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Abstract. The Artificial Benchmark for Community Detection graph
(ABCD) is a random graph model with community structure and power-
law distribution for both degrees and community sizes. The model gen-
erates graphs with similar properties as the well-known LFR one, and
its main parameter ξ can be tuned to mimic its counterpart in the LFR
model, the mixing parameter µ.
In this paper, we extend the ABCD model to include potential outliers.
We perform some exploratory experiments on both the new ABCD+o
model as well as a real-world network to show that outliers posses some
desired, distinguishable properties.
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1 Introduction

One of the most important features of real-world networks is their community
structure, as it reveals the internal organization of nodes [7]. In social networks
communities may represent groups by interest, in citation networks they corre-
spond to related papers, in the Web communities are formed by pages on related
topics, etc. Being able to identify communities in a network could help us to ex-
ploit this network more effectively. Grouping like-minded users or similar-looking
items together is important for a wide range of applications including recommen-
dation systems, anomaly or outlier detection, fraud detection, rumour or fake
news detection, etc. [10]. For more discussion around various aspects of mining
complex networks see, for example, [19, 14].

It was identified as one of the major current challenges in detecting commu-
nities that most of the existing algorithms treat all nodes the same way, that is,
they try to assign them to precisely one community. On the other hand, many
complex networks (regardless whether their nodes correspond to, say, users of
some social media or movies on Netflix) consist of nodes that are more active
participants of their own communities while others are not [17]. As a result, there
is a need to detect outlier nodes that are not part of any of the communities.
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Moreover, some communities might be overlapping which is reflected by some of
the nodes belonging to a few communities via fuzzy membership. Some recent
algorithms (see, for example [8, 2] or NI-Louvain [22]) try to incorporate these
notions but more research is expected to be pursued in the near future. For more
on anomalies and outliers in graphs see, for example, the survey [1].

Another well-known challenge recognized by many researchers is that there
are very few datasets with ground-truth identified and labelled. As a result,
there is need for synthetic random graph models with community structure that
resemble real-world networks in order to benchmark and tune clustering algo-
rithms that are unsupervised by nature. The LFR (Lancichinetti, Fortunato,
Radicchi) model [16, 15] generates networks with communities and at the same
time it allows for the heterogeneity in the distributions of both node degrees
and of community sizes. It became a standard and extensively used method for
generating artificial networks with (non-overlapping) community structure.

Unfortunately, the situation is much more challenging if one needs a synthetic
model with outliers. There seems to be no standard model that one may use.
For example, in [8] the authors adjust the classical Stochastic Block Model to
simultaneously take into account the community structure and outliers by intro-
ducing different probabilities of connection between inliers and pairs involving
outliers. To validate algorithms tested in [2], the authors start with a synthetic
LFR network or a real-world one and then randomly perturb edges around some
randomly selected nodes in order to create artificial outliers. LFR itself [15] has
some basic functionality to create overlapping clusters but not outliers.

In this paper, we revisit the Artificial Benchmark for Community Detection
(ABCD graph) [13] that was recently introduced and implemented4, including
a fast implementation that uses multiple threads (ABCDe) [11]5. Undirected
variant of LFR and ABCD produce graphs with comparable properties but
ABCD/ABCDe is faster than LFR and can be easily tuned to allow the user
to make a smooth transition between the two extremes: pure (disjoint) commu-
nities and random graph with no community structure. Moreover, it is easier to
analyze theoretically. For example, various theoretical asymptotic properties of
the ABCD model are analyzed in [12], including the modularity function that
is, arguably, the most important graph property of networks in the context of
community detection.

We extend the original ABCD model to include potential outliers (see Sec-
tion 2). We examine one of the few real-world networks with identified outliers,
the College Football Graph (see Subsection 3.1), and identify a few distinctive
properties of outliers that are present in this network. We then perform a few
simulations with our new ABCD+o model to show that its outliers posses
similar properties (see Subsections 3.2 and 3.3). Future directions are briefly
mentioned in Section 4.

4 https://github.com/bkamins/ABCDGraphGenerator.jl/
5 https://github.com/tolcz/ABCDeGraphGenerator.jl/
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2 Adjusting the ABCD Model to Include Outliers

We start this section with a brief description of the ABCD model taken from [11];
details can be found in [13] or in [12]. We then carefully explain the adjustments
needed to incorporate the existence of outliers.

2.1 The Original Model

As in LFR model [16, 15], for a given number of nodes n, we start by generating
a power law distribution both for the degrees and community sizes. Those are
governed by the power law exponent parameters (γ, β). We also provide addi-
tional information to the model, again as it is done in LFR, namely, the average
and the maximum degree, and the range for the community sizes. The user may
alternatively provide a specific degree distribution and/or community sizes.

For each community, we generate a random community subgraph on the
nodes from a given community using either the configuration model [4] (see [3,
23, 24] for related models and results) which preserves the exact degree distribu-
tion, or the Chung-Lu model [5] which preserves the expected degree distri-
bution. On top of it, we independently generate a background random graph on
all the nodes. Everything is tuned properly so that the degree distribution of the
union of all graphs follows the desired degree distribution (only in expectation in
the case of the Chung-Lu variant). The mixing parameter ξ guides the propor-
tion of edges which are generated via the background graph. In particular, in the
two extreme cases, when ξ = 1 the graph has no community structure while if
ξ = 0, then we get disjoint communities. In order to generate simple graphs, we
may have to do some re-sampling or edge re-wiring, which are described in [13].

During this process, larger communities will additionally get some more inter-
nal edges due to the background graph. As argued in [13], this “global” variant of
the model is more natural and so we recommend it. However, in order to provide
a variant where the expected proportion of internal edges is exactly the same
for every community (as it is done in LFR), we also provide a “local” variant
of ABCD in which the mixing parameter ξ is automatically adjusted for every
community.

Two examples of ABCD graphs on n = 100 nodes are presented in Fig-
ure 1. Degree distribution was generated with power law exponent γ = 2.5 with
minimum and maximum values 5 and 15, respectively. Community sizes were
generated with power law exponent β = 1.5 with minimum and maximum val-
ues 20 and 40, respectively; communities are shown in different colours. The
global variant and the configuration model was used to generate the graphs.
The left plot has the mixing parameter set ξ = 0.2 while the “noisier” graph on
the right plot has the parameter fixed to ξ = 0.4.

2.2 Adjusting the Model to Include Outliers

The adjusted model, ABCD+o (ABCD with outliers), will have additional
parameter s0 which is equal to the number of outliers. Because of a well struc-
tured and flexible design of the original model, adjusting it to include outliers
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Fig. 1: Two examples of ABCD graphs with low level of noise (ξ = 0.2, left)
and high level of noise (ξ = 0.4, right).

is simple. One trivial adjustment needed is in the way the distribution of com-
munity sizes is generated. Slightly more delicate modification is needed in the
process of assigning nodes to communities. However, before that the algorithm
needs to select suitable nodes for outliers. Below, we independently discuss these
issues and explain how they are generalized.

The ABCD+o extension is defined only for the default settings of the orig-
inal ABCD algorithm, namely, for the global version of the algorithm, configu-
ration model used to generate community and background graphs, and accepts
only parameter ξ as the level of noise.

Distribution of Community Sizes. As in the original ABCD model, the
degree distribution is generated randomly following the (truncated) power-law
distribution P(γ, δ,∆) with exponent γ, minimum value δ, and maximum value
∆. Let β ∈ R+, s, S ∈ N such that δ < s ≤ S. It is recommended to use
β ∈ (1, 2), some relatively small value of s such as 100 or 500, and S larger than
∆. The condition for S is needed to make sure large degree nodes have large
enough communities to be assigned to. Similarly, the assumption that s ≥ δ+ 1
is required to guarantee that small communities are not too small and so that
they can accommodate small degree nodes. These conditions are needed to make
sure that generating a simple graph with the desired properties is feasible.

Community sizes in the original ABCD model are generated randomly fol-
lowing the (truncated) power-law distribution P(β, s, S) with exponent β, min-
imum value s, and maximum value S. Communities are generated with this
distribution as long as the sum of their sizes is less than n, the desired number
of nodes. After drawing a predetermined number of samples from this distri-
bution, the algorithm is selecting one sequence with the sum as close to n as
possible and carefully adjusts it, if needed.

Since there are s0 outliers in the new model, the community sizes (si, i ∈
[`] := {1, . . . , `}) are generated as in the original model but this time with the
condition that the sum of their sizes is equal to n− s0 (instead of n).
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Assigning Nodes to Outliers. Parameter ξ ∈ (0, 1) reflects the amount of
noise in the network. It controls the fraction of edges that are between commu-
nities. Indeed, in the original ABCD model, asymptotically (but not exactly)
1 − ξ fraction of edges end up within one of the communities. Each node in
the original model has its degree wi split into two parts: community degree yi
and background degree zi (wi = yi + zi). The goal is to get yi ≈ (1 − ξ)wi and
zi ≈ ξwi. However, both yi and zi have to be non-negative integers and for
each community C ⊆ V ,

∑
i∈C yi has to be even. Fortunately, this can be easily

achieved by an appropriate random rounding of (1−ξ)wi to the nearest integers.
In the generalized ABCD+o model, each non-outlier has its degree wi split

into yi and zi, as in the original model. These nodes will be assigned into one
community. On the other hand, outliers will not get assigned to any community
and all of their neighbours will be in the background graph and so they will be
“sprinkled” across the whole graph. As a result, their degrees will satisfy wi = zi.
Note that the only potential problem with outliers that might occur is when ξ
is close to zero. At the extreme case when ξ = 0, only outliers have non-zero
degree in the background graph. In order to make sure that there exists a simple
graph that satisfies the required degree distribution, in such extreme situations
all outliers must have degrees smaller than s0. The model needs to be prepared
for such potential problems but in practice (when the number of nodes n is large,
the number of outliers s0 is relatively small, and the level of noise ξ is not zero)
there are plenty of nodes with non-zero degree in the background graph and so
there is no restriction for outliers.

To prepare for a potential problem we do the following. Once the degree of
each node wi is split into yi and zi, we get a lower bound for the number of nodes
that will have non-zero degree in the background graph, namely, L := |{v ∈ V :
zi ≥ 1}|. Note that L̄ = E[L] =

∑
i∈V min(1, ξwi) since each node with ξwi ≥ 1

satisfies zi ≥ 1 and each node with ξwi < 1 has zi = 1 with probability ξwi and
zi = 0 otherwise. Moreover, since by default outliers have zi = wi ≥ 1, there will
be at least s0 vertices of positive degree in the background graph. Assuming that
outliers are selected uniformly at random, we expect L + (n − L)(s0/n) nodes
of positive degree in the background graph. (In fact, since there is a slight bias
toward selecting small degree nodes for outliers and L has a bias toward large
degree nodes, we expect slightly more nodes of positive degree in the background
graph, which is good.) We introduce the following constraint: a node of degree
wi can become an outlier if

wi ≤ L̄+ s0 − L̄s0/n− 1. (1)

Finally, s0 nodes satisfying (1) are selected uniformly at random to become
outliers. (In the implementation, these nodes simply form an independent “com-
munity” with yi = 0 and zi = wi.)

Assigning Nodes to Communities. Similarly to the potential problem with
outliers, we need to make sure that non-outliers of large degree are not assigned
to small communities. Based on the parameter ξ we know that roughly (1−ξ)wi
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neighbours of a node of degree wi will be present in its own community. However,
this is only the lower bound as some neighbours in the background graph might
end up there by chance. Hence, in order to make enough room in the community
graph for all neighbours of a given node, the original ABCD algorithm needs to
compute xi, the expected number of neighbours of a node of degree wi that end
up in its own community. We need to recompute xi to incorporate the existence
of outliers.

Assuming that nodes are assigned randomly with a distribution close to the
uniform distribution, we expect Ws0/n points (in the corresponding configu-
ration model) in the background graph to be associated with outliers, where
W :=

∑
i∈[n] wi is the volume of the graph (equivalently, the total number of

points in the corresponding configuration model). Similarly, we expect ξ fraction
of the points associated with non-outliers to end up in the background graph,
that is, W (1−s0/n)ξ points. In order to estimate what fraction of neighbours of
a given non-outlier node is expected to be within the same community, we need
to answer the following question: what is the probability that a random point
in the background graph associated with a non-outlier is matched with a point
within the same community? It is equal to

∑
j∈[`]

sj
n− s0

·
sj

n−s0W (1− s0/n)ξ

W (1− s0/n)ξ +Ws0/n
=
∑
j∈[`]

(
sj

n− s0

)2
(n− s0)ξ

(n− s0)ξ + s0
.

Indeed, with probability
sj

n−s0 a random point belongs to community j. There

are
sj

n−s0W (1−s0/n)ξ points associated with community j and the total number
of points in the background graph is W (1 − s0/n)ξ + Ws0/n. Hence, one can
easily estimate the probability that the point from community j is matched with
another point from the same community. The expected number of neighbours of
a node of degree wi that stay within the same community is then

xi :=

1− ξ + ξ
∑
j∈[`]

(
sj

n− s0

)2
(n− s0)ξ

(n− s0)ξ + s0

wi = (1− ξφ)wi,

where

φ := 1−
∑
j∈[`]

(
sj

n− s0

)2
(n− s0)ξ

(n− s0)ξ + s0
.

In particular, we expect (1− ξφ)(1− s0/n) fraction of edges to stay within one
of the communities. Moreover, as expected, if s0 = 0, then we recover the value
of φ used in the original ABCD model, namely,

φ = 1−
∑
j∈[`]

(sj
n

)2
.

As in the original ABCD model, a node of degree wi can be assigned to commu-
nity of size sj if xi ≤ sj − 1. We select one admissible assignment of non-outliers
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to communities uniformly at random which turns out to be relatively easy from
both theoretical and practical points of view.

Two examples of ABCD+o graphs on n = 100 nodes are presented in
Figure 2. The number of outliers is s0 = 5 and the remaining parameters are
exactly the same as the ones to produce Figure 1. Communities are shown in
different colours and outliers are displayed with triangular shape. The left plot
has the mixing parameter set ξ = 0.2 while the “noisier” graph on the right
plot has the parameter fixed to ξ = 0.4. In the left plot it is visible that 4
out of 5 outliers are clearly located between the communities (one of them is
within a community as outlier can, by pure chance, get many edges within one
community). In the right plot, which is more noisy, we still see that outliers are
surrounded by nodes belonging to different communities.

Fig. 2: Two examples of ABCD+o graphs with low level of noise (ξ = 0.2, left)
and high level of noise (ξ = 0.4, right). The number of outliers is s0 = 5.

3 Experiments—Distinguishing Properties of Outliers

In order to better understand properties of outliers, we perform a few simple and
exploratory experiments on the well-known College Football real-world network
with known community structure and the presence of outliers. We identified
three natural properties that distinguish outliers from non-outliers.

In order to show that our new ABCD+o model exhibits similar desired
properties, we generated graphs on n = 10,000 nodes and s0 = 500 outliers
(5%). Degree distribution was generated with power law exponent γ = 2.5 with
minimum and maximum values 5 and 500, respectively. Community sizes were
generated with power law exponent β = 1.5 with minimum and maximum values
100 and 1,000, respectively. We independently generated graphs for all values
of ξ ∈ {0.0, 0.1, . . . , 1.0} but the degree distribution and the distribution of
community sizes were coupled (it is easy to do in our implementation) so that
all 11 graphs use the same distributions.
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3.1 The College Football Graph

The College Football real-world network represents the schedule of United States
football games between Division IA colleges during the regular season in Fall
2000 [9]. The data consists of 115 teams (nodes) and 613 games (edges). The
teams are divided into conferences containing 8–12 teams each. In general, games
are more frequent between members of the same conference than between mem-
bers of different conferences, with teams playing an average of about seven intra-
conference games and four inter-conference games in the 2000 season. There are
a few exceptions to this rule, as detailed in [18]: one of the conferences is really
a group of independent teams, one conference is really broken into two groups,
and 3 other teams play mainly against teams from other conferences. We re-
fer to those 14 teams as outlying nodes, which we represent with a distinctive
triangular shape in Figure 3.

Fig. 3: The College Football Graph; outliers are displayed with triangular shape.

3.2 Participation Coefficient

The following definitions are commonly used in the literature [6, 21] (see also [14]).
We say that a set of nodes C ⊆ V forms a strong community if each node in C
has more neighbours in C than outside of C. One may relax this strong notion
and say that C forms a weak community if the average degree inside the commu-
nity C (over all nodes in C) is larger than the corresponding average number of
neighbours outside of C. In this context, an outlier could be formally defined as
a node that does not have majority of its neighbours in any of the communities.
In the ABCD+o model, non-outliers are expected to have more than half of
their neighbours in its own community, provided that ξ < 0.5. On the other
hand, outliers are expected to satisfy the desired property, unless there is an
enormous community spanning more than 50% of nodes.
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A more refined picture is provided by the next coefficient that is a natural
measure of concentration. For any partition A = {A1, . . . , A`} of the set of
nodes, the participation coefficient of a node v (with respect to A) is defined as
follows:

p(v) = 1−
∑̀
i=1

(
degAi

(v)

deg(v)

)2

,

where degAi
(v) is the number of neighbours of v in Ai. The participation coeffi-

cient p(v) is equal to zero if v has neighbours exclusively in one part. Members
of strong communities satisfy, by definition, p(v) < 3/4. In the other extreme
case, the neighbours of v are homogeneously distributed among all parts and so
p(v) is close to the trivial upper bound of

1−
∑̀
i=1

(
deg(v)/`

deg(v)

)2

= 1− 1

`
≈ 1.

For the experiments shown below, even though we have the ground truth
communities available to use, we computed the participation coefficients us-
ing communities (partition A) we obtained with the ECG clustering algorithm
which we describe in the following subsection. The distribution of the participa-
tion coefficient among outliers and non-outliers for the College Football Graph
is presented on box plot in Figure 4 (left). We see that outliers have significantly
larger average value of p(v) than the corresponding value for non-outliers: 0.709
vs. 0.439. The corresponding averages (together with associated standard de-
viations) for the ABCD+o model with different level of noise are presented
in Figure 4 (right). For low level of noise (small values of ξ) there is a clear
difference between outliers and non-outliers but the discrepancy diminishes for
noisy graphs (large values of ξ). In the extreme case when ξ = 1 there is no
difference between the two classes and so the averages are close to each other as
they should.
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Fig. 4: Distribution of the participation coefficient for regular and outlier nodes:
College Football Graph (left) and ABCD+o model (right).
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3.3 ECG Votes

Ensemble Clustering algorithm for Graphs (ECG) [20]6 is a consensus
clustering method based on the classical Louvain algorithm. In its first phase,
several low-level partitions are computed with different randomization, and for
each edge the proportion of times both nodes ended up in the same part is
computed. Those are the ECG edge scores. High scores are indicative of stable
pairs that often appear in the same part. For a given node v, we define E(v) to
be the average ECG score over all edges incident to v, and we call it the ECG
coefficient of a node v. It is expected that outliers are more challenging to cluster
which should be manifested by relatively small ECG coefficients E(v) associated
with these nodes.

As it was done for the participation coefficient, we investigate the distribution
of the ECG coefficient among outliers and non-outliers for the College Football
Graph—see Figure 5 (left). We see that it is another distinguishing coefficient—
outliers have significantly smaller average value of E(v) than the corresponding
value for non-outliers: 0.465 vs. 0.701. Similar conclusions can be derived from
the corresponding averages for the ABCD+o model—see Figure 5 (right). As
before, the difference becomes less visible as more noise is introduced.
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Fig. 5: Distribution of the ECG coefficient for regular and outlier nodes: College
Football Graph (left) and ABCD+o model (right).

4 Future Directions

In this paper, we extended the ABCD model to ABCD+o which incorpo-
rates the presence of outliers. We investigated a few properties that are able
to distinguish outliers from regular nodes. One may try to extend these ideas
further and build an outlier detection algorithm. Another important extension
of the original ABCD that we leave for the future is to design a variant of the
model to include overlapping clusters. An orthogonal future direction that we

6 https://github.com/ftheberge/graph-partition-and-measures
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(and industry partners that we collaborate with) are interested in is to design a
hypergraph model with known community structure.

References

1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description:
a survey. Data mining and knowledge discovery 29(3), 626–688 (2015)

2. Bandyopadhyay, S., Vivek, S.V., Murty, M.N.: Integrating network embedding
and community outlier detection via multiclass graph description. arXiv preprint
arXiv:2007.10231 (2020)

3. Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given
degree sequences. Journal of Combinatorial Theory, Series A 24(3), 296–307 (1978)

4. Bollobás, B.: A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. European Journal of Combinatorics 1(4), 311–316 (1980)

5. Chung Graham, F., Lu, L.: Complex graphs and networks. No. 107, American
Mathematical Soc. (2006)

6. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities.
In: Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining. pp. 150–160 (2000)

7. Fortunato, S.: Community detection in graphs. Physics reports 486(3-5), 75–174
(2010)

8. Gaucher, S., Klopp, O., Robin, G.: Outlier detection in networks with missing
links. Computational Statistics & Data Analysis 164, 107308 (2021)

9. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proceedings of the national academy of sciences 99(12), 7821–7826 (2002)

10. Javed, M.A., Younis, M.S., Latif, S., Qadir, J., Baig, A.: Community detection in
networks: A multidisciplinary review. Journal of Network and Computer Applica-
tions 108, 87–111 (2018)
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