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Abstract We study p-Faulty Search, a variant of the classic cow-path optimization
problem, where a unit speed robot searches the half-line (or 1-ray) for a hidden item.
The searcher is probabilistically faulty, and detection of the item with each visitation
is an independent Bernoulli trial whose probability of success p is known. The ob-
jective is to minimize the worst case expected detection time, relative to the distance
of the hidden item to the origin. A variation of the same problem was first proposed
by Gal [29] in 1980. Alpern and Gal [4] proposed a so-called monotone solution for
searching the line (2-rays); that is, a trajectory in which the newly searched space in-
creases monotonically in each ray and in each iteration. Moreover, they conjectured
that an optimal trajectory for the 2-rays problem must be monotone. We disprove this
conjecture when the search domain is the half-line (1-ray). We provide a lower bound
for all monotone algorithms, which we also match with an upper bound. Our main
contribution is the design and analysis of a sequence of refined search strategies, out-
side the family of monotone algorithms, which we call t-sub-monotone algorithms.
Such algorithms induce performance that is strictly decreasing with t, and for all
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p ∈ (0,1). The value of t quantifies, in a certain sense, how much our algorithms de-
viate from being monotone, demonstrating that monotone algorithms are sub-optimal
when searching the half-line.

Keywords Linear Search · Online Algorithms · Competitive Analysis · Faulty
Robot · Probabilistic Faults

1 Introduction

The problem of searching for a hidden item in a specified continuous domain dates
back to the early 1960’s and to the early works of Beck [8] and Bellman [9]. In its
simplest form, a unit speed robot (that is, a mobile agent) starts at a known location,
the origin, in a known search-domain. An item, sometimes called the treasure or
the exit, is located (hidden) at an unknown distance d away from the origin, and it
can be located by the robot only if it walks over it. What is the robot’s trajectory
that minimizes the worst case relative time that the treasure is located, compared
to d? This worst case measure of efficiency is known as the competitive ratio of
the trajectory. Interestingly, numerous variations of the problem admit trajectories
inducing constant competitive ratios. In certain cases, for example, in the so-called
linear-search problem where the domain is the line, tight lower bounds are known
that require elaborate arguments.

We consider p-Faulty Search (FSp), a probabilistic version of the classic linear-
search problem in which the hidden item lies in a half-line (or 1-ray), and the item
is detected with constant probability p (with independent Bernoulli trials) every time
the robot walks over the item. This is a special case of a problem first proposed by
Gal [29], where the search-domain is the line (or 2-rays). Natural solutions to the
problem are so-called cyclic and monotone search patterns; that is, trajectories that
process each direction periodically and where the searched space in each direction ex-
pands monotonically. In [4], Alpern and Gal proposed such a solution for searching
2-rays and they conjectured that an optimal trajectory must be cyclic and monotone.
Angelopoulos in [5] extended the upper bound results using cyclic and monotone tra-
jectories for searching m-rays. We prove that monotone trajectories are sub-optimal
for searching a 1-ray. We do so first by establishing a lower bound for all monotone
algorithms to the problem (which we also match with an upper bound), and second
by designing a sequence of non-monotone trajectories inducing increasingly better
performance (and deviating increasingly from being monotone).

1.1 Related Work

Search-type problems are concerned with finding a specific type of information placed
within a well specified discrete or continuous domain. As a topic, it spans various
sub-fields of Theoretical Computer Science and has given rise to a number of book-
length treatments [1,4,23,42]. Applications range from data structures and mobile
agent computing, to foraging and evolution, among others, for example, see [2,15,
35,37,41].
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The problem of searching for a hidden item in one-dimensional domains was first
proposed more than 50 years ago by Beck [8] and Bellman [9] in a Bayesian context.
In the 1990’s, solutions to basic problem’s variations were rediscovered, for example,
see [7,36]. Since then, several studies of various search-type problems have resulted
in an extensive literature. Below we give representative and selective examples, with
an attempt to cite relatively recent results. Variations of search-type problems that
share many similarities range from the type of search domain (for example, 1 or 2-
dimensional [27,34], d-dimensional grid [17], cycle [39], polygons [25], graphs [6],
grid [14], m-rays [12]), to the number of searchers (1 or more [38]), to the criterion for
termination (for example, search, evacuation [13], priority evacuation [21,22], fetch-
ing [31]) to the communication model (for example, wireless or face-to-face [18]) to
the type of the objective (for example, minimize worst case or average case [16]) to
cost specs (for example, turning costs [26], cost for revisiting [10]), to the measure
of efficiency (for example, time, weighted average time [33], energy [19,20]) to the
knowledge of the input (none or partial [11]) and to other robots’ specs (for example,
speeds [24], faults [32], memory [40]), just to name a few. More recently, Fraigniaud
et al. considered in [28] a Bayesian search problem in a discrete space, where a set
of searchers are trying to locate a treasure placed, according to some distribution, in
one of the boxes indexed by positive integers. Since it is outside the scope of this
work to provide a comprehensive list of the large related literature, we further refer
the interested reader to [4,3,23,30].

The version of linear search that we study, where the searcher is probabilistically
faulty, was presented as an open problem by Gal in [29]. Later in [4] (see chapter
8.6.2), Alpern and Gal provided a search strategy when the search domain is a line.
In particular, they considered cyclic search trajectories where the robot alternates
between searching each of the two directions, and each time monotonically increas-
ing the searched space. Among the same family of algorithms that moreover expand
the searched space in each direction geometrically, the authors provided the optimal
trajectory. In addition, they conjectured that cyclic and monotone trajectories are in
fact optimal. Along the same lines, [5] studied cyclic and monotone trajectories for
searching m-rays. In a variation of the problem where the hidden item detections are
not Bernoulli trials, [5] showed also that cyclic trajectories are in fact sub-optimal.
For this and many other variations of probabilistically searching, where the probabil-
ity of success is not known, optimal strategies remain open.

1.2 Main Contributions & Paper Organization

We introduce and study p-Faulty Search (FSp), a variation of the classic linear-search
(cow-path) problem, in which the search space is the half-line, and detection of the
hidden item (treasure) happens with known probability p. We are interested in design-
ing search strategies that induce small competitive ratio, as a function of p; that is,
that minimize the worst case expected detection time of the hidden item, with respect
to its placement d, relative to the optimal performance of an algorithm that knows in
advance the location of the item (so we normalize the expected performance both by
d and p).
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We focus on two families of search algorithms, which indicate that optimal solu-
tions to FSp may be particularly challenging to find. First, we study a natural family
of algorithms, that we call monotone algorithms, which intuitively are determined by
non-decreasing turning points xi where searcher returns to the origin before expand-
ing the searched space. Given that turning points increase geometrically; that is, when
xi = bi, relatively straightforward calculations determine the optimal expansion fac-
tor b = b(p). In fact, a simplified argument shows that in the cow-path problem (that
is, when the search space consists of 2-rays and p = 1) the optimal expansion factor
is b = 2. A more tedious argument (and one of our technical contributions), as in the
cow-path problem, shows that the aforementioned choice of geometrically increasing
xi’s for FSp is in fact optimal among the family of monotone algorithms. Our main
technical contribution pertains to the design and analysis of a family of algorithms
that we call t-sub-monotone, which provide a sequence of refined search strategies
which induce competitive ratios that strictly decrease with t, for every p ∈ (0,1).
Somehow surprisingly, our findings show that plain-vanilla, and previously consid-
ered, algorithms for FSp are sub-optimal.

The organization of our paper is as follows. In Section 2, we define problem FSp
formally, we introduce measures of efficiency and we complement with preliminary
and important observations. Section 3 studies the special family of monotone search
algorithms. In particular, in Section 3 we propose and analyze a specific monotone al-
gorithm where turning points increase geometrically. Section 3.2 contains one of our
technical contributions, in which we prove that the monotone algorithm presented in
the previous section is in fact optimal within the family. Our main technical contri-
bution is in Section 4, which introduces and studies the family of t-sub-monotone
algorithms. Performance analysis of the family of algorithms is presented in Sec-
tion 4.1. In Section 4.2, we propose a systematic method for choosing parameters for
the t-sub-monotone algorithm with the objective to minimize their competitive ratio.
Our formal findings are evaluated in Section 4.3, where we demonstrate the sequence
of strictly improved competitive ratios by t-sub-monotone algorithms when t ≤ 10.
As our proposed parameters for the algorithms are obtained as the roots to high de-
gree (Θ(t)) polynomials, are results, for the most part, cannot be described by closed
formulas. However, in Section 4.4, we selectively discuss heuristic choices of the
parameters that induce nearly optimal search strategies and whose performance can
be quantified by closed formulas. We also quantify formally the boundaries of t-sub-
monotone algorithms, and we show that the competitive ratio of our 10-sub-monotone
is off additively by at most 10−6 from the best performance we can achieve by letting
t grow arbitrarily. In the final section, we conclude with open problems.

2 Problem Definition and Preliminary Observations

In p-Faulty Searching on a Halfline (FSp) a speed-1 searcher (or robot) is located
at the origin of the infinite half-line. At unknown distance d bounded away from the
origin, which bound we set arbitrarily to 1, there is an item (or treasure) which is
located/detected by the robot with constant and known probability p every time the
robot passes over it (that is, detection trials are mutually independent and each has
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probability of success p). Also, for the sake of simplifying the analysis, we assume
that the probability of detection becomes 1 if the treasure is placed exactly at a point
where the robot changes direction. As we will see later, the worst placements of the
treasure will be proven to be arbitrarily close to the turning points.

Given a robot’s trajectory T , probability p and distance d, the termination time
ET (d) is defined as the expected time that the robot detects the treasure for the first
time. Feasible solution to FSp are robot’s trajectories that induce bounded termina-
tion time (as a function of p,d) for all p ∈ (0,1) and for all d ≥ 1.

Note that p is part of the input to an algorithm for FSp, while d is unknown.
Hence, trajectories may depend on p but not on d. It is also evident that for a robot’s
trajectory to induce bounded termination time for all treasure placements, the robot
needs to visit every point of the half-line, past point 1, infinitely many times. As it
is also common in competitive analysis, we measure the performance of a search
strategy relative to the optimal offline algorithm; that is, an algorithm that knows
where the treasure is. Since such an algorithm needs to travel for time d to reach the
treasure, as well as one would need 1/p trials, in expectation, before detecting it, we
are motivated to introduce the following measure of efficiency for search trajectories.

Definition 1 The competitive ratio of search strategy T for FSp is defined as C T
p :=

supd≥1

{
pET (d)

d

}
.

Trajectory solutions (or search strategies) to problem FSp are in correspondence
with infinite sequences {ti}i≥0 of turning points, satisfying t0 = 0, ti ≥ 0, t2i+1 >
t2i and t2i < t2i−1, for all i ≥ 0. Indeed such a sequence {ti}i≥0 corresponds to the
trajectory in which robot moves from t2i to t2i+1 (moving away from the origin),
and from t2i−1 to t2i (moving toward the origin), each time changing direction of
movement, where i = 1,2, . . ..

For search strategy T and treasure location d (except from the turning points of
T ), let fi denote the time till the robot passes over the treasure for the i’th time.
Since the probability of successfully detecting the treasure is p, we have ET (d) =
∑

∞
i=1 p(1− p)i−1 fi. In what follows, we express the expected termination time with

respect to the additional time between two visitations of the treasure.

Lemma 1 Let f0 = 0, and let gi = fi− fi−1. We then have that ET (d) = ∑
∞
i=1(1−

p)i−1gi.
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Proof Note that for each i we have fi = ∑
i
j=1 g j. We then have that

ET (d) =
∞

∑
i=1

p(1− p)i−1 fi

=p
∞

∑
i=1

(1− p)i−1
i

∑
j=1

g j

=p
∞

∑
j=1

g j

∞

∑
i= j

(1− p)i−1

=p
∞

∑
j=1

(1− p) j−1g j

∞

∑
i=0

(1− p)i

=
∞

∑
j=1

(1− p) j−1g j,

and the proof follows.

3 Monotone Trajectories

We explore the simplest possible trajectories for FSp in which the searcher repeatedly
returns to the origin every time she changes direction during exploration and before
exploring new points in the half-line. More formally, monotone trajectories for FSp
are search algorithms T = {ti}i≥1, defined as1 t2i = 0, t2i+1 = xi, i = 1,2, . . . , where
{xi}i≥1 is a strictly increasing sequence with xi → ∞. Note that, in particular, we
allow xi = xi(p). The present section is devoted into determining the best monotone
algorithm for FSp. More specifically, we prove the following.

Theorem 1 The optimal monotone algorithm for FSp has competitive ratio 4+4
√

1−p
2−p −

p.

The proof of Theorem 1 is given in the next two sections. In Section 3.1 we
propose a specific monotone algorithm with the aforementioned performance (see
Lemma 3), while in Section 3.2 we show that no monotone algorithm performs better
(see Lemma 4). Somewhat surprisingly we show in Section 4 that the upper bound of
Theorem 1 is in fact sub-optimal.

3.1 An Upper Bound Using Monotone Trajectories

In this section we propose a specific monotone algorithm with the performance promised
by Theorem 1. In particular, we consider “restricted” trajectories determined by in-
creasing sequences {xi}i≥1, where xi = bi and b = b(p)> 1. Within this sub-family,

1 Alternatively, we could have defined monotone trajectories so as to return to location 1, instead of the
origin, since we know that d ≥ 1. Our analysis next shows that such a modification would not improve the
competitive ratio.
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we determine the optimal choice of b that induces the smallest competitive ratio. For
this, we first determine the placements of the treasure that induce the worst compet-
itive ratio, given a search trajectory. As stated before, in the following analysis we
make the assumption that the treasure is not placed at any turning point.

Lemma 2 Consider a monotone algorithm T , determined by the strictly increasing
sequence {xi}i≥1. If the treasure appears in interval (xr,xr+1), then the competitive
ratio is no more than

2
p
xr

r

∑
i=1

xi +2
p
xr

∑
i≥1

(1− p)2i−1xr+i +
p2

2− p
.

Proof Suppose that the treasure is located at point d = xr + y ∈ (xr,xr+1), where
0 < y < xr+1− xr. With that notation in mind (see also Figure 1), we compute the
time intervals gi between consecutive visitations, as they were defined in Lemma 1.
We have that

g1 = 2
r

∑
i=1

xi + xr + y = 2
r

∑
i=1

xi +d

g2i = 2(xr+i− xr− y) = 2(xr+i−d), i = 1, . . . ,∞
g2i+1 = 2xr +2y = 2d, i = 1, . . . ,∞.

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑟𝑟 𝑥𝑥𝑟𝑟+1 𝑥𝑥𝑟𝑟+2 𝑥𝑥𝑟𝑟+3
𝑦𝑦

⋮

⋯

1
2
3
4
5

⋯� � � � � � �

Fig. 1 Monotone algorithm {xi}i≥1. Figure also depicts the first 5 visitations of the treasure that is placed
at xr + y.

Therefore, by Lemma 1 the expected termination time ET (d) for algorithm T is

∞

∑
i=1

(1− p)i−1gi = g1 +∑
i≥1

(1− p)2i−1g2i +∑
i≥1

(1− p)2ig2i+1

=

(
2

r

∑
i=1

xi +d

)
+2

(
∑
i≥1

(1− p)2i−1(xr+i−d)

)
+2d

(
∑
i≥1

(1− p)2i

)

= 2
r

∑
i=1

xi +2 ∑
i≥1

(1− p)2i−1xr+i +d

(
1−2p ∑

i≥1
(1− p)2i−1

)

= 2
r

∑
i=1

xi +2 ∑
i≥1

(1− p)2i−1xr+i +d
p

2− p
.

Recall that the competitive ratio of this algorithm is pET (d)/d, and hence, in the
worst case, d approaches xr from the right. ut
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We are now ready to prove the promised upper bound.

Lemma 3 The monotone trajectory T = {xi}≥1, where xi = bi and b := 1√
1−p(2−p−

√
1−p)

has competitive ratio 4+4
√

1−p
2−p − p.

Proof We study the restricted family of monotone trajectories T = {xi}≥1, where
xi = bi, for some b = b(p). By Lemma 2, the competitive ratio of search strategy T
is at most

sup
r

{
2

p
br

r

∑
i=1

bi +2
p
br ∑

i≥1
(1− p)2i−1br+i +

p2

2− p

}

= sup
r

{
p

2b(br−1)
br(b−1)

+ p
2b(1− p)

1−b(1− p)2 +
p2

2− p

}
= lim

r→∞

{
p

2b(br−1)
br(b−1)

+ p
2b(1− p)

1−b(1− p)2 +
p2

2− p

}
= p

2b
b−1

+ p
2b(1− p)

1−b(1− p)2 +
p2

2− p
. (1)

Calculations above assume that b < 1/(1− p)2, as otherwise, the second summation
is divergent. We will make sure later that our choice of b complies with this condition.
Note also that for xi to be increasing, we need b > 1. Now, denote expression (1) by
f (b). We will determine the choice of b that minimizes f (b), given that 1 < b <
1/(1− p)2.

It is straightforward to see that d2

db2 f (b)= 4p
(

(1−p)3

1−(b(p−1)2)
3 +

1
(b−1)3

)
, and hence,

f (b) is convex when b∈
(
1,1/(1− p)2

)
. Hence, if d

db f (b) has a root in
(
1,1/(1− p)2

)
,

that would be a minimizer. Indeed,

d
db

f (b) = 2p

(
1− p

(1−b(1− p)2)2 −
1

(b−1)2

)

has two roots 1√
1−p(±(2−p)−

√
1−p)

, one being positive and one negative (for all values

of p ∈ (0,1)). We choose the positive root, that we call bp, and it is elementary to see
that 1 < bp < 1/(1− p)2, for all p∈ (0,1), as wanted. Substituting b = bp in (1) gives
the competitive ratio promised by the statement of the lemma.

3.2 Lower Bounds for Monotone Trajectories

This section is devoted to proving the following lemma.

Lemma 4 Every monotone trajectory has competitive ratio at least 4+4
√

1−p
2−p − p.
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Consider an arbitrary monotone algorithm T = { fi}i≥0, where fi is a monotone
sequence tending to infinity, and which determines the turning points of the algo-
rithm. Without loss of generality, we set f0 = 1, as otherwise we may scale all turn-
ing points by f0. Our lower bound will be obtained by restricting the placement of
the treasure arbitrary close to (and ε > 0 away after) turning points fk (this may only
result in a weaker lower bound). Taking ε→ 0, we obtain that

gk
1 = 2

k

∑
i=0

fi + fk,

gk
2i = 2( fk+i− fk),

gk
2i+1 = 2 fk,

where the superscript k of gk
i indicates exactly the placement of the treasure at fk. In

what follows, and for a fixed integer `, we define

α :=
1
2
+

1
2− p

− c
2p

, βi,k :=(1− p)2(i−k)−1, for k+1≤ i≤ `, γ`,k :=
(1− p)2(`−k)+1

p(2− p)
.

We have the following lemma.

Lemma 5 Let c be the optimal competitive ratio that can be achieved by monotone
trajectory T . For every integer ` and for every 0≤ k ≤ ` we have that

k−1

∑
i=0

fi +α fk +
`

∑
i=k+1

βi,k fi + γ`,k f` ≤ 0. (2)

Proof If the treasure is placed arbitrarily close to turning point fk, then by Lemma 1,
a lower bound to the best possible competitive ratio c satisfies the following (infinitely
many) constraints:

c≥ p
fk

∞

∑
i=1

(1− p)i−1gk
i , k = 0, . . . ,∞.

We next restrict our attention to the first `+1 such constraints, where ` is an arbitrary
integer. Hence, we require that

c≥ p
fk

∞

∑
i=1

(1− p)i−1gk
i , k = 0, . . . , `.



10 Anthony Bonato et al.

Now, multiply both hand-sides of the inequalities by fk/p to obtain

fk
c
p
≥

∞

∑
i=1

(1− p)i−1gk
i = 2

k

∑
i=1

fi + fk +2
∞

∑
i=1

(1− p)2i−1( fk+i− fk)+2
∞

∑
i=1

(1− p)2i fk

≥ 2
k

∑
i=1

fi + fk +2
`−k

∑
i=1

(1− p)2i−1( fk+i− fk)

+2
∞

∑
i=`−k+1

(1− p)2i−1( f`− fk)+2 fk

∞

∑
i=1

(1− p)2i

= 2
k−1

∑
i=1

fi + fk

(
3−2

∞

∑
i=1

(1− p)2i−1 +2
∞

∑
i=1

(1− p)2i

)

+2
`

∑
i=k+1

(1− p)2(i−k)−1 fi +2 f`
(1− p)2(`−k)+1

p(2− p)
.

We conclude that fkc/p is at least the last term above, so after rearranging the terms
of the inequality, bringing them all on one side, and factoring out the fi terms, we
have that

k−1

∑
i=0

fi +

(
1
2
+

1
2− p

− c
2p

)
fk +

`

∑
i=k+1

(1− p)2(i−k)−1 fi +
(1− p)2(`−k)+1

p(2− p)
f` ≤ 0,

as desired.

Recall that f0 = 1. Our lower bound derived in the proof of Lemma 4 is ob-
tained by finding the smallest c satisfying constraints (2), and in particular, inducing a
strictly increasing sequence of fi in i. Note that minimizing c subject to constraints (2)
in variables f1, . . . , f`,c is a non-linear program. To obtain a lower bound for c, we
observe that the only negative coefficients of variables fi are those on the diagonal;
that is, the coefficient of fk in the k’th constraint. This allows us to apply repeatedly
back substitution to obtain a lower bound for all fi and hence, c as well, assuming
that the visiting points fi are increasing in i. Equivalently, for the optimal c that an
algorithm can achieve, we may treat (for the sake of the analysis) all inequalities (2)
as being tight, giving rise to the linear system

A` f = a, (3)

in variables f T = ( f1, . . . , f`), where

A` :=



β1,0 β2,0 β3,0 . . . γ`,0 +β`,0
α β2,1 β3,1 . . . γ`,1 +β`,1
1 α β3,2 . . . γ`,2 +β`,2
1 1 α . . . γ`,3 +β`,3
...

...
... . . .

...
1 1 1 . . . γ`,`−1 +β`,`−1


, a :=



−α

−1
−1
−1

...
−1


.

Constraints (3) may be thought as the defining linear system on fi’s that give the opti-
mal turning strategies, assuming that the treasure can only be placed arbitrarily close
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and after any of the ` first turning points of a search trajectory. In other words, given
that any monotone algorithm is defined by a sequence of turning points, these points
can be chosen so as to minimize the competitive ratio with the assumption that the
hidden item will be nearly missed after each turning point. Having the competitive
ratio be independent of the treasure’s placement gives a lower bound to the competi-
tive ratio of the algorithm. The proof of Lemma 4 follows directly from the following
technical lemma.

Lemma 6 Linear system (3), in variables fi, defines a monotone sequence of turning
points only if c≥ 4+4

√
1−p

2−p − p.

Proof We proceed by finding a closed formula for f`−1 and then imposing mono-
tonicity. Our first observation is that for all 0 ≤ k ≤ `− 1 we have that γ`,k +β`,k =
(1−p)2(`−k)−1

(2−p)p . Setting r := 1
(2−p)p allows us to rewrite the matrix of system (3) as

A` =



(1− p) (1− p)3 (1− p)5 . . . r(1− p)2`−1

α (1− p) (1− p)3 . . . r(1− p)2`−3

1 α (1− p) . . . r(1− p)2`−5

1 1 α . . . r(1− p)2`−7

...
...

... . . .
...

1 1 1 . . . r(1− p)


.

We proceed by applying elementary row operations to the system. From each row of
A` (except the last one) we subtract a (1− p)2 multiple of the following row to obtain
linear system Ā` f = b̄, where matrix Ā` equals

1− p−α(1− p)2 0 0 . . . 0 0
α− (1− p)2 1− p−α(1− p)2 0 . . . 0 0
1− (1− p)2 α− (1− p)2 1− p−α(1− p)2 . . . 0 0
1− (1− p)2 1− (1− p)2 α− (1− p)2 . . . 0 0

...
...

... . . .
...

...
1− (1− p)2 1− (1− p)2 1− (1− p)2 . . . 1− p−α(1− p)2 0

1 1 1 . . . α r(1− p)


and b̄T = (−α+(1− p)2,−1+(1− p)2,−1+(1− p)2,−1+(1− p)2, . . . ,−1+(1−
p)2,−1). Now set

s := 1− p−α(1− p)2, t := α− (1− p)2, w := 1− (1− p)2,

and define `× ` matrix

C` :=



s 0 0 . . . 0 −t 0
t s 0 . . . 0 −w 0
w t s . . . 0 −w 0
w w t . . . 0 −w 0
...

...
... . . .

...
...

...
w w w . . . s −w 0
w w w . . . t −w 0
1 1 1 . . . 1 −1 r(1− p)


.
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By Cramer’s rule we have that

f`−1 =
det(C`)

det(A`)
.

Note that det(A`) =
(
1− p−α(1− p)2

)`−1 r(1− p).
Next we compute det(C`). We denote the (`−1)×(`−1) principal minor of C` as

B`−1. The last row of B`−1 is (w,w, . . . ,w, t,−w). We further denote by L`−1 the matrix
we obtain from B`−1 by scaling its last row by w so that it reads (1,1, . . . ,1, t/w,−1).
Finally, we denote by K`−1 the matrix we obtain by replacing the last row of B`−1 by
(1,1, . . . ,1,1,−1); that is, the all-1 row except from the last entry which is -1. With
this notation in mind, we note that

det(C`) =−r(1− p)det(B`−1) =−
r(1− p)

w
det(L`−1).

Now expanding the determinants of K`−1,L`−1 with respect to their first rows we
obtain the system of recurrence equations

det(K`−1) = sdet(K`−2)−wdet(L`−2),

det(L`−1) = sdet(K`−2)− t det(L`−2).

We solve the first one with respect to det(L`−2) and we substitute to the second one
to obtain the following recurrence exclusively on K`

det(K`)+(t− s)det(K`−1)+ s(w− t)det(K`−2) = 0.

The characteristic polynomial of the latter degree-2 linear recurrence has discriminant
equal to

(t−s)2−4s(w−t)=
1
4
(
(2− p)2c2 +2((p−2)p+4)(p−2)c+ p2((p−4)p+12)

)
,

which in particular is a degree-2 polynomial g(c) in the competitive ratio c and has
discriminant 4(2− p)2(1− p). Since g(c) is convex, we conclude that the discrimi-
nant of the characteristic polynomial is non-negative when c is larger than the largest
root of g(c), that is when

c≥ (4− (2− p)p)(2− p)+4(2− p)
√

1− p
(2− p)2 =

4+4
√

1− p
2− p

− p,

and the proof follows.
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Algorithm 1 t-Hop between xr,xr+1

1: for j = 1, . . . , t do
2: Move from γ j−1xr to γ jxr
3: Move from γ jxr to γ j−1xr
4: Move from γ j−1xr to γ jxr
5: end for
6: Move from γtxr to xr+1

Algorithm 2 t-Sub-Monotone Trajectory
1: Move from the origin to x1, then to the origin and then to x1.
2: for r = 1, . . . ,∞ do
3: Perform a t-hop between xr,xr+1.
4: Move from xr+1 to the origin
5: Move from the origin to xr+1
6: end for

4 Sub-Monotone Trajectories

For a fixed integer t, we consider a t-sub-monotone trajectory that is defined by
a strictly increasing sequence {xi}i≥1, where xi = βi for some β = β(p) > 1, and
{γi}i=1,...,t (where γi = γi(p)) satisfying 1 < γ1 < γ2 < .. . < γt < β. For convenience,
we introduce abbreviations γ0 = 1 and γt+1 = β. For the formal description of the
trajectory, we introduce the notion of a t-hop between consecutive points xr,xr+1, see
Algorithm 1, which is a sub-trajectory of the robot starting from xr and finishing at
xr+1. Given parameters γi and β, the t-suborigin trajectory is defined in Algorithm 2.
The trajectory of the robot performing a t-sub-monotone search is depicted in Fig-
ure 2 that shows a t-hop between points xr and xr+1.

𝛾𝛾1𝑥𝑥𝑟𝑟 𝛾𝛾2𝑥𝑥𝑟𝑟 𝛾𝛾3𝑥𝑥𝑟𝑟 𝛾𝛾𝑡𝑡−1𝑥𝑥𝑟𝑟 𝛾𝛾𝑡𝑡𝑥𝑥𝑟𝑟 𝑥𝑥𝑟𝑟+1

⋮

⋯ ⋯� � � � � � �⋯ 𝑥𝑥𝑟𝑟 𝛾𝛾𝑡𝑡−2𝑥𝑥𝑟𝑟

𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 𝐴𝐴𝑡𝑡−1 𝐴𝐴𝑡𝑡 𝐴𝐴𝑡𝑡+1

⋯

𝑦𝑦 𝑦𝑦 𝑦𝑦 𝑦𝑦 𝑦𝑦 𝑦𝑦

1
2
3

4
5

4
5

4
5

1
2
3 1

2
3 1

2
3

4
5

4
5

1
2
3 1

2
3

0 �

Fig. 2 t-sub-monotone algorithm determined by turning points {xi}i≥1 and intermediate turning points
within hops γ1, . . . ,γt . The figure also depicts all possible intervals Ai, i = 1, . . . , t +1 that the treasure can
lie within a t-hop between xr andxr+1. Possible placements of the treasure are depicted in every interval
Ai, along with the first five visitations of the treasure, except the last interval At+1 for which there are only
three visitations before the searcher returns to the origin.
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Lemma 7 For any j, the time h j required for the t-hop x j→ x j+1 is

h j := β
j (β+2γt −3) =

(
β

j+1−β
j) β+2γt −3

β−1
.

Proof The reader may consult Figure 2. The interval is traversed exactly three times,
except from the interval [γtβ

r,βr] which is traversed once. Hence, the time for a robot
to move from β j to β j+1 is

3
(
β

j+1−β
j)−2

(
β

j+1− γtβ
j)= β

j (β+2γt −3) .

The alternative expression is obtained by factoring out
(
β j+1−β j

)
and is given for

convenience.

Using the above, we compute the total time the robot needs to progress from the
origin to βr + ε.

Lemma 8 For any sufficiently small ε > 0, the time needed for the robot to reach
βr + ε for the first time is equal to

β
r 3β+2γt −3

β−1
− 2βγt

β−1
+ ε.

Proof The algorithm will perform a number of hops before returning to the origin
after each hop. According to Lemma 7, the total time for this trajectory is

3β+
r−1

∑
j=1

h j +2
r−1

∑
j=1

β
j+1 = 3β+(βr−β)

β+2γt −3
β−1

+2
r−1

∑
j=1

β
j+1

= 3β+(βr−β)
β+2γt −3

β−1
+2

β(βr−β)

β−1

= β
r 3β+2γt −3

β−1
− 2βγt

β−1
,

and the proof follows.
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4.1 Performance Analysis of t-Sub-Monotone Trajectories

For the remainder of the paper, we introduce the following expressions:

A = 2(1− p), (4)

B =
2

β−1
+

2(1− p)3

1−β(1− p)2 , (5)

C =
2p(1− p)3(2− p)β

1−β(1− p)2 , (6)

D =
−2p4 +12p3−26p2 +23p−4

2− p
, (7)

E =
2p(1− p)(2− p)β

1−β(1− p)2 , (8)

F = p
(

2
(

β(1− p)+1
(β−1)(1−β(p−1)2)

)
+

5−2p
2− p

)
, (9)

where, in particular, A = A(p),B = B(β, p),C =C(β, p),D = D(p),E = E(β, p),F =
F(β, p). The purpose of this section is to prove the following theorem.

Theorem 2 For any i = 1, . . . , t +1 and given that the treasure lies in interval Ai :=
(γi−1xr,γixr), the worst case induced competitive ratio Ri is given by the formula

Ri =

 p
(

Aγi+Bγt+C
γi−1

+D
)
, if i = 1, . . . , t

p
(

E
γt
+F

)
, if i = t

An immediate consequence of Theorem 2 is that the best t-sub-monotone algo-
rithm with expansion factor β within consecutive t-hops and intermediate turning
points γ1,γ2, . . . ,γt is the solution (if it exists) to optimization problem

min
β,γ1,...,γt

max{R1,R2, . . . ,Rt ,Rt+1} (10)

s.t. 1 < γ1 < .. . < γt < β < 1
(1−p)2 .

Alternatively, any solution β,γ1, . . . ,γt which is feasible to (10) has competitive ratio
maxi=1,...,t+1 Ri.

The proof of Theorem 2 is given by Lemmas 11, 12 at the end of the current
section. Towards establishing the lemmas, we need to calculate the time between
consecutive visitations of the treasure in order to eventually apply Lemma 1 and
compute the performance of a t-sub-monotone algorithm.

As we did previously and for the sake of simplifying the analysis, we assume
that the treasure will never coincide with a turning point γix j. Moreover, we assume
that the treasure is placed at distance di = γi−1xr + y from the origin, where 0 < y <
(γi− γi−1)xr, for some i that we allow for the moment to vary.

Since the treasure can be in any of these intervals, there are t+1 cases to consider
when computing the performance of the algorithm. Lemmas 9 and 10 concern differ-
ent cases as to where the treasure is with respect to internal turning points associated
with γi.
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Lemma 9 For any i = 1, . . . , t, suppose that the treasure is placed at distance di =
γi−1βr + y from the origin, where 0 < y < (γi− γi−1)xr. We then have that

gs =



βr
(

2γt
β−1 − γi +3γi−1

)
− 2βγt

β−1 +di, if s = 1
2γiβ

r−2di, if s = 2
2y, if s = 3
2βr (β+ γt)−4di, if s = 4
2di, if s = 2 j+3 for some j ≥ 1
2βr+ j (β+ γt −1)−2di, if s = 2 j+4 for some j ≥ 1

Proof For computing each of the g j’s we consult Figure 2.

g1 = β
r 3β+2γt −3

β−1
− 2βγt

β−1
+3(γi−1−1)βr + y (By Lemma 8)

= β
r
(

3β+2γt −3
β−1

+3(γi−1−1)
)
− 2βγt

β−1
+ y

= β
r
(

2γt

β−1
+3γi−1

)
− 2βγt

β−1
+ y.

We derive that g2 = 2γiβ
r−2di, that g3 = 2y, and that

g4 = 4(γtβ
r−di)+2

(
β

r+1− γtβ
r)

= 2γtβ
r +2β

r+1−4di

= 2β
r (β+ γt)−4di.

After the fourth visitation of the treasure, an odd indexed visitation takes time 2di;
that is, g2 j+3 = 2di, for all j ≥ 1. Finally, for every even indexed visitation after the
4th one we have, for each j ≥ 1, that

g2 j+4 =
(
β

r+ j−di
)
+hr+ j +

(
β

r+ j+1−di
)

= β
r+ j +β

r+ j+1 +β
r+ j (β+2γt −3)−2di (by Lemma 7)

= 2β
r+ j (β+ γt −1)−2di,

and the proof follows.

Lemma 10 Suppose that the treasure is placed at distance dt+1 = γtβ
r + y from the

origin, where 0 < y < (β− γt)xr. We then have that

gs =


βr
(

2γt
β−1 +3γt

)
− 2βγt

β−1 + y, if s = 1

2βr+1−2dt+1, if s = 2
2dt+1, if s = 2 j+1 for some j ≥ 1
2βr+ j (β+ γt −1)−2dt+1, if s = 2 j+2 for some j ≥ 1

Proof For the first two visitations, the time elapsed is identical to the case where the
treasure is in any of the intervals Ai (see Figure 2). We only need to set i = t + 1,
in which case, by Lemma 9 we obtain g1,g2 as claimed (recall that γt+1 = β). Any
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odd visitation thereafter will take additional time 2dt+1. Finally, every even visitation
thereafter is identical to the (large indexed) even visitations of Lemma 9, only that in
the currently examined case, the index of the visitations starts from four, instead of
six.

We are now ready to prove Theorem 2 by proposing and proving Lemmas 11, 12,
each of them describing the worst case competitive ratio over all possible placements
of the treasure.

Lemma 11 For any i = 1, . . . , t, and given that the treasure lies in interval Ai, the
worst case induced competitive ratio Ri is given by the formula Ri = p

(
Aγi+Bγt+C

γi−1
+D

)
.

Proof Suppose that the treasure is placed at distance di = γi−1βr + y from the origin,
where 0 < y < (γi− γi−1)xr. Let Ci denote the expected termination time in this case.
As per Lemma 1, we have that Ci = ∑

∞
j=1(1− p)i−1g j, and recall that the competitive

ratio in this case will be given by p supy,r
Ci
di
= p supy,r

Ci
γi−1xr+y . From the above and

Lemma 9 it is immediate that the largest competitive ratio is induced when y→ 0
(and as it will be clear momentarily, when r→∞). Therefore, in what follows we use
di = γi−1βr. We then have that

Ci

di
=

1
di

(
g1 +(1− p)g2 +(1− p)3g4 + ∑

j≥1
(1− p)2 j+2g2 j+3 + ∑

j≥1
(1− p)2 j+3g2 j+4

)

=
1

γi−1

(
2γt

β−1
+3γi−1

)
− 2βγt

γi−1βr(β−1)
+2(1− p)

(
γi

γi−1
−1
)

+2(1− p)3
(

β+ γt

γi−1
−2
)
+2 ∑

j≥1
(1− p)2 j+2

+
2

γi−1
(β+ γt −1) ∑

j≥1
(1− p)2 j+3

β
j−2 ∑

j≥1
(1− p)2 j+3

(r→∞)

≤ 2
γi−1

(
(1− p)γi ++

(
1

β−1
+

(1− p)3

1−β(1− p)2

)
γt +

p(1− p)3(2− p)β
1−β(1− p)2

)
+
−2p4 +12p3−26p2 +23p−4

2− p
,

and the proof follows.

Lemma 12 Given that the treasure lies in interval At+1, the worst case induced com-
petitive ratio Rt+1 is given by the formula Rt+1 = p

(
E
γt
+F

)
.

Proof We invoke Lemma 1, which together with Lemma 10 allows us to compute the
expected termination time Ct+1. Calculations are similar to the proof of Lemma 11,
and in particular, the worst competitive ratio Rt+1 is induced when y→ 0; that is,
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when dt+1→ γtβ
r, and when r→ ∞. More specifically,

sup
r,y

Ct+1

dt+1
=sup

r,y

1
dt+1

(
g1 +(1− p)g2 + ∑

j≥1
(1− p)2 jg2 j+1 + ∑

j≥1
(1− p)2 j+1g2 j+2

)

=

(
2

β−1
+3
)
+2(1− p)

(
β

γt
−1
)

+2 ∑
j≥1

(1− p)2 j +2
β+ γt −1

γt
∑
j≥1

(1− p)2 j+1
β

j−2 ∑
j≥1

(1− p)2 j+1

=
2
γt

p(1− p)(2− p)β
1−β(1− p)2 + p

(
2

β(1− p)+1
(β−1)(1−β(1− p)2)

+
5−2p
2− p

)
,

and the proof follows.

4.2 Choosing Efficient t-Sub-Monotone Trajectories

The purpose of this section is to propose a method for choosing parameters β,γ1, . . . ,γt
of a t-sub-monotone algorithm which are feasible to (10), hence, inducing competi-
tive ratio maxi=1,...,t+1 Ri. The main idea of our approach is to treat the induced com-
petitive ratio as an unknown R, and then impose, for all i = 1, . . . , t +1, that Ri = R.
The choices of γi are solutions to a recurrence relation. From numerical calculations,
we know that our method proposes optimal solutions to (10), where in particular, all
strict inequality constraints are satisfied with slack. However, a proof of optimality is
not evident.

For the values of A(p),B(p,β),C(p,β),D(p),E(p,β),F(p,β) as defined in (4)-
(9), we provide a way of obtaining t-sub-monotone algorithms by solving one non-
linear equation. To this end, we also introduce abbreviations:

x :=
R/p−D

A
, y :=

B E
R/p−F +C

A
,

where in particular x = x(p,R) and y = (p,β,R) (the fact that x is independent of β

will be used later). Moreover, we introduce the concept of the t-characteristic poly-
nomial of a pair (p,R), which is the degree-2 polynomial q0 + q1β+ q2β2 where
q0 = q0(p,R, t),q1 = q1(p,R, t),q2 = q2(p,R, t) are defined as

q0 =
(

p2(2p((p−6)p+12)−17)− (p−2)R
)(

p2 +(p−2)R
)

xt (11)

q1 =2(p−2)4(p−1)p3(R− p)+ xt× (12)(
(p(p(2p(p(2p−19)+74)−297)+308)−134)p4

−2(p−2)(p(p((p−8)p+25)−35)+20)p2R− (p−2)2((p−2)p+2)R2)
q2 =(p−1)

(
2(p−2)4 p3(3p−R) (13)

−(p−1)
(

p2(2p−5)− (p−2)R
)(

(2(p−4)p+9)p2 +(p−2)R
)

xt)
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Note that the discriminant of the t-characteristic polynomial of a pair (p,R) is a ratio-
nal function of p,R (where the numerator and denominator are polynomials of degree
Θ(t)), and hence, a function exclusively of R, for every fixed p.

Given p ∈ (0,1), we say that pair (β,R) is feasible if

x− y−1 > 0, (14)

β− E
R/p−F

> 0. (15)

As we shall see, constraints above guarantee that β is a valid expansion factor, and
that the last turning point of a sub-monotone algorithm happens before a t-hop is
completed. We will also require that(

1− y
x−1

)
xt +

y
x−1

− E
R/p−F

= 0. (16)

As the treasure could be located in any of the t + 1 sub-intervals associated with a
t-hop, constraint (16) will guarantee that the competitive ratio is independent of that
placement. Our main theorem is the following.

Theorem 3 Fix p ∈ (0,1), and let R ≥ 3 be such that the discriminant of the t-
characteristic polynomial of pair (p,R) is equal to 0. Let β = −q1/2q2 and sup-
pose that pair (β,R) is feasible. We also set γi =

(
1− y

x−1

)
xi + y

x−1 , i = 1 . . . , t. We
then have that β,γ1, . . . ,γt is a t-sub-monotone algorithm with competitive ratio R for
problem FSp.

The main ingredient for proving Theorem 3 is the following lemma.

Lemma 13 For some p ∈ (0,1), consider values of t,R,β satisfying constraint (16).
If additionally, the pair (β,R) is feasible, then R is the competitive ratio of a t-
sub-monotone trajectory with parameters β,γ1, . . . ,γt for problem FSp, where γi =(
1− y

x−1

)
xi + y

x−1 , i = 1 . . . , t.

Proof By Theorem 2, the best t-sub-monotone algorithm is determined by parame-
ters γ1,γ2, . . . ,γt ,β that minimize max{R1,R2, . . . ,Rt ,Rt+1}, subject to that 1 < γ1 <
.. . < γt < β < 1

(1−p)2 . The bound on β guarantees convergence of the expected ter-
mination time. We attempt to find a solution to the optimization problem above by
requiring that

R1 = R2 = . . .= Rt = Rt+1.

Denote the value of the optimal solution by R, and suppose that it is realized by
parameters γ1,γ2, . . . ,γt ,β. By Lemma 12, we have that

γt =
E

R/p−F
(17)

We then have that by Lemma 11 and solving for γi we obtain that for each i = 1, . . . , t

γi =
R/p−D

A
γi−1−

Bγt +C
A

(17)
=

R/p−D
A

γi−1−
B E

R/p−F +C

A
,
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with the understanding that γ0 = 1. Hence, the recurrence relation for γi gives

γi =

(
1− y

x−1

)
xi +

y
x−1

, i = 1 . . . , t.

The last expression for γi, when i = t should agree with (17). It is straightforward to
see that since R ≥ 3, we obtain that x > 1 > 0. So condition γi > γi−1 translates into
that x− y > 1, which also guarantees that γ1 > 1. Finally, the last condition asserts
that γt < β.

Theorem 3 suggests that in order to obtain an efficient t-sub-monotone algorithm
with parameters β,γ1, . . . ,γt , we need to minimize R subject to constraint (16) (and
to the associated strict inequality constraints). Ideally, we would like to find all roots
to the associated (at least) degree-t polynomial in R, and identify the minimum root
that complies with the remaining feasibility conditions. The task is particularly chal-
lenging (from a numerical perspective), since that polynomial’s coefficients depend
also on the unknown value β. To bypass this difficulty, and for fixed p, t, we define
intuitive values of R,β that always satisfy the constraint, for which we need to check
separately that they induce valid search trajectories (which is established by checking
the two strict inequalities). Numerical calculations suggest that this heuristic choice
of R,β is the optimal one, but a proof is eluding us. Nevertheless, the choice of R,β
is valid, which is summarized by the statement of Theorem 3 and which we are ready
to prove next.

Proof of Theorem 3. Expression (16) is a rational function on β. Tedious (and soft-
ware assisted symbolic calculations) show that the numerator of that rational function
is the t-characteristic polynomial q0 +q1β+q2β2 of pair (p,R). If R is such that the
discriminant of that polynomial is equal to 0, then −q1/2q2 is a root to the poly-
nomial, and hence, constraint (16) is satisfied for the values of p,R,β, t. Since pair
(β,R) is feasible, all preconditions of Lemma 13 are satisfied, and hence, β,γ1, . . . ,γt
is a t-sub-monotone algorithm with competitive ratio R for problem FSp.

We observe that Theorem 3 computes exactly the best monotone algorithm of
Lemma 3. In other words, the 0-sub-monotone we propose above is the optimal
monotone algorithm we have already studied. Indeed, the discriminant of the 0-
characteristic polynomial of (p,R) equals

(p−2)2 p2(p(p(17−2p((p−6)p+12))+R)−2R)2

×
(
(p+R)

(
(p−2)2R+ p((p−4)p+12)

)
−16R

)
The two roots of the right-hand-side factor above is a degree-2 polynomial in R with
roots 4±4

√
1−p

2−p − p, one of which (the only one which is at least 3) being exactly the
competitive ratio calculated by Lemma 3. Moreover, setting β = −q1/2q2 gives the
same value of the expansion factor, which is denoted by b in Lemma 3.
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4.3 Numerical Computation of t-Sub-Monotone Trajectories, t ≤ 10

We summarize the numerical results we obtain by invoking Theorem 3 for t = 1, . . . ,10,
obtaining t-sub-monotone algorithms that induce better and better competitive ratios.
For each t and (enough many) p ∈ (0,1) we compute the smallest root R = R(p, t)
at least 3 of the t-characteristic polynomial, and the associated value of the expan-
sion factor β = β(p, t). For every pair (β,R) we verify that the induced values of γi
do define a feasible search trajectory by showing that pair (β,R) is feasible. Note
that constraints (14) and (15) guarantee that β is a valid expansion factor, and that
the intermediate turning points of a t-hop are well defined, assuming that the worst
case competitive ratio is the same in all subintervals of a t-hop, as required by con-
straint (16).

The improvement in the competitive ratio, when t = 1, . . . ,4 is apparent from a
plot of the competitive ratio as a function of p, see Figure 3. Figure 4 displays the
behavior of the expansion factors β. Finally, Figures 5 and 6 confirm that the proposed
solution is valid (by checking constraints (14) and (15)), or in other words that the
reported competitive ratio of Figure 3 is correct. The horizontal axis in all figures is
probability p. The vertical axis is explained in detail in each of the captions.
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Fig. 3 The vertical axis shows the behavior
of the achieved competitive ratio Rt = Rt(p)
of various t-sub-monotone algorithms. Purple
line corresponds to the monotone algorithm of
Lemma 3; that is, when t = 0. The subsequent
improvements for t = 1,2,3,4 are shown in col-
ors blue, yellow, green and red, respectively.
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Fig. 4 Figure depicts the behavior of the pro-
posed expansion factors βt = βt(p) for various
values of t, as a function of p ∈ (0,1) (horizon-
tal axis), that induce the competitive ratios Rt
depicted in Figure 3. For the sake of better com-
parison, the vertical axis is βt(1− p)2−(1− p),
which also shows that each expansion factor is
more than 1 and less that 1/(1− p)2. Colors
blue, yellow, green and red correspond to t-sub-
monotone algorithms t = 1,2,3 and 4, respec-
tively.
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Fig. 5 This figure shows why the choices of
βt(p) of Figure 4, that induce the competitive
ratios Rt(p) of Figure 3, satisfy constraint (14)
as required by Theorem 3. Recall that x,y are
functions of p,Rt ,βt . For the sake of better com-
parison, the vertical axis corresponds to (x−
y− 1)p(1− p). Colors blue, yellow, green and
red correspond to t-sub-monotone algorithms
t = 1,2,3 and 4, respectively.
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Fig. 6 This figure shows why the choices of
βt(p) of Figure 4, that induce the competitive
ratios Rt(p) of Figure 3, satisfy constraint (15),
as required by Theorem 3. Recall that E,F
are functions of p,Rt ,βt . For the sake of bet-
ter comparison, the vertical axis corresponds
to
(

βt − E
Rt/p−F

)
(1− p)2. Colors blue, yellow,

green and red correspond to t-sub-monotone al-
gorithms t = 1,2,3 and 4, respectively.

For values t = 5, . . . ,10 we need to deploy heuristic comparisons in order to
display the behavior of the achieved competitive ratio, along with the correspond-
ing expansion factor (this is due to that improvements are negligible, even though
strictly positive). Figure 7-left compares the achieved competitive ratios. Figure 7-
middle displays the relative behavior of the expansion factors. Finally, Figure 7-right
shows why the proposed solution satisfies constraint (14) of Theorem 3. As for con-
straint (15), numerical calculations suggest that expression β− E

R/p−F remains nearly
invariant for t ≥ 5, and hence, showing the behavior for t = 5, . . . ,10 results in a
degenerate figure where all curves nearly coincide (see also Figure 6, where expres-
sions for t = 3,4, green and red respectively, are already very close to each other).
The horizontal axis is always probability p ∈ (0,1), while different t-sub-monotone
algorithms are displayed with different colors. The values of the vertical axes are
described in the corresponding captions.

4.4 Some Closed Formulae & the Case t→ ∞

As already discussed, we conjecture that the t-sub-monotone algorithms derived by
Theorem 3 are optimal solutions to optimization problem (10), even though our con-
jecture does not compromise the correctness of our algorithms for problem FSp.
Nevertheless, a disadvantage of our approach, and in general of t-sub-monotone al-
gorithms, is that our choices of parameters β,γ1, . . . ,γt do not admit closed form de-
scriptions as functions of p. In this section, we deviate from our goal to determine
the best possible t-sub-monotone algorithms, and we present specific choices of pa-
rameters β,γ1, . . . ,γt with closed formulas which induce nearly optimal competitive
ratios.

Apart from our monotone trajectories, all our positive results were summarized in
Section 4.3 and were based on numerical, and computer assisted, calculations. In light
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Fig. 7 The figures summarize the behavior of t-sub-monotone algorithms for t = 5,6,7,8,9,10, see colors
blue, yellow, green, red, purple and brown, respectively. All the horizontal axes correspond to p ∈ (0,1).
- Left figure displays the behavior of the achieved competitive ratio Rt . For each t = 5, . . . ,10, the vertical
axis corresponds to the scaled marginal improvements 4t−5(Rt−1−Rt) between two consecutive values
of t, which show that the competitive ratio does improve with t, still the improvement is increasingly
negligible. The scalar was introduced so that the competitive ratios can be displayed together. - Middle
figure displays the behavior of the expansion factors βt that give rise to competitive ratios Rt . For each
t = 5, . . . ,10, the vertical axis is the scaled relative change (1− p)11−t(βt − βt−1)/βt , where the scalar
was introduced to improve comparison. - Right figure shows that the values of βt ,Rt chosen, as per the
left and middle figures, do indeed satisfy constraint (14) of Theorem 3. The horizontal axis corresponds to
(x− y−1)p(1− p)4t−5, where the scalars were introduced so that plots are comparable.

of Theorem 3, it is immediate that closed formulas for the achieved competitive ratios
of t-sub-monotone algorithms do not exist. An exception, apart from the degenerate
case t = 0, is the case t = 1. In particular, the discriminant of the 1-characteristic
polynomial of pair (p,R) can be factored in two polynomials in R of degree 4 and of
degree 2. One of the roots to the degree-4 polynomial is the competitive ratio of the
1-sub-monotone algorithm (as also per Theorem 3). Hence, the achieved competitive
ratio R of the 1-sub-monotone algorithm, along with the corresponding expansion
factor β (depicted in Figures 3,4, respectively) admit closed formulas, even though
they are enormous. Nevertheless, we show in the next theorem how to obtain an 1-
sub-monotone and nearly optimal algorithm with performance and expansion factor
that admit elegant closed formulas (see Figure 8-left for comparison to the 1-sub-
monotone algorithm of Theorem 3). Note that Theorem 1 combined with Theorem 4
below show provably, and not (computer-assisted and) numerically, that monotone
algorithms are strictly sub-optimal for FSp, for all p ∈ (0,1).
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Fig. 8 Figures depict the performance of t-sub-monotone algorithms (t = 1,2) with expansion factors
β = 1/(1− p), as a function of p ∈ (0,1). - Left Figure shows the difference between the competitive ratio
achieved by Theorem 4 and the competitive ratio of the 1-sub-monotone algorithm induced by Theorem 3.
- Middle Figure shows the behavior of the intermediate turning point γ1 of the 1-Hop of 1-sub-monotone
algorithm, compared to expansion factor β. The vertical axis equals γ1/β = γ1(1− p), which is shown to
be at most 1, as wanted. - Right Figure shows the difference between the competitive ratio achieved by a
heuristic 2-sub-monotone algorithm using β = 1/(1− p) and the competitive ratio of the 1-sub-monotone
algorithm induced by Theorem 3.
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Theorem 4 There is a 1-sub-monotone algorithm for FSp with competitive ratio

R =
√

(p−2)(p−1)(p(p(4p−3)+5)+2)+
4

2− p
− (2− p)p,

and expansion factor β = 1/(1− p).

Proof We fix β = 1/(1− p) and invoke constraint (16), so as to force that the com-
petitive ratio does not depend on which subinterval the treasure is placed within a
1-Hop of the 1-sub-monotone-algorithm. The constraint then becomes

1
2

(
R

p− p2 +
p−4

p2−3p+2
− 4((p−1)p+2)(p−2)2

p(p(2p−9)−R+12)+2(R−4)

)
= 0,

which, solved for R, gives the promised competitive ratio.
As for the turning point γ1 of the 1-Hop, it can be computed as E

R/p−F and in
order to be valid, it has to be positive and at most β = 1/(1− p). This is verified in
Figure 8-middle.

Similar to Theorem 4, it is possible to identify a 2-sub-monotone algorithm with
nearly optimal solution. Indeed, choosing again β = 1/(1− p) and for t = 2, con-
straint (16) becomes

1
4

(
R2

(p−1)2 p2 −
8
(
(p((p−5)p+10)−7)p2 +4

)
(p−2)2

p(p(p(2p−9)−R+12)+2(R−4))

−4p2 +
p(p(−4(p−7)p−71)+72)−16

(p2−3p+2)2

−2(p((p−6)p+13)−11)R
(p−2)(p−1)2 +10p− 16

p

)
= 0,

which can be converted into a degree-3 polynomial equation in R. The real root of
that polynomial is the competitive ratio of a 2-sub-monotone algorithm, whose per-
formance compared to the competitive ratio induced by Theorem 3 is shown in Fig-
ure 8-right.

We now turn our attention to the best competitive ratio we can achieve by t-sub-
monotone algorithms if we allow t to grow. By Section 4.3, and in particular Figure 7,
we know that the additive improvement in the competitive ratio, at least when t ≤ 10,
reduces almost by a factor of 4 between consecutive values of t. Interestingly, we can
determine the limit Rt as t→ ∞. The key observation is that if for some p,R we have
that x(p,R) is bounded away from 1, then xt would be dominant in constraint (16).
Equivalently, the t-characteristic polynomial of pair (p,R) (see also (11), (12), (13))
would converge, as t grows, to the polynomial xt

(
q̄0 + q̄1β+ q̄2β2

)
, where

q̄0 =
(

p2(2p((p−6)p+12)−17)− (p−2)R
)(

p2 +(p−2)R
)

q̄1 =
(
(p(p(2p(p(2p−19)+74)−297)+308)−134)p4

−2(p−2)(p(p((p−8)p+25)−35)+20)p2R− (p−2)2((p−2)p+2)R2)
q̄2 =− (p−1)2 (p2(2p−5)− (p−2)R

)(
(2(p−4)p+9)p2 +(p−2)R

)
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The discriminant of the polynomial would then become q̄2
1−4q̄0q̄2 which is a degree

4 polynomial in R. Therefore, its four roots can be computed by closed formulas.
Numerical calculations show that the polynomial in R has two imaginary roots (for
every p ∈ (0,1)), one real root less than 1 and one root at least 3, which we denote
by R̄ = R̄(p). By Theorem 3, R̄ would be the limit of the competitive ratios achieved
by t-sub-monotone algorithms, assuming that the sequence of (βt ,Rt) is feasible.

In Figure 9-left we compare R̄ against the 10-sub-monotone algorithm we estab-
lished before, showing this way that the improvement we can achieve against mono-
tone algorithms is well illustrated in Figure 3. Indeed, Figure 9-left shows that already
when t = 10 the achieved competitive ratio is within less that 10−6 additively off from
the best competitive ratio we can achieve if we let t grow, for every p ∈ (0,1). Next,
Figure 9-middle shows that x(p, R̄) is bounded away from 1 for all p ∈ (0,1) and
for the computed value R̄, therefore, R̄ is the limit of values Rt that makes the dis-
criminant of the t-characteristic polynomial equal to 0. Finally, Figure 9-right shows
that pair (β̄, R̄), where β̄ = −q̄1/2q̄2 satisfies constraint (15). As for constraint (14),
we have that x(p,Rt)− y(p,βt ,Rt)→ 1 as t → ∞, which was implied by that the
discriminant of q̄0 + q̄1β+ q̄2β2 is 0.
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Fig. 9 Figures summarize properties of the limit of pair (βt ,Rt), as defined by Theorem 3, and as t tends to
infinity. All the horizontal axes correspond to p ∈ (0,1). - Left figure displays the behavior of R10− R̄, that
is the difference between the achieved competitive ratio of the 10-sub-monotone algorithm of Theorem 3
and the ratio R̄ one can achieve for arbitrary large values of t. - Middle figure displays the behavior x(p, R̄),
as a function of p, according to which x(p, R̄)> 4 for all p ∈ (0,1), and hence, it is bounded away from 1
as wanted. - Right figure shows that the pair (β̄, R̄) satisfies constraint (15). The vertical axis corresponds

to
(

β̄− E
R̄/p−F

)
(1− p)2.

5 Discussion and Open Problems

We studied p-Faulty Search (FSp), a search problem on a 1-ray, where the searcher is
probabilistically faulty with known probability 1− p. Our main contribution pertains
to the disproof of a conjecture that optimal trajectories for such problems are mono-
tone. Whether the same conjecture is wrong for searching m-rays, and in particular,
the line (m = 2) remains an open problem. When it comes to searching the half-line,
all our algorithms have competitive ratio at least 4 when p→ 0 and at least 3 when
p→ 1. The value of 3 is provably a lower bound to any search strategy since the
searcher has to return at least once close to the origin before attempting for a second
time an expansion of the searched space. No other general lower bound is known
for the problem, whereas all our algorithms have competitive ratio at least 4− p. Is
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4− p a lower bound to any algorithm for FSp, and if yes can this be matched by
an upper bound? We conjecture that the lower bound is valid, as well as that our
t-sub-monotone algorithms are sub-optimal.
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