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Abstract. The Artificial Benchmark for Community Detection graph
(ABCD) is a random graph model with community structure and power-
law distribution for both degrees and community sizes. The model gen-
erates graphs with similar properties as the well-known LFR one, and
its main parameter ξ can be tuned to mimic its counterpart in the LFR
model, the mixing parameter µ.
In this paper, we extend the ABCD model to include potential outliers.
We perform some exploratory experiments on both the new ABCD+o
model as well as a real-world network to show that outliers pose some
distinguishable properties. This ensures that our new model may serve
as a benchmark of outlier detection algorithms.
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1 Introduction

One of the most important features of real-world networks is their community
structure, as it reveals the internal organization of nodes [10]. In social net-
works, communities may represent groups by interest; in citation networks, they
correspond to related papers; on the Web, communities are formed by pages
on related topics, etc. Being able to identify communities in a network could
help us to exploit this network more effectively. Grouping like-minded users or
similar-looking items together is important for a wide range of applications, in-
cluding controlling epidemics [12], recommendation systems, anomaly or outlier
detection, fraud detection, rumor or fake news detection, etc. [16]. There is also
growing literature introducing community-aware centrality measures that ex-
ploit both local and global properties of networks [8, 35]. For more discussion
around various aspects of mining complex networks, see for example, [31, 23].

One of the major current challenges in detecting communities is that most of
the existing algorithms treat all nodes the same way. That is, they try to assign
them to precisely one community. On the other hand, many complex networks
(regardless of whether their nodes correspond to, say, users of some social media
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or movies on Netflix) consist of nodes that are active participants of their own
communities while others are not [29]. As a result, there is a need to detect nodes
that are not a strong part of any of the communities. In this paper we refer to
such nodes as outliers.

Another feature of empirical graphs is that some communities might be over-
lapping, which is reflected by some of the nodes belonging to a few communities
via fuzzy membership. For example, a label propagation method [14] and a non-
negative matrix factorization approach [41] are introduced to find overlapping
communities. Independently, a Louvain-based algorithm is proposed in [36] to
detect overlapping communities with influence analysis.

The survey [1] reviews various methods and approaches to graph anomaly
detection. In particular, Section 2.1.2 in this survey contains a review of various
methods that are used for identifying community-based outliers. This type of
outlier is a subject of interest in this paper.

Selected relevant approaches related to community-based outliers detection
can be found in [2, 6, 11, 28, 37, 38], but more research is expected to be pur-
sued in the near future. There are two reasons supporting such observation.
Firstly, in many applications, outliers themselves are objects of interest. Sec-
ondly, proper handling of graph outliers when mining complex networks is, in
our opinion, more important and more sophisticated than in standard machine
learning when working with tabular data. Indeed, many procedures used in min-
ing complex networks (e.g., graph embeddings) are affected by the presence of
outliers. However, one cannot simply remove them from the data, as opposed to
standard machine learning, where such a procedure is sometimes applied. The
issue is that removing nodes in networks affects the properties of other nodes
and changes the underlying graph’s structure and topology.

Another well-known challenge recognized by researchers is that there is a
limited number of datasets with ground truth identified and labeled. As a result,
there is a need for synthetic random graph models with community structure
that resemble real-world networks in order to benchmark algorithms that aim
to analyze graph community structure. The LFR (Lancichinetti, Fortunato,
Radicchi) model [25, 26] generates networks with communities, and at the same
time, it allows for the heterogeneity in the distributions of both node degrees
and of community sizes. It became a standard and extensively used method for
generating artificial networks with (non-overlapping) community structure.

Unfortunately, the situation is much more challenging if one needs a synthetic
model with outliers. There seems to be no standard model that one may use.
For example, in [11] the authors adjust the classical Stochastic Block Model to
simultaneously take into account the community structure and outliers by intro-
ducing different probabilities of connection between inliers and pairs involving
outliers. To validate algorithms tested in [2], the authors start with a synthetic
LFR network or a real-world one and then randomly perturb edges around some
randomly selected nodes in order to create artificial outliers. LFR itself [25] has
some basic functionality to create overlapping clusters but not outliers.
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This paper is an extended version of the proceeding paper [20] in which we
revisit the Artificial Benchmark for Community Detection (ABCD) graph [22].
This model was recently introduced and implemented4, including a fast imple-
mentation that uses multiple threads (ABCDe) [18]5. Undirected variant of
LFR and ABCD produce synthetic networks with comparable properties but
ABCD/ABCDe is significantly faster than LFR and can be easily tuned to
allow the user to make a smooth transition between the two extremes: pure (dis-
joint) communities and random graph with no community structure. Moreover,
it is easier to analyze theoretically. For example, various theoretical asymptotic
properties of the ABCD model are analyzed in [19], including the modularity
function that is, arguably, the most important graph property of networks in the
context of community detection.

In this paper, we extend the original ABCD model to include potential
outliers, ABCD+o model (see Section 2). We examine one of the few real-
world networks with identified outliers, the College Football Graph (see Subsec-
tion 3.1), and identify distinctive properties of outliers that are present in this
network. We then perform simulations with our new ABCD+o model to show
that its outliers possess similar properties (see Subsections 3.2, 3.3, 3.4, and 3.6).
This validates that our model mimics real-world networks with the presence of
outliers and so may serve as a benchmark of outlier detection algorithms. Addi-
tionally, to illustrate the need for proper outlier-detection algorithms, we show
in Subsection 3.7 that some classical and widely used centrality measures fail
to distinguish outliers from regular nodes both for College Football Graph and
ABCD+o model.

The applications presented in Section 3 show usefulness of the proposed
ABCD+o model as a benchmark for such tests. In particular, we show that,
as opposed to real-world graphs (which have a fixed structure), we can analyze
the impact of varying graph parameters, such as the average degree or strength
of communities, on the process of outlier detection.

Future directions are briefly mentioned in Section 4. The associated Jupyter
notebook can be found on GitHub repository6.

2 Adjusting the ABCD Model to Include Outliers

We start this section with a brief description of the ABCD model taken from [18];
details can be found in [22] or in [19]. We then carefully explain the adjustments
needed to incorporate the existence of outliers.

2.1 The Original Model

As in the LFR model [26, 25], for a given number of nodes n, we start by gener-
ating a power law distribution both for the degrees and community sizes. Those

4 https://github.com/bkamins/ABCDGraphGenerator.jl/
5 https://github.com/tolcz/ABCDeGraphGenerator.jl/
6 https://github.com/ftheberge/ABCDoExperiments
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are governed by the power law exponent parameters (γ, β). We also provide
additional information to the model, again as it is done in LFR, namely, the
average and the maximum degree, and the range for the community sizes. The
user may alternatively provide a specific degree distribution and/or community
sizes.

For each community, we generate a random community subgraph on the
nodes from a given community using either the configuration model [5] (see [3,
39, 40] for related models and results) which preserves the exact degree distribu-
tion, or the Chung-Lu model [7] which preserves the expected degree distri-
bution. On top of it, we independently generate a background random graph on
all the nodes. Everything is tuned so that the degree distribution of the union
of all graphs follows the desired degree distribution (only in expectation in the
case of the Chung-Lu variant). The mixing parameter ξ guides the proportion
of edges that are generated via the background graph. In particular, in the two
extreme cases, when ξ = 1 the graph has no community structure while if ξ = 0,
then we get disjoint communities. In order to generate simple graphs, we may
have to do some re-sampling or edge re-wiring, which are described in [22].

During this process, larger communities will additionally get some more inter-
nal edges due to the background graph. As argued in [22], this “global” variant of
the model is more natural and so we recommend it. However, in order to provide
a variant where the expected proportion of internal edges is exactly the same
for every community (as it is done in LFR), we also provide a “local” variant
of ABCD in which the mixing parameter ξ is automatically adjusted for every
community.

Two examples of ABCD graphs on n = 100 nodes are presented in Fig-
ure 1 (a standard Fruchterman-Reingold layout was used to plot them). Degree
distribution was generated with power law exponent γ = 2.5 with minimum
and maximum values of 5 and 15, respectively. Community sizes were generated
with power law exponent β = 1.5 with minimum and maximum values 20 and
40, respectively; communities are shown in different colors. The global variant
and the configuration model were used to generate the graphs. The left plot has
the mixing parameter set ξ = 0.2 while the “noisier” graph on the right plot has
the parameter fixed to ξ = 0.4.

Fig. 1: Two examples of ABCD graphs with low level of noise (ξ = 0.2, left)
and high level of noise (ξ = 0.4, right).
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2.2 Adjusting the Model to Include Outliers

The adjusted model, ABCD+o (ABCD with outliers), will have an addi-
tional parameter s0 which is equal to the number of outliers. Because of a
well-structured and flexible design of the original model, adjusting it to include
outliers is simple. One trivial adjustment needed is the way the distribution of
community sizes is generated. A slightly more delicate modification is needed in
the process of assigning nodes to communities. However, before that, the algo-
rithm needs to select suitable nodes for outliers. Below, we independently discuss
these issues and explain how they are generalized.

The ABCD+o extension is defined only for the default settings of the orig-
inal ABCD algorithm, namely, for the global version of the algorithm, configu-
ration model used to generate community and background graphs, and accepts
only parameter ξ as the level of noise. As in the original ABCD model, the
degree distribution is generated randomly following the (truncated) power-law
distribution P(γ, δ,∆) with exponent γ ∈ R+, minimum value δ, and maximum
value ∆ ≥ δ. No adjustment is needed.

Distribution of Community Sizes. Let β ∈ R+, s, S ∈ N such that δ < s ≤
S. Community sizes in the original ABCD model are generated randomly follow-
ing the (truncated) power-law distribution P(β, s, S) with exponent β, minimum
value s, and maximum value S. It is recommended to use β ∈ (1, 2), some rela-
tively small value of s such as 100 or 500, and S larger than ∆. The condition
for S is needed to make sure large degree nodes have large enough communities
to be assigned to. Similarly, the assumption that s ≥ δ + 1 is required to guar-
antee that small communities are not too small and in consequence that they
can accommodate small degree nodes. These conditions are needed to make sure
that generating a simple graph with the desired properties is feasible.

Communities in the original model are generated with this distribution as
long as the sum of their sizes is less than n, the desired number of nodes. After
drawing a predetermined number of samples from this distribution, the algorithm
is selecting one sequence with a sum as close to n as possible and carefully adjusts
it, if needed.

Since there are s0 outliers in the new model (ABCD+o), the community
sizes (si, i ∈ [`] := {1, . . . , `}) are generated as in the original model but this
time with the condition that the sum of their sizes is equal to n− s0 (instead of
n).

Assigning Nodes to Outliers. Parameter ξ ∈ (0, 1) reflects the amount of
noise in the network. It controls the fraction of edges that are between commu-
nities. Indeed, in the original ABCD model, asymptotically (but not exactly)
1 − ξ fraction of edges end up within one of the communities. Each node in
the original model has its degree wi split into two parts: community degree yi
and background degree zi (wi = yi + zi). The goal is to get yi ≈ (1 − ξ)wi and
zi ≈ ξwi. However, both yi and zi have to be non-negative integers, and for
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each community C ⊆ V ,
∑

i∈C yi has to be even. Fortunately, this can be easily
achieved by an appropriate random rounding of (1−ξ)wi to the nearest integers.

In the generalized ABCD+o model, each non-outlier has its degree wi split
into yi and zi, as in the original model. These nodes will be assigned to one
community. On the other hand, the outlier nodes will not get assigned to any
community so all of the incident edges will be generated in the background graph,
thus the corresponding neighbors will be sampled from the entire graph. As a
result, their degrees will satisfy wi = zi. Note that the only potential problem
with outliers that might occur is when ξ is close to zero. In the extreme case
when ξ = 0, only outliers have a non-zero degree in the background graph. In
order to make sure that there exists a simple graph that satisfies the required
degree distribution, in such extreme situations all outliers must have degrees
smaller than s0. The model needs to be prepared for such potential problems
but in practice (when the number of nodes n is large, the number of outliers s0
is relatively small, and the level of noise ξ is not zero) there are plenty of nodes
with a non-zero degree in the background graph and so there is no restriction
for outliers.

To prepare for potential problems we do the following. Once the degree of
each node wi is split into yi and zi, we get a lower bound for the number of
nodes that will have a non-zero degree in the background graph, namely,

L := |{v ∈ V : zi ≥ 1}|.

Note that L̄ = E[L] =
∑

i∈V min(1, ξwi) since each node with ξwi ≥ 1 satisfies
zi ≥ 1 and each node with ξwi < 1 has zi = 1 with probability ξwi and zi = 0
otherwise. Moreover, since by default outliers have zi = wi ≥ 1, there will be
at least s0 nodes of positive degree in the background graph. Assuming that
outliers are selected uniformly at random, we expect L + (n − L)(s0/n) nodes
of positive degree in the background graph. (In fact, since there is a slight bias
toward selecting small degree nodes for outliers and L has a bias toward large
degree nodes, we expect slightly more nodes of positive degree in the background
graph, which is good.) We introduce the following constraint: a node of degree
wi can become an outlier if

wi ≤ L̄+ s0 − L̄s0/n− 1. (1)

Finally, s0 nodes satisfying (1) are selected uniformly at random to become
outliers. (In the implementation, these nodes simply form an independent “com-
munity” with yi = 0 and zi = wi.)

Assigning Nodes to Communities. Similarly to the potential problem with
outliers, we need to make sure that non-outliers of a large degree are not assigned
to small communities. Based on the parameter ξ we know that roughly (1−ξ)wi

neighbors of a node of degree wi will be present in its own community. However,
this is only the lower bound as some neighbors in the background graph might
end up there by chance. Hence, in order to make enough room in the community
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graph for all neighbors of a given node, the original ABCD algorithm needs to
compute xi, the expected number of neighbors of a node of degree wi that end
up in its own community. We need to recompute xi to incorporate the existence
of outliers.

Assuming that nodes are assigned randomly with a distribution close to the
uniform distribution, we expect Ws0/n points (in the corresponding configu-
ration model) in the background graph to be associated with outliers, where
W :=

∑
i∈[n] wi is the volume of the graph (equivalently, the total number of

points in the corresponding configuration model). Similarly, we expect ξ fraction
of the points associated with non-outliers to end up in the background graph,
that is, W (1− s0/n)ξ points. In order to estimate what fraction of neighbors of
a given non-outlier node is expected to be within the same community, we need
to answer the following question: what is the probability that a random point
in the background graph associated with a non-outlier is matched with a point
within the same community? It is equal to∑

j∈[`]

sj
n− s0

·
sj

n−s0W (1− s0/n)ξ

W (1− s0/n)ξ +Ws0/n
=
∑
j∈[`]

(
sj

n− s0

)2
(n− s0)ξ

(n− s0)ξ + s0
.

Indeed, with probability
sj

n−s0 a random point belongs to community j. There

are
sj

n−s0W (1−s0/n)ξ points associated with community j and the total number
of points in the background graph is W (1 − s0/n)ξ + Ws0/n. Hence, one can
easily estimate the probability that the point from community j is matched with
another point from the same community. The expected number of neighbors of
a node of degree wi that stay within the same community is then

xi :=

1− ξ + ξ
∑
j∈[`]

(
sj

n− s0

)2
(n− s0)ξ

(n− s0)ξ + s0

wi = (1− ξφ)wi,

where

φ := 1−
∑
j∈[`]

(
sj

n− s0

)2
(n− s0)ξ

(n− s0)ξ + s0
.

In particular, we expect (1− ξφ)(1− s0/n) fraction of edges to stay within one
of the communities. Moreover, as expected, if s0 = 0, then we recover the value
of φ used in the original ABCD model, namely,

φ = 1−
∑
j∈[`]

(sj
n

)2
.

As in the original ABCD model, a node of degree wi can be assigned to a
community of size sj if xi ≤ sj − 1. We select one admissible assignment of non-
outliers to communities uniformly at random which turns out to be relatively
easy from both theoretical and practical points of view.

Two examples of ABCD+o graphs on n = 100 nodes are presented in
Figure 2 (as in the previous figure, a standard Fruchterman-Reingold layout
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was used to plot them). The number of outliers is s0 = 5 and the remaining
parameters are exactly the same as the ones to produce Figure 1. Communities
are shown in different colors and outliers are displayed as triangles. The left plot
has the mixing parameter set ξ = 0.2 while the “noisier” graph on the right plot
has the parameter fixed to ξ = 0.4. In the left plot, it is visible that 4 out of
5 outliers are clearly located between the communities, while one of them falls
within a single community. (Recall that outlier nodes have all of their incident
edges generated in the background graph. As a result, neighbors of outliers are
selected randomly from the entire graph. For large networks, it will be highly
unlikely that most neighbors belong to one community but for small graphs, it
could happen with non-negligible probability which turned out to be the case in
our experiment. After all, it is a stochastic process and natural fluctuations may
and do occur.) In the right plot, which is noisier, we still see that outliers are
surrounded by nodes belonging to different communities.

Fig. 2: Two examples of ABCD+o graphs with low level of noise (ξ = 0.2,
left) and high level of noise (ξ = 0.4, right). The number of outliers is s0 = 5
(depicted as triangles).

2.3 Scalability

The implementation of the algorithm is done in Julia language [4]. It is an
extension of the ABCD model implementation [22] and so it does not change its
computational complexity. For this reason, as reported earlier in [22], ABCD+o
generates typical graphs on 10 million nodes in under 2 minutes, which is of the
order of 100 times faster than the reference LFR algorithm implementation.

3 Experiments—Distinguishing Properties of Outliers

In order to better understand the properties of outliers, we perform a few exper-
iments on the well-known College Football real-world network with known com-
munity structure and the presence of outliers. We consider four different ways to
detect outliers. In order to show that our new ABCD+o model exhibits similar
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desired properties, we generated graphs on n = 10,000 nodes with s0 = 500 out-
liers (5%). Degree distribution was generated with power law exponent γ = 2.5
with minimum and maximum values of 5 and 500, respectively. Community sizes
were generated with power law exponent β = 1.5 with minimum and maximum
values 100 and 1,000, respectively. We independently generated graphs for all
values of ξ ∈ {0.1, 0.2, . . . , 1.0} but the degree distribution and the distribution
of community sizes were coupled so that all 10 graphs use the same distributions.

With the experiments presented in this section, we illustrate the usefulness of
benchmarks such as ABCD+o to compare various anomaly detection methods
under different scenarios such as graphs with more or less noise, nodes with
varying degrees, etc.

3.1 The College Football Graph

The College Football real-world network represents the schedule of United States
football games between Division IA colleges during the regular season in Fall
2000 [13]. The data consists of 115 teams (nodes) and 613 games (edges). The
teams are divided into conferences containing 8–12 teams each. In general, games
are more frequent between members of the same conference than between mem-
bers of different conferences, with teams playing an average of about seven intra-
conference games and four inter-conference games in the 2000 season. There are
a few exceptions to this rule, as detailed in [30]: one of the conferences is really
a group of independent teams, one conference is really broken into two groups,
and 3 other teams play mainly against teams from other conferences. As it is
commonly done in the literature, we refer to those 14 teams as outlying nodes,
which we represent with distinctive triangles in Figure 3.

Fig. 3: The College Football Graph; outliers are displayed triangles.
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3.2 Participation Coefficient

The following definitions are commonly used in the literature [9, 34] (see also [23]).
We say that a set of nodes C ⊆ V forms a strong community if each node in C
has more neighbors in C than outside of C. One may relax this strong notion
and say that C forms a weak community if the average degree inside the commu-
nity C (over all nodes in C) is larger than the corresponding average number of
neighbors outside of C. In this context, an outlier could be formally defined as a
node that does not have the majority of its neighbors in any of the communities.
In the ABCD+o model, non-outliers are expected to have more than half of
their neighbors in their own community, provided that ξ < 0.5. On the other
hand, outliers in our model are expected to satisfy the above-desired property,
unless there is an enormous community spanning more than 50% of nodes.

A more refined picture is provided by the next coefficient which is a natural
measure of concentration. For any partition A = {A1, . . . , A`} of the set of
nodes, the participation coefficient of a node v (with respect to A) is defined as
follows:

p(v) = 1−
∑̀
i=1

(
degAi

(v)

deg(v)

)2

,

where degAi
(v) is the number of neighbours of v in Ai. The participation coeffi-

cient p(v) is equal to zero if v has neighbors exclusively in one part. Members of
strong communities satisfy, by definition, p(v) < 3/4. In the other extreme case,
the neighbors of v are homogeneously distributed among all parts and so p(v) is
close to the trivial upper bound of

1−
∑̀
i=1

(
deg(v)/`

deg(v)

)2

= 1− 1

`
≈ 1.

For the experiments shown below, even though we have the ground truth
communities available to use (which is almost always not the case in practice),
we computed the participation coefficients using communities (partition A) we
obtained with the ECG clustering algorithm (we describe this algorithm in the
following subsection). The distribution of the participation coefficient among
outliers and non-outliers for the College Football Graph is presented on the box
plot in Figure 4 (left). We see that outliers have a significantly larger average
value of p(v) than the corresponding value for non-outliers. We also computed the
AUC score (the area under the ROC curve), which corresponds to the probability
that a randomly selected outlier node has a larger score than a randomly selected
non-outlier node. We see that this value is almost one (approximately 0.998),
showing a very good separation between the two classes.

The corresponding averages (together with associated standard deviations)
for the ABCD+o model with different levels of noise are presented in Figure 4
(right). For a low level of noise (small values of ξ) there is a clear difference
between outliers and non-outliers but the discrepancy diminishes for noisy graphs
(large values of ξ). In the extreme case when ξ = 1 there is no difference between
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the two classes and so the averages are close to each other as they should be.
This is also well illustrated by the corresponding AUC scores we computed for
various values of ξ, showing very good class separation for small to mid-range
values of ξ, but tending toward 0.5 for large ξ, which amounts to having no
separation between the two classes.
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Fig. 4: Distribution of the participation coefficient for regular and outlier nodes:
College Football Graph (left) and ABCD+o model (right).

3.3 ECG Coefficient

Ensemble Clustering algorithm for Graphs (ECG) [33]7 is a consensus
clustering method based on the classical Louvain algorithm. A convenient “side-
effect” of this algorithm, which is useful from the perspective of our experiments,
is that it can be used to define simple scores to identify outliers. In its first phase,
several low-level partitions are computed with different randomization (the en-
semble). In the next phase, for each edge, we compute the proportion of parti-
tions in the ensemble where both nodes incident to this edge were assigned to
the same community. Those are the ECG edge scores. High scores are indicative
of stable pairs that often appear in the same part. For a given node v, we define
E(v) to be the average ECG score over all edges incident to v, and we call it the
ECG coefficient of a node v. It is expected that outliers are more challenging
to cluster which should be manifested by relatively small ECG coefficients E(v)
associated with these nodes.

As it was done for the participation coefficient, we investigate the distribution
of the ECG coefficient among outliers and non-outliers for the College Football
Graph—see Figure 5 (left). We see that it is another distinguishing coefficient—
outliers have a significantly smaller average value of E(v) than the correspond-
ing value for non-outliers, and the AUC shows perfect separation between the

7 https://github.com/ftheberge/graph-partition-and-measures
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classes. Similar conclusions can be derived from the corresponding averages for
the ABCD+o model—see Figure 5 (right). As before, the difference becomes
less visible as more noise is present.
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Fig. 5: Distribution of the ECG coefficient for regular and outlier nodes: College
Football Graph (left) and ABCD+o model (right).

3.4 Community Association Strength

With the participation coefficient we described earlier, we consider the distri-
bution of communities amongst each node’s neighbors, so that nodes that are
strongly associated with one of the communities have skewed distributions. Here,
given some node v, we only consider the node’s own community Ai and compute
the fraction of edges that are within this community, namely, degAi

(v)/deg(v).
We then subtract the expected number of such edges under random assignment
(approximately vol(Ai)/vol(V )) to obtain each node’s community association
strength:

d(v) =
degAi

(v)

deg(v)
− vol(Ai)

vol(V )
.

We repeat the same experiments as we did for the previous methods. Results
are shown in Figure 6, with very similar results and conclusions as with the
previous two methods.

3.5 Impact of Node Degree

In this subsection, we reconsider the three methods presented so far but this time
we group the nodes by their degrees for the ABCD+o graphs. We distinguish
three families of nodes with respect to their degrees: (i) low-degree nodes (of
degree 7 or less), (ii) medium-size degree nodes (from 8 to 20) and (iii) high-
degree nodes (over 20). With this split, low-degree nodes make up over 50% of
the nodes, medium size a little under 40%, and high-degree nodes about 10%.
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Fig. 6: Distribution of the community association strength for regular and outlier
nodes: College Football Graph (left) and ABCD+o model (right).

For the College Football Graph introduced earlier, degree distribution is very
homogeneous, so we do not consider it in this analysis.

Let us note an important property that in the ABCD+o model, the degree
itself is not a discriminating feature between outlier and regular nodes, as both
types follow the same expected degree distribution. For the graphs we generated,
we have 5.1% of outliers for the low and medium-size degree nodes, and 4.3%
for the (less frequent) high-degree nodes. In Figure 7, we show the AUC scores
for each method and node degree category in the ABCD+o graphs. It can be
seen that it is slightly easier to detect high-degree outliers.

3.6 Entropy—Geometric Chung-Lu Model

For this experiment, we use node embeddings that recently gain a lot of inter-
est. For each graph considered, we ran the node2vec embedding algorithm [15]
over a range of parameters, and we selected the best one using an “unsupervised
framework for comparing graph embeddings” [21, 17]8. This framework is based
on a geometric Chung-Lu model, which allows the computation of edge proba-
bility in embedded space. With such selected embedding at hand, for each node
v, one can compute pv,i, the expected fraction of neighbors of v that are in the
community i ∈ [`], assuming that there are ` communities found by some algo-
rithm (we used ECG). From this distribution, we compute the entropy for each
node in the network: H(v) = −

∑
i∈[`] pv,i ln(pv,i). High entropy is an indicator

of anomalies so we can use it to rank the nodes from the most likely to the least
likely to be anomalous.

Results of the set of experiments for the College Football Graph and for
several ABCD+o graphs are shown in Figure 8. In both cases, while some
good class separation can be observed, the separation is not as strong as with
the three methods introduced earlier.

8 https://github.com/KrainskiL/CGE.jl
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3.7 Node Properties

In this subsection, we investigate the possible use of various node centrality mea-
sures as a way to distinguish regular nodes from outliers. For the ABCD+o
model, we grouped the nodes into three families with respect to their degrees, as
we did in earlier experiments, and compared distributions of four different cen-
trality measures: closeness centrality, eigen-centrality, PageRank, and between-
ness. All plots are provided in the Appendix (see Figures 9–12). We also plot
those four centrality measures for the College Football Graph, where the pro-
portion of “noise” edges is about 0.37 (see Figure 13).

From those experiments, we see a slight difference in the distribution of close-
ness centrality (Figure 9) and betweenness (Figure 12) for low-noise graphs. For
closeness centrality, this can be explained by the fact that with low noise, non-
outlier nodes have most of their edges within their community, thus are not very
central in that sense. Outlier nodes have a higher betweenness since they act
as bridges between the communities. In the case of the College Football Graph,
we also do not see much discriminative power in the distributions except for a
slight difference in the betweenness scores (see Figure 13). In general, except for
graphs with a very low noise level (that is, almost pure communities), it seems
that such measures are not enough to distinguish regular (community) nodes
and outliers. This indicates that, indeed, specialized methods for community
outlier detection are needed and that ABCD+o model has similar properties
to real-world networks.

3.8 Real Graph Example

In this section we present an additional justification of the definition of com-
munity outliers we used and implemented in the ABCD+o algorithm, which
assumes that outliers should have neighbors in various communities, while non-
outliers should have neighbors concentrated in a single community. For this
analysis, we selected a graph that has weak communities (as opposed to College
Football Graph that has relatively strong communities).

For the test we consider the email-Eu graph built from email data from a
European institution. In this dataset, taken from [27], an edge represents an
email between two users. The data also has some “ground-truth” communities
corresponding to 42 departments. Note, however, that most communities are
“very weak” in the sense that there are more edges coming out of the community
than within the community, as we discussed in Section 3.2. Formally, we say that
a set of nodes C forms a community if∑

v∈C
|N(v) ∩ C| >

∑
v∈C
|N(v) \ C|,

where N(v) denotes the set of neighbours of v. This property is not satisfied
for most communities in this dataset. Some communities are also very small: 16
communities have less than 10 nodes, and there are even some communities of
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size 1. We treat the graph as undirected and reduce it to its 2-core, which yields
934 nodes and 25,500 edges, with 580 nodes of degree 25 or more.

Another way to measure the presence of community structure in a network
is the modularity function, which is at the same time a quality function of many
community detection algorithms. The definition of modularity for graphs was
first introduced by Newman and Girvan in [32]. It favors partitions of the set of
nodes of a graph G in which a large proportion of the edges falls entirely within
the parts, but benchmarks it against the expected number of edges one would
see in those parts in the corresponding Chung-Lu random graph model [7] (the
null model), which generates graphs with the expected degree sequence following
exactly the degree sequence in G.

Formally, for a graph G = (V,E) and a given partition A = {A1, A2, . . . , A`}
of V , the modularity function is defined as follows:

q(A) =
∑
Ai∈A

e(Ai)

|E|
−
∑
Ai∈A

(
vol(Ai)

vol(V )

)2

, (2)

where for any A ⊆ V , e(A) is the number of edges in the subgraph of G induced
by set A, and vol(A) =

∑
v∈A deg(v) is the volume of set A. The first term in (2),∑

Ai∈A e(Ai)/|E|, is called the edge contribution and it computes the fraction of

edges that fall within one of the parts. The second one,
∑

Ai∈A(vol(Ai)/vol(V ))2,
is called the degree tax and it computes the expected fraction of edges that
do the same in the corresponding random graph. The modularity measures the
deviation between the two. Coming back to the dataset we use in our experiment,
the modularity of the ground-truth communities (departments) is only qgt =
0.315 even after reducing the network to its 2-core.

When applying clustering algorithms to such graphs with weak community
structure, it is likely that the communities that are found are denser than the
“ground truth” communities. This is due to the very nature of graph clustering
algorithms which try to group nodes so that the corresponding communities are
as dense as possible. Clustering this graph with ECG yields a smaller number
of communities (33), many of which have a size less than 10 and the modularity
is qECG = 0.430, larger than the one corresponding to the ground-truth commu-
nities. The communities found are also denser which can be seen by computing
the edge contribution portion of the modularity function that measures the pro-
portion of edges that fall within communities. This value is equal to 0.363 with
the ground truth communities but climbs to 0.567 with ECG communities.

In practical applications ground-truth communities are often not known. This
can especially be an issue if we work with graphs that have weak communities,
such as the one we picked here. For this reason, we perform analysis of properties
of nodes that are strongly identified as outliers against nodes that are strongly
identified as non-outliers both against ground-truth communities and commu-
nities identified using community detection algorithm (which, as we discussed
above for “weak communities” can significantly differ).

We consider two out of the four measures we introduced earlier to find out-
liers, namely, the ECG coefficient (see Subsection 3.3), and the community asso-
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ciation strength (see Subsection 3.4). We investigate the properties of the nodes
with the highest (respectively lowest) scores, where low scores are indicative of
outliers. In Table 1, we plot some statistics for the nodes with a degree of 25
or more having small scores with respect to both measures, while in Table 2,
we do the same for nodes with high scores. For each node, we look at (i) the
proportion of edges in its own ECG community, (ii) the proportion of edges in
its own ground-truth community, and (iii) the number of ground-truth commu-
nities in the neighborhood. For the first group of nodes, we clearly see that a
minority of edges are internal to its ECG community, even more so if we look at
the ground-truth communities. We also see that those nodes have neighbors is
several different departments (ground-truth communities). The conclusions are
exactly the opposite for the second group of nodes, as expected.

Prop. of edges in own Prop. of edges in own Number of ground-truth
ECG community ground-truth community communities touched

0.223 0.052 34
0.145 0.048 32
0.275 0.076 31
0.143 0.037 36
0.185 0.222 31
0.079 0.059 29
0.217 0.137 26
0.159 0.038 29
0.167 0.056 27

Table 1: Statistics for nodes with degree 25 or more and small ECG coefficients
and community association strength scores

Prop. of edges in own Prop. of edges in own Number of ground-truth
ECG community ground-truth community communities touched

1.00 0.983 2
1.00 1.000 1
0.97 0.970 2
1.00 0.981 2
1.00 1.000 1
1.00 0.967 2
1.00 0.969 2
1.00 1.000 1

Table 2: Statistics for nodes with degree 25 or more and large ECG coefficients
and community association strength scores
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The email-Eu graph investigated in this subsection does not have outliers
identified in its ground truth. Nevertheless, even with such a “noisy” graph, we
find that nodes with the lowest scores are in contact with a very large number of
distinct communities (Table 1), while nodes with the highest scores are almost
only in contact with other nodes in their own community (Table 2). This agrees
with the concept of outlier which consists of nodes that appear to be making
connections randomly to different communities, while non-outlier nodes make
most of their connections within one or a small number of communities. These
observations support the design assumptions behind the ABCD+o benchmark
graph generator.

4 Conclusions and Future Directions

In this paper, we extended the ABCD model to ABCD+o which incorporates
the presence of outliers. We investigated selected properties that are able to
distinguish outliers from regular nodes. We used two real-world graphs: College
Football Graph and email-Eu graph, that are structurally significantly differ-
ent, to both justify the design decisions behind ABCD+o generator and test
the usefulness of this generator as a benchmark model. However, as a future
direction, it would be valuable to perform more experiments with larger and
topologically as well as structurally different networks to confirm our observa-
tions of which graph features are good predictors of outliers and which are not.
After such verification, one may try to extend these ideas further and build an
outlier detection algorithm and, in particular, use the ABCD-o benchmark we
propose in this paper to validate it.

Another important extension of the original ABCD model that we leave for
the future is to design a variant of the model to include overlapping clusters.
ABCD+o and the experience we gained by investigating properties of outliers
are important stepping stones in that direction. Indeed, informally speaking,
outliers are the nodes that do not strongly belong to any of the communities.
But, clearly, one should distinguish a situation in which most of the neighbors of
a given node belong to e.g. two communities from a situation in which neighbors
are “sprinkled” across the entire graph. More refined properties may be able
to extract information that is needed to distinguish the two scenarios and be
used to build an unsupervised algorithm that is able to separate outliers from
nodes that belong to multiple communities. With a better understanding of
these properties, we should be able to adjust the ABCD model one more time
to incorporate both types of nodes.

An orthogonal future direction that we (and industry partners that we col-
laborate with) are interested in is to design a hypergraph model with known
community structure and outliers. The first step is already made toward this
goal [24].
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vised framework for comparing embeddings of undirected and directed graphs.
Network Science 10(4), 323–346 (2022)
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A Node Properties—Plots Associated with
Subsection 3.7

In Figures 9 to 12, we compare the distribution of four centrality measures be-
tween outlier and non-outlier nodes: closeness centrality, eigen-centrality, PageR-
ank, and betweenness. In each case, we show three plots looking at nodes with
a low, a medium, and a high degree, respectively. We show results for the same
measures for the College Football Graph in Figure 13.
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Fig. 9: Comparing closeness centrality of outlier and regular nodes for the
ABCD+o graphs, respectively, for low, medium, and high degree nodes.
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Fig. 11: Comparing pagerank scores of outlier and regular nodes for the
ABCD+o graphs, respectively, for low, medium, and high degree nodes.
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