)

)
i =

∑t
i=1

(
g 1(δ)

)
i .

The t-gap G t (δ) of δ ∈ E is defined as supi

(
g t (δ)

)
i , while the t-gap G t of schedule

S for edges E (hence for input triangle ∆) is defined as maxδ∈E G t (δ). When it is clear
from the context, we will abbreviate G1 simply by G .

3.1 Main Contributions & More Terminology

In this section we summarize our main contributions, pertaining to the optimal 1-
gap and 2-gap patrolling schedules of acute triangles. Due to space limitations, any
omitted proofs from the following sections can be found in the full version of the
paper on arXiv [20].

As a warm-up, we first give a self-contained proof of optimality for 1-gap pa-
trolling schedules, restricted to cyclic and 3-periodic schedules. In order to present
our result, we remind the reader of the so-called orthic triangle, a pedal-type trian-
gle of an acute triangle ∆, which is a triangle inscribed in ∆ whose vertices are the
projections of the ∆’s orthocenter (intersection of altitudes) to its three edges. Note
also the any 3-periodic cyclic schedule corresponds to a triangle inscribed in ∆. The
next theorem, given first by Fagnano in 1775, is proven in Section 4, where we also
introduce some key concepts for our follow-up main contributions.

Theorem 1 (Fagnano’s Theorem). The optimal 1-gap 3-periodic cyclic patrolling sched-
ule of a triangle ∆ is its orthic triangle.

Towards our goal to provide the optimal 1-gap schedules, we find all (infinitely
many) optimal 2-gap cyclic schedules, which are in fact billiard-type trajectories. We
prove the next theorem in Section 6.

Theorem 2. There are infinitely many optimal 2-gap cyclic schedules of a triangle ∆,
that include also the orthic triangle. Every 2-gap optimal schedule is 6-periodic and
has value equal to 2 times the perimeter of the orthic triangle. Moreover, each optimal
schedule is made up of segments that are parallel to the edges of the orthic triangle.

Then in Section 7 we derive our main contribution.

Theorem 3. The optimal 1-gap schedule of a triangle ∆ is its orthic triangle.

In the same section we also quantify the 1-gap cost of the orthic triangle, and we
compare it to the optimal 2-gap schedules. Indeed, we ask which of the optimal 2-
gap schedules minimizes the maximum time in-between the visitation of any two
edges of∆ (and not of the same edge), and we prove that the orthic schedule is again
the optimal, in this multi-objective optimization problem.

From our previous contributions, we conclude that a mobile agent whose task is
to 1-gap optimally patrol a triangle ∆ needs to be able to compute the base points of
∆’s altitudes. Therefore, a natural question is whether we can obtain efficient solu-
tions with a primitive agent. In Section 8 we show the following result.
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Theorem 4. There is a greedy-type schedule that converges to a 3-periodic cyclic sched-
ule whose 1-gap cost is off from the 1-gap optimal cyclic schedule by a factor γ ∈ [1,γ0],
where γ0 = p

2/2+1/2, and γ admits a closed formula as a function of the angles of
the given triangle.

It will follow from our analysis that our greedy algorithm will be nearly optimal for
any acute triangle with one arbitrarily small angle, and it will be the worst off from
the optimal solution when the given triangle is a right isosceles.

4 The 1-Gap Optimal 3-Periodic Cyclic Schedule

There are many proofs known for the fact that inscribed triangle with the shortest
perimeter is its orthic triangle. In the language of triangle patrolling, the statement
is equivalent to that that the optimal 1-gap 3-periodic cyclic schedule of a triangle is
its orthic triangle, articulated in Theorem 1.

The next complementary lemma effectively provides a formula for the optimal
1-gap cost of cyclic 3-periodic schedules.

Lemma 1. Let p be the perimeter of an acute triangle. Then, the perimeter of its orthic

triangle is given by 2p
(

1
sin(B)sin(C ) + 1

sin(A)sin(C ) + 1
sin(A)sin(B)

)−1
.

5 Technical Properties of the Orthic Patrolling Schedule

In this section we explore a number of technical properties associated with the orthic
patrolling schedule, which will be the cornerstone of our main results. All observa-
tions in this section refer to Figure 1 which we explain gradually as we present our
findings.

Our starting point is triangle ABC with edgesα≥β≥ γ, and hence the same rela-
tion holds for the opposite angles. We also depict the base points K ,L,K of altitudes
corresponding to A,B ,C respectively. It follows that inscribed triangle K LM is the
orthic triangle.

We apply a number of reflections of triangle ABC as follows: we obtain reflection
C1 of C around AB , reflection B1 of B around AC1, reflection A1 of A around B1C1,
reflection C2 of C1 around A1B1, and reflection B2 of B1 around A1C2. We refer to the
resulting triangles as the reflected triangles.

Lemma 2. The line passing through B2,C2 is parallel to line passing through BC .

Proof. We consider the slope of several line segments relevant to BC . We have the fol-
lowing observations pertaining to counterclockwise rotation of line segments about
one of their endpoints. The rotation of BC about B by angle 2B gives segment BC1.
The rotation of BC1 about C1 by angle 3C gives segment C1 A1. The rotation of C1 A1

about A1 by angle 3A gives segment A1B2. Finally, the rotation of A1B2 about B2 by
angle B gives segment B2C2.

It follows that segment B2C2 follows by repeated rotation of angle 2B +3C +3A+
B = 3(A+B +C ) = 6π. Since 6π is a multiple of π we conclude the claim. ⊓⊔



6 Konstantinos Georgiou, Somnath Kundu, and Paweł Prałat

Fig. 1: The orthic channel (stripe enclosed between the red dotted lines) as it is ob-
tained by 5 triangle reflections.

Next we provide an alternative representation of the orthic trajectory.

Lemma 3. The line passing through MK (green dotted line in Figure 1) passes through
the following points: L1 on AC1, K1 on B1C1, M1 on A1B1, L2 on A1C2, and K2 on B2C2.
Moreover, points L1,K1, M1,L2,K2 are the bases of corresponding altitudes in the series
of the reflected triangles.

Proof. By the proof of Theorem 1, the orthic triangle K LM can be obtained by con-
sidering the image K1 of K (on B1C1) along the same reflections that resulted into
the reflected triangles. Now consider the intersections M ,L1 of K K1 with AB , AC1,
respectively. It follows that C M and C1M are altitudes in triangles ABC , ABC1, and
BL1 and B1L1 are altitudes in triangles ABC1, AB1C1. In particular, it follows that
K , M ,L1,K1 are collinear.

The same argument applies if we start from triangle AB1C1 and invoke the same
reflections starting from the third one, in the series that gave us the reflected tri-
angles. It follows that by extending line K K1 we intersect segment A1B1 at a point
M1, and segment A1C2 at a point L2, where C1M1 and C2M1 are altitudes in triangles
A1B1C1, and B1L2 is altitudes in triangles A1B1C2. Hence, L2, M1,K1,L1, M ,K are also
collinear.

Finally, we observe that the base K2 of altitude A1K2 is obtained as the reflection
of K1 using the last two reflections of the series of reflections that gave us the reflected
triangles. It follows that K2 is also collinear with L2 and M1 concluding our argument.

⊓⊔
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It follows from Lemma 3 that the orthic trajectory along two cycles of the pa-
trolling schedule can also be described by the line segment K1K2. We refer to the
line passing through K ,K2 as the orthic line. Alternatively, we showed that all points
within segment K1K2 lie within the reflected triangles. Our observation justifies that
the following concept is well-defined.

Definition 1. The orthic channel is defined by two lines ℓ1,ℓ2 parallel to the orthic
line of maximum distance, and with the following properties: ℓ1,ℓ2 intersect segments
BC and B2C2 and all points on lines ℓ1,ℓ2 in-between segments BC and B2C2 lie
within the reflected triangles.

Similar reflection-induced channels were studied in [36,37], while the orthic-channel
that we use was also observed experimentally in [28]. Next we formalize its useful-
ness.

Lemma 4. Any line parallel to the orthic line within the orthic channel gives rise to a
cyclic 6-periodic patrolling schedule with 2-gap cost equal to twice the orthic perime-
ter.

Proof. Consider an arbitrary line, parallel to the orthic line, that intersects line seg-
ments BC ,B1C1,B2C2 at points R,R1,R2 respectively, see Figure 1. We observe that
K K 2 is parallel to RR2, and by Lemma 2 we have that K2R2 is parallel to K R. There-
fore, K RR2K2 is a parallelogram with K R = K R2.

We conclude that R2 is the reflection of R using the same reflections that obtained
K2 from K . But then, it follows RR2 corresponds to cyclic 6-periodic patrolling sched-
ule of 2-gap cost equal to RR2 = K K2 = K K1 +K1K 2 = 2K K 1, as promised. ⊓⊔

Next we identify all cyclic 6-periodic patrolling schedules of the same 2-gap costs.
We note that in the following lemma we make explicit use of that the repeated reflec-
tions were done first along the smallest two edges.

Lemma 5. The lines identifying the orthic channel are the two lines parallel to the
orthic line, one passing through A and one passing through A1.

Proof. Consider a line parallel to the orthic line passing through A, and intersecting
BC at T and the line passing through B1C1 at point T1. We will show that T1 lies in
the segment K1B1.

First we claim that K T = K1T1. To see why, recall that K K1 is parallel to T T1. It is
enough to show that K T T1K1 is an isosceles trapezoid. Indeed, note that angle AT1C1

(read counterclockwise) equals angle K K1C (because T T1 is parallel to K K1), and
angle K K1C equals angle BK M (because K K1 corresponds to the orthic trajectory
that results from reflections). Finally, angle BK M equals angle BT T1, because T T1 is
parallel to K K1. Overall, this shows that indeed, angles K T T1 and T T1K1 are equal,
showing that K T T1K1 is an isosceles trapezoid as claimed.

We conclude that in order to show that T1 lies within segment K1B1 it is enough
to show that K T < K B . Equivalently, it is enough to show that the middle point of
BT lies within segment BK . To see why recall that AT is parallel to MK . Moreover,
because angle A is at least as large as angle B (that is our initial reflections where
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done using the largest edge last), it follows that the base M of altitude C M is closer
to A than to B . Effectively, this shows that B M ≥ AB/2, and hence BK ≥ BT /2 as
wanted.

Now let the extention of T T1 intersect the line passing through B2C2 at point T2.
From the parallelogram K T T2K2 we have that K T = K2T2, and hence T2 lies within
segment K2C2, and by construction is it clear than T1T2 intersect segments A1B1 and
A1C2. This shows that indeed the line passing throught AT is one of the extreme lines
of the orthic channel.

The proof follows by observing that we can repeat the same argument, starting
from triangle A1B2C2 and applying the reverse list of reflections that gave us the re-
flected triangles (where ABC would be the final reflected triangle, and note that these
reflections would still be first with respect to the two smallest edges). Indeed, we can
consider line, parallel to the orthic line, and passing through A1, which by the same
argument that line is the other extreme line of the orthic channel. ⊓⊔

6 The Optimal 2-Gap Cyclic Schedules

In this section we prove Theorem 2. We do so by proving that the cyclic 6-periodic
patrolling schedule of Lemma 4 are the 2-gap optimal cyclic schedules of cost twice
the perimeter of the orthic triangle.

Indeed, as per our result, any line parallel to the orthic line within the orthic
channel (whose boundaries are given in Lemma 5) gives rise to a cyclic 6-periodic
schedules that we call sub-orthic schedules. We depict such a sub-orthic schedule in
Figure 2.

Fig. 2: A sub-orthic trajectory example.

In order to show that any sub-orthic trajectory is 2-gap optimal, we consider a
new patrolling problem on input triangle ABC with a limited visitation horizon. In
particular, in the 2k-limited patrolling problem the goal is to find a cyclic trajectory
that starts from edge BC (the largest edge) ends after 2k visitations of BC and is of
minimum total length. Given triangle ABC , we denote by vk the cost of the optimal
solution to the 2k-limited patrolling problem. The following is immediate from our
definitions.
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Observation 5 For every k ≥ 1, the optimal cyclic 2-gap solution has cost at least vk /k.

Now recall that by Lemma 4, any sub-orthic trajectory has 2-gap cost equal to
twice the orthic triangle. Hence, Theorem 2 is a corollary of the following lemma.

Lemma 6. The value of limk→∞ vk /k equals twice the perimeter of the orthic triangle.

Proof. In order to visualize the 2k-limited patrolling problem we apply repeatedly (k
times) the gadget induced by the reflected triangles of Section 5, see also Figure 3 for
an example when k = 2.

Fig. 3: Two applications of reflections.

Indeed, the gadget of the reflected triangles defines B2C2 which is parallel to BC .
One more reflection of A1 about B2C2 results into triangle A2B2C2 whose edges are
piecewise parallel to the edges of ABC , hence the same reflection sequence, applied
on A2B2C2 defines B3C3 parallel to B2C2 and so on.

This way, we define a sequence of parallel segments BkCk . Now consider the
orthic channel of ABC identified by lines passing through R, A1 and T, A (as per
Lemma 5). Consider also the corresponding points Rk ,Tk that these two lines in-
tersect segments BkCk .

By the definition of the 2k-limited patrolling problem, its optimal schedule (with
cost vk ) is the shortest trajectory that starts from BC and ends at BkCk . Since the
orthic channel stays within all reflected triangles, the optimal solution to the 2k-
limited patrolling problem is the shortest line segment with endpoints within RT
and Rk Tk . Observe that the shortest such segment is the shortest diagonal of paral-
lelogram RT Tk Rk . Now as k grows, one side RT of these parallelograms stays con-
stant, while the length of both diagonals tend (in the limit) to the length of RRk = T Tk

which are also equal to k times the 2-gap cost of any sub-orthic trajectory, and hence
are equal to 2k times the orthic perimeter. ⊓⊔

Note that the orthic trajectory is one among the sub-orthic trajectories, and hence
optimal too to the 2-gap patrolling problem (among cyclic algorithms). In the fol-
lowing lemma we show that the orthic trajectory is also the optimal solution to a
multi-objective optimization problem.



10 Konstantinos Georgiou, Somnath Kundu, and Paweł Prałat

Lemma 7. Among all 2-gap optimal sub-orthic trajectories, the one that minimizes
the visitation gap between any two (not necessarily same) edges is the orthic trajectory.

Proof. Consider an arbitrary sub-orthic trajectory RR1R2R3R4R5R, see Figure 2. Note
that the sub-orthic schedule is made up of segments that are piecewise parallel to
the segments of the orthic trajectory, and any of the orthic line segments lies in the
middle of any of the two parallel segments of the sub-orthic schedule.

In particular we have RR1,R3R4 are parallel to MK , as well as R1R2,R4R5 are par-
allel to ML, and RR5,R2R3 are parallel to K L. Moreover, MK ≤ max{RR1,R3R4}, ML ≤
max{R1R2,R4R5}, and K L ≤ max{RR5,R2R3}. It follows that maximum visitation gap
max{MK , ML,K L} between any two edges in the orthic trajectory is at most the max-
imum visitation gap between any two edges in any sub-orthic trajectory. ⊓⊔

7 The 1-Gap Optimal Schedule

It is immediate from the definitions that half the cost of the 2-gap optimal patrolling
schedule is a lower bound to the cost of the 1-gap optimal patrolling schedule. By
Theorem 2, the 2-gap optimal patrolling schedule has cost 2 times the perimeter
of the orthic triangle. Hence, the cost of the 1-gap optimal schedule is at least the
perimeter of the orthic triangle. On the other hand, by Theorem 1 we have a pa-
trolling schedule (the orthic trajectory) with 1-gap cost equal to the orthic perimeter.
Therefore, we obtain the following immediate corollary.

Corollary 1. The optimal 1-gap cyclic schedule of a triangle ∆ is its orthic triangle.

The purpose of this section is to prove Theorem 3, that is to strengthen the state-
ment of Corollary 1 by showing that the optimal 1-gap schedule is actually cyclic. We
do so by showing how to modify an arbitrary schedule into a cyclic schedule, without
increasing its 1-gap cost. Effectively, the next lemma implies Theorem 3.

Lemma 8. There is a 1-gap optimal schedule that is cyclic.

Proof. Consider an arbitrary schedule S = {si }i that is not cyclic. We show how to
construct a new schedule that is cyclic and 3-periodic, without increasing its 1-gap.
Indeed, since S is not cyclic, and after renaming edges, there are two consecutive
visitations of edge α so that both edges β,γ are visited in between, with at least one
of them being visited more than once. In other words, for some k,ℓ ∈ N, ℓ ≥ 4 we
have that e(sk ) = e(sk+ℓ) =α, e(sk+1) = e(sk+3) =β and e(sk+2) = γ.

In what follows we denote by si s j the distance between points si , s j . Then, we see
that for the 1-gap cost G of S, we have that

G =max
δ∈E

G(δ) ≥G(α) ≥
ℓ−1∑
i=0

sk+i sk+i+1

≥sk sk+1 + sk+1sk+2 + sk+2sk+3 + sk+3sk+ℓ
≥2min{sk sk+1 + sk+1sk+2, sk+2sk+3 + sk+3sk+ℓ},
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where the second to last inequality is due to the triangle inequality.
Now we consider two different cyclic and 3-periodic schedules, S′,S′′, with 1-

gap costs G ′,G ′′, respectively, and we show that min{G ′,G ′′} ≤ G . The first schedule
is S′ = sk , sk+1, sk+2, sk , sk+1, sk+2, sk , sk+1, sk+2, . . ., and the second schedule is S′′ =
sk+2, sk+3, sk+ℓ, sk+2, sk+3, sk+ℓ, sk+2, sk+3, sk+ℓ . . .. Since both S′,S′′ are cyclic and pe-
riodic, we have that G ′ = G ′(α) = G ′(β) = G ′(γ) and G ′′ = G ′′(α) = G ′′(β) = G ′′(γ). In
particular, using the triangle inequalities again, we have

G ′ = sk sk+1 + sk+1sk+2 + sk+2sk ≤ 2(sk sk+1 + sk+1sk+2)

G ′′ = sk+2sk+3 + sk+3sk+ℓ+ sk+ℓsk+2 ≤ 2(sk+2sk+3 + sk+3sk+ℓ).

But then, min{G ′,G ′′} ≤ 2min{sk sk+1 + sk+1sk+2, sk+2sk+3 + sk+3sk+ℓ} ≤G , as wanted.
⊓⊔

8 The Greedy Cyclic Algorithm

In this section we prove Theorem 4 that is we describe a patrolling schedule that
converges to a 3-periodic cyclic schedule whose 1-gap cost is off from the 1-gap op-
timal cyclic schedule by a factor γ ∈ [1,1.20711]. It will follow from our analysis that
our greedy algorithm will be nearly optimal for any acute triangle with one arbitrar-
ily small angle, and it will be the worst off from the optimal solution when the given
triangle is a right isosceles.

We proceed by the description of a greedy patrolling schedule. We assume that
the patroller can remember the current and previously visited edges (not necessarily
their points), as well as that it can compute (move along) the projection of its current
position to any other edge. Formally, we label the three edges BC , AB , AC as 0,1,2,
respectively. The patrolling schedule starts from an arbitrary point p0 on BC . For
each i ≥ 1, the patroller moves to point pi , which is the projection of pi−1 onto edge
i mod 3. Referring to triangle ABC as in Figure 4, we note that the patrolling schedule
induces a clockwise cyclic visitation of the given triangle. An immediate corollary of
our results will imply that also the corresponding counterclockwise cyclic visitation
induces the same 1-gap cost.

Fig. 4: Six iterations of the
greedy patrolling sched-
ule that starts from point
p0 of edge BC .

Fig. 5: One iteration of the greedy
patrolling schedule, stating from
point D 1 iteration
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Lemma 9. On input acute triangle ABC , and for any starting point, the greedy algo-
rithm converges to a cyclic 3-periodic schedule that has 1-gap cost p· sin(A)sin(B)sin(C )

1+cos(A)cos(B)cos(C ) ,
where p is the perimeter of triangle ABC .

Proof. Consider an arbitrary iteration of the greedy algorithm and a point D on BC ,
see Figure 5. After 3 consecutive steps, the patroller has moved to the projection E of
D onto AB , its projection F on AC and to its projection G back on BD . To simplify
calculations, assume also that AB has length 1. Below, we derive a relation between
BG and BD .

First we note that AF = cos(A)AE = cos(A)(γ−BE) = cos(A)(γ−cos(B)BD). Then,
we use the derived formula for AF to calculate

BG = 1−CG = 1−cos(C )C F = 1−cos(C )(β− AF ) = 1−cos(C )
(
β−cos(A)(γ−cos(B)BD)

)
.

It follows that there exists a constant c, independent of points G ,D , such that BG =
c −cos(A)cos(B)cos(C )BD. If we denote by di the distance of a point on the greedy
patrolling schedule at the i -th visitation of edge BC , the previous argument shows
that for the same constant c, we have di+1 = c −cos(A)cos(B)cos(C )di .

Since |cos(A)cos(B)cos(C )| < 1, it follows that limi→∞ di exists and its value is
obtained when in the previous argument points D,G coincide, see Figure 6.

Fig. 6: The limiting cyclic 3-periodic trajectory of the (clockwise) greedy algorithm

We proved that inscribed triangle DEF is the limiting patrolling schedule of the
greedy algorithm, which is indeed a cyclic 3-periodic schedule. Next we calculate its
cost. To this end, we claim that triangles DEF and ABC are similar. By denoting by
F,E ,G the angles of the inscribed triangle, and looking at right triangle F D we have
F = π−π/2− (π−C −π/2) = C . Similarly we obtain that angles D,B are equal, and
angles E , A are equal.

Finally we compute the similarity ratio k < 1 of triangles DEF, ABC . We have that

α= BD +D
ED

sin(B)
+ DF

tan(c)
= kγ

sin(B)
+ kα

tan(C )
= kαsin(C )

sin(B)
+ kα

tan(C )
,

where the last equality follows from the sin Law in triangle ABC . But then, solving
for k and simplifying the trigonometric expressions yields k = sin(A)sin(B)sin(C )

1+cos(A)cos(B)cos(C ) . It



The Fagnano Triangle Patrolling Problem (Extended Abstract) 13

follows that the 1-gap cost of the induced patrolling schedule is equal to the perime-
ter of triangle DEF which equals k times the perimeter of ABC as claimed. ⊓⊔

We are now ready to prove Theorem 4. An immediate corollary of Lemma 9 is that
the (limiting) cost of the greedy algorithm is the same also for the corresponding
counter-clock wise trajectory. Moreover, the ratio between its cost and the optimal
1-gap cost, as per Lemma 1, is given by

sin(A)sin(B)sin(C )

2(1+cos(A)cos(B)cos(C ))

(
1

sin(B)sin(C )
+ 1

sin(A)sin(C )
+ 1

sin(A)sin(B)

)
= sin(A)+ sin(B)+ sin(C )

2(1+cos(A)cos(B)cos(C ))
.

The latter expression, over all non-obtuse triangles, is maximized when any of the
angles A,B ,C is a right angle, and the other two are equal, that is for the right isosce-
les, in which case the ratio becomes 1

2

(p
2+1

)
. In the other extreme case, it is also

easy to show that the ratio tends to 1 if any of the angles tends to 0 (hence the other
two tend to π/2), while also for the equilateral triangle, the ratio becomes 2

p
3/3.

9 Discussion

In this work we demonstrated the connection between billiard-type trajectories and
optimal patrolling schedules in combinatorial optimization. Specifically, we intro-
duced and solved the problem of patrolling the edges of an acute triangle using a
unit-speed agent with the goal of minimizing the maximum 1-gap and 2-gap idle
time of any edge. We show that billiard-type trajectories are optimal solution to these
combinatorial patrolling problems.

Our findings point to several future directions. One natural extension of our work
is to generalize the patrolling problem to arbitrary polygons with one or more agents.
Moreover, the introduction of the novel 2-gap patrolling problem suggests the in-
vestigation of optimal solutions for more complex frequency requirements or time
restrictions, especially with the presence of multiple patrolling agents or multiple
objects to be patrolled. In that direction, it would be interesting to examine how our
results extend to patrolling 3 or more arbitrary line segments on the plane, as subsets
of the edges of convex polygones with one or more agents.
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