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Abstract. Zero forcing is a deterministic iterative graph colouring process in which
vertices are coloured either blue or white, and in every round, any blue vertices that
have a single white neighbour force these white vertices to become blue. Here we
study probabilistic zero forcing, where blue vertices have a non-zero probability of
forcing each white neighbour to become blue. We explore the propagation time for
probabilistic zero forcing on hypercubes and grids.

1. Introduction

1.1. Definition of Zero Forcing. Zero forcing is an iterative graph colouring pro-
cedure which can model certain real-world propagation and search processes such as
rumor spreading. Given a graph G and a set of marked, or blue, vertices Z ⊆ G,
the process of zero forcing involves the application of the zero forcing colour change
rule in which a blue vertex u forces a non-blue (white) vertex v to become blue if
N(u)\Z = {v}, that is, u forces v to become blue if v is the only white neighbour of u.

We say that Z is a zero forcing set if when starting with Z as the set of initially
blue vertices, after iteratively applying the zero forcing colour change rule until no more
vertices can be forced blue, the entire vertex set of G becomes blue. Note that the order
in which forces happen is arbitrary since if u is in a position in which it can force v, this
property will not be destroyed if other vertices are turned blue. As a result, we may
process vertices sequentially (in any order), or all vertices that are ready to turn blue
can do so simultaneously. The zero forcing number, denoted z(G), is the cardinality of
the smallest zero forcing set of G.

Zero forcing has sparked a lot of interest recently. Some work has been done on
calculating or bounding the zero forcing number for specific structures such as graph
products [12], graphs with large girth [8] and random graphs [1, 16], while others have
studied variants of zero forcing such as connected zero forcing [4] or positive semi-
definite zero forcing [2].

While zero forcing is a relatively new concept (first introduced in [12]), the problem
has many applications to other branches of mathematics and physics. For example,
zero forcing can give insight into linear and quantum controllability for systems that
stem from networks. More precisely, in [5], it was shown that for both classical and
quantum control systems that can be modelled by networks, the existence of certain
zero forcing sets guarantees controllability of the system.
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Another area closely related to zero forcing is power domination [19]. Designed
to model the situation where an electric company needs to continually monitor their
power network, one method that is used is to place phase measurement units (PMUs)
periodically through their network. To reduce the cost associated with this, one asks
for the least number of PMUs necessary to observe a specific network fully. To be more
specific, given a network modelled with a simple graph G, a PMU placed at a vertex
will be able to observe every adjacent vertex. Furthermore, if an observed vertex has
exactly one unobserved neighbour, this observed vertex can observe this neighbour.
In this way, power domination involves an observation rule compatible with the zero
forcing colour change rule.

In the present paper we are concerned with a parameter associated with zero forcing
known as the propagation time, which is the fewest number of rounds necessary for a zero
forcing set of size z(G) to turn the entire graph blue. More formally, given a graph G
and a zero forcing set Z, we generate a finite sequence of sets Z0 ( Z1 ( · · · ( Zt, where
Z0 = Z, Zt = V (G), and given Zi, we define Zi+1 = Zi∪Yi, where Yi ⊆ V (G)\Zi is the
set of white vertices that can be forced in the next round if Zi is the set of blue vertices
in the current round. Then the propagation time of Z, denoted pt(G,Z), is defined to be
t. The propagation time of the graph G is then given by pt(G) = minZ pt(G,Z), where
the minimum is taken over all zero forcing sets Z of cardinality z(G). The propagation
time for zero forcing has been studied in [13].

1.2. Definition of Probabilistic Zero Forcing. Zero forcing was initially formulated
to bound a problem in linear algebra known as the min-rank problem [12]. In addition to
this application to mathematics, zero forcing also models many real-world propagation
processes. One specific application of zero forcing could be to rumor spreading, but the
deterministic nature of zero forcing may not fit the chaotic nature of real-life situations.
As such, probabilistic zero forcing has also been proposed and studied where blue
vertices have a non-zero probability of forcing white neighbours, even if there is more
than one white neighbour. More specifically, given a graph G, a set of blue vertices Z,
and vertices u ∈ Z and v ∈ V (G) \Z such that uv ∈ E(G), in a given time step, vertex
u will force vertex v to become blue with probability

P(u forces v) =
|N [u] ∩ Z|

deg(u)
,

where N [u] is the closed neighbourhood of u.
In a given round, each blue vertex will attempt to force each white neighbour inde-

pendently. If this happens, we may say that the edge uv is forced. A vertex becomes
blue as long as it is forced by at least one blue neighbour, or in other words if at least
one edge incident with it is forced. Note that if v is the only white neighbour of u, then
with probability 1, u forces v, so given an initial set of blue vertices, the set of vertices
forced via probabilistic zero forcing is always a superset of the set of vertices forced by
traditional zero forcing. In this sense, probabilistic zero forcing and traditional zero
forcing can be coupled. In the context of rumor spreading, the probabilistic colour
change rule captures the idea that someone is more likely to spread a rumor if many of
their friends have already heard the rumor.
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Under probabilistic zero forcing, given a connected graph, it is clear that starting
with any non-empty subset of blue vertices will with probability 1 eventually turn the
entire graph blue, so the zero forcing number of a graph is not an interesting parameter
to study for probabilistic zero forcing. Initially in [17], the authors studied a parameter
that quantifies how likely it is for a subset of vertices to become a traditional zero forcing
set the first time-step that it theoretically could under probabilistic zero forcing.

Instead, in this paper, we will be concerned with a parameter that generalizes the
zero forcing propagation time. This generalization was first introduced in [11]. Given a
graph G, and a set Z ⊆ V (G), let ptpzf (G,Z) be the random variable that outputs the
propagation time when probabilistic zero forcing is run with the initial blue set Z. For
ease of notation, we will write ptpzf (G, v) = ptpzf (G, {v}). The propagation time for
the graph G will be defined as the random variable ptpzf (G) = minv∈V (G) ptpzf (G, v).
More specifically, ptpzf (G) is a random variable for the experiment in which n iterations
of probabilistic zero forcing are performed independently, one for each vertex of G, then
the minimum is taken over the propagation times for these n independent iterations.

1.3. Asymptotic Notation. Our results are asymptotic in nature, that is, we will
assume that n → ∞. Formally, we consider a sequence of graphs Gn = (Vn, En) (for
example, Gn is an n-dimensional hypercube or n by n grid) and we are interested in
events that hold asymptotically almost surely (a.a.s.), that is, events that hold with
probability tending to 1 as n→∞.

Given two functions f = f(n) and g = g(n), we will write f(n) = O(g(n)) if there
exists an absolute constant c ∈ R+ such that |f(n)| ≤ c|g(n)| for all n, f(n) = Ω(g(n))
if g(n) = O(f(n)), f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)), and we
write f(n) = o(g(n)) or f(n) � g(n) if limn→∞ f(n)/g(n) = 0. In addition, we write
f(n)� g(n) if g(n) = o(f(n)) and we write f(n) ∼ g(n) if f(n) = (1 + o(1))g(n), that
is, limn→∞ f(n)/g(n) = 1.

Finally, as typical in the field of random graphs, for expressions that clearly have to
be an integer, we round up or down but do not specify which: the choice of which does
not affect the argument.

1.4. Results on Probabilistic Zero Forcing. In [11], the authors studied probabilis-
tic zero forcing, and more specifically the expected propagation time for many specific
structures. A summary of this work is provided in the following theorem.

Theorem 1.1 ([11]). Let n > 2. Then

• minv∈V (Pn) E(ptpzf (Pn, v)) =

{
n/2 + 2/3 if n is even

n/2 + 1/2 if n is odd,

• minv∈V (Cn) E(ptpzf (Cn, v)) =

{
n/2 + 1/3 if n is even

n/2 + 1/2 if n is odd,

• minv∈V (K1,n) E(ptpzf (K1,n, v)) = Θ(log n),
• Ω(log log n) = minv∈V (Kn) E(ptpzf (Kn, v)) = O(log n).

In [6], the authors used tools developed for Markov chains to analyze the expected
propagation time for many small graphs. The authors also showed, in addition to other
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things, that minv∈V (Kn) E(ptpzf (Kn, v)) = Θ(log log n) and for any connected graph G,
minv∈V (G) E(ptpzf (G, v)) = O(n). This result was then improved in [18], where the
authors showed that

log2 log2(n) ≤ min
v∈V (G)

E(ptpzf (G, v)) ≤ n

2
+ o(n)

for general connected graphs G. In the same paper, the authors also showed that

min
v∈V (G)

E(ptpzf (G, v)) = O(r log(n/r)), (1.1)

where r ≥ 1 denotes the radius of the connected graph G. Moreover, they provided a
class of graphs for which the bounds of the theorem are tight.

In addition to the results mentioned above, the authors of [11] also considered the
binomial random graph G(n, p), proving the following theorem.

Theorem 1.2 ([11]). Let 0 < p < 1 be constant. Then a.a.s. we have that

min
v∈V (G(n,p))

E(ptpzf (G(n, p), v)) = O((log n)2).

However, the authors in [18] conjectured that for the random graph, a.a.s.

min
v∈V (G(n,p))

E(ptpzf (G(n, p), v)) = (1 + o(1)) log log n.

Of course, Theorem 1.2 can be improved immediately via (1.1) and the fact that for
0 < p < 1 constant, the radius of G(n, p) is a.a.s. 2 (see e.g. [10]), but even with
this improvement, the bound is still far from the conjectured value. In [9], the authors
explored probabilistic zero forcing on G(n, p) in more detail and, in particular, proved
the above conjecture. Their results can be summarized in the following theorem that
shows that probabilistic zero forcing occurs much faster in G(n, p) than in a general
graph G, as evidenced by the bounds of (1.1).

Theorem 1.3 ([9]). Let v ∈ V (G(n, p)) be any vertex of G(n, p).

If p = log−o(1) n (in particular, if p is a constant), then a.a.s.

ptpzf (G(n, p), v) ∼ log2 log2 n.

On the other hand, if log n/n� p = log−Ω(1) n, then a.a.s.

ptpzf (G(n, p), v) = Θ(log(1/p)).

The results of most interest to us are from [14]. The authors of that paper are
concerned with hypercube graphs Qn and grid graphs Gm×n, and prove the following
result.

Theorem 1.4 ([14]). The following bounds hold:

• minv∈V (Qn) E(ptpzf (Qn, v)) = O(n log n),
• (1/2 + o(1))(m+ n) ≤ minv∈V (Gm×n) E(ptpzf (Gm×n, v)) ≤ (4 + o(1))(m+ n).
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1.5. Our Results. In this paper, we improve both results from [14]. Instead of con-
sidering the expectation of the propagation time, we will calculate bounds on the prop-
agation time that a.a.s. hold. With some more work one can use our approaches to
show that the same bounds hold for expectation, hence improving the results from [14],
but we are more interested in statements that hold a.a.s. The lower bounds for both
families of graphs are trivial so the improvement is for the upper bounds.

Theorem 1.5. The following bounds hold a.a.s.:

(a) ptpzf (Qn) ∼ n,
(b) (1 + o(1))(m+ n)/2 ≤ ptpzf (Gm×n) ≤ (1 + 10−7 + o(1))(m+ n)/2.

The bounds for Qn are asymptotically tight. Unfortunately, we could not prove the
matching upper bound for Gm×n but our upper bound is very tight, and so it supports
the conjecture that a.a.s. ptpzf (Gn×n) ∼ n. This conjecture is supported by independent
simulations performed in [14] as well as our own.

2. Preliminaries

2.1. Chernoff inequality. Let us first state a specific instance of Chernoff’s bound
that we will find useful. Let X ∈ Bin(n, p) be a random variable with the binomial
distribution with parameters n and p. Then, a consequence of Chernoff’s bound (see
e.g. [15, Corollary 2.3]) is that

P(|X − EX| ≥ εEX) ≤ 2 exp

(
−ε

2EX
3

)
(2.1)

for 0 < ε < 3/2. Moreover, let us mention that the bound holds for the general
case in which X =

∑n
i=1Xi and Xi ∈ Bernoulli(pi) with (possibly) different pi (again,

e.g. see [15] for more details).

2.2. Azuma–Hoeffding inequality. LetX0, X1, . . . be an infinite sequence of random
variables that make up a martingale; that is, for any a ∈ N we have E[Xa|Xa−1] = Xa−1.
Suppose that there exist constants ca > 0 such that |Xa − Xa−1| ≤ ca for each a ≤ t.
Then, the Azuma–Hoeffding inequality implies that for every b > 0,

P
(
∃i(0 ≤ i ≤ t) : |Xi −X0| ≥ b

)
≤ 2 exp

(
− b2

2
∑t

a=1 c
2
a

)
. (2.2)

2.3. Chernoff–Heoffding bounds for Markov chains. This result is due to Chung,
Lam, Liu and Mitzenmacher [7]. Let M be a discrete time ergodic Markov chain with
state space [n] and the stationary distribution π. M may be interpreted as either the
chain itself or the corresponding n by n transition matrix. The total variation distance
between u and w, two distributions over [n], is defined as

‖u− w‖TV = max
A⊆[n]

∣∣∣∣∣∑
i∈A

ui −
∑
i∈A

wi

∣∣∣∣∣ .
For any ε > 0, the mixing time of Markov chain M is defined as

T (ε) = min
{
t ∈ N : max

x

∥∥xM t − π
∥∥
TV
≤ ε
}
,
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where x is an arbitrary initial distribution. We will also need a definition of the π-norm.
The inner product under the π-kernel is defined as 〈u, v〉π =

∑
i∈[n] uivi/πi. Then, the

π-norm of u is defined as ‖u‖π =
√
〈u, u〉π. Note that, in particular, ‖π‖π = 1.

Now we are ready to state the main result from [7]. Let T = T (ε) be the ε-mixing
time of Markov chain M for ε ≤ 1/8. Let (V1, V2, . . . , Vt) denote a t-step random walk
on M starting from an initial distribution ϕ on [n]. For every i ∈ [t], let fi : [n]→ [0, 1]
be a weight function at step i such that the expected weight satisfies Ev←π[fi(v)] = µ
for all i. Define the total weight of the walk by X =

∑t
i=1 fi(Vi). There exists some

constant c (which is independent of µ, δ and ε) such that for 0 ≤ δ ≤ 1,

P
(

(1− δ)µt ≤ X ≤ (1 + δ)µt
)
≥ 1− c ‖ϕ‖π exp

(
−δ2µt/(72T )

)
. (2.3)

2.4. Useful Coupling. We will be using coupling to simplify both upper and lower
bounds. Having said that, in our case we will only need to prove upper bounds. Indeed,
for lower bounds, it might be convenient to make some white vertices blue at some point
of the process. Similarly, for upper bounds, one might want to make some blue vertices
white. Given a graph G, S, T ⊆ V (G), and ` ∈ N, let A(S, T, `) be the event that
starting with blue set S, after ` rounds every vertex in T is blue. The following simple
observation was proved in [9].

Lemma 2.1 ([9]). For all sets S1 ⊆ S2 ⊆ V (G), T ⊆ V (G), and ` ∈ N,

P(A(S1, T, `)) ≤ P(A(S2, T, `)).

3. Hypercubes

This section is devoted to proving part (a) of Theorem 1.5. Let us start with a formal
definition of the hypercube. The n-dimensional hypercube Qn has vertex set consisting
of all binary strings of length n and there is an edge between two vertices if and only
if their binary strings differ in exactly one bit. For 0 ≤ k ≤ n, level k of the hypercube
Qn is defined to be the set of all vertices whose binary strings contain exactly k ones.
Note that each vertex in level k has k neighbours in level k − 1 and n − k neighbours
in level k + 1.

Proof of Theorem 1.5(a). Trivially, for any vertex v ∈ V (Qn), we deterministically have
that ptpzf (Qn, v) ≥ n. Hence, in order to show that ptpzf (Qn) ∼ n, it is enough to show
that a.a.s. ptpzf (Qn, v) ≤ n + o(n) for some vertex v ∈ V (Qn). Let v be the vertex
(0, 0, . . . , 0) on level 0; in fact, since Qn is a vertex-transitive graph, v can be any vertex.

We will use the following Lemma.

Lemma 3.1. Suppose that for some integer k, 0 ≤ k < n/ ln2 n, the following property
P(k) holds at some point of the process: all vertices at levels up to k are blue (including
level k). Then with probability 1 − o (1/n) property P(k + 1) holds after an additional
O(lnn) rounds.

Since trivially P(0) holds, by the union bound (over n/ ln2 n possible values of k),
using this Lemma we will conclude that a.a.s. P(n/ ln2 n) holds after O(n/ lnn) = o(n)
rounds.
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Proof of Lemma 3.1. Suppose that property P(k) holds from some k, 0 ≤ k < n/ ln2 n.
By Lemma 2.1, we may assume that all vertices at level k + 1 are white. It will be
convenient to independently consider 3 phases after which property P(k + 1) will hold
with probability 1 − o (1/n) . The first phase lasts 320 lnn rounds. The probability
that a given vertex at level k + 1 stays white during this phase is at most(

1− k + 1

n

)320 lnn

≤ exp

(
−320(k + 1) lnn

n

)
≤ 1− 160(k + 1) lnn

n
=: p,

since k ≤ n/ ln2 n. Hence, for a given vertex w at level k, the number of neighbours
at level k + 1 that turned blue during this phase is stochastically lower bounded by
Bin(n − k, 1 − p) ≥ Bin(n/2, 1 − p) 3 X with E[X] = (1 − p)n/2 = 80(k + 1) lnn.
It follows from Chernoff’s bound (2.1) (applied with ε = 1/2) that w has at most
40(k + 1) lnn blue neighbours at level k + 1 with probability at most

2 exp

(
−E[X]

12

)
=

2

n(80/12)(k+1)
= o

(
1

nk+1

)
.

By the union bound (over at most nk vertices at level k), with probability 1− o (1/n),
each vertex at level k has at least 40(k+1) lnn blue neighbours at level k+1 at the end
of the first phase. As we aim for a statement that holds with probability 1 − o (1/n),
we may assume that this property holds once we enter the second phase.

The second phase lasts log5/4 n rounds. As before, let us concentrate on a given
vertex w at level k. Suppose that w has ` blue neighbours for some integer ` such
that 40(k + 1) lnn ≤ ` ≤ n/2 (w has only k neighbours at level k − 1 so, of course,
it includes neighbours at level k + 1). The number of white neighbours of w (at level
k + 1) that turned blue in one round of the process is stochastically lower bounded by
Bin(n−`, (`+1)/n) ≥ Bin(n/2, (`+1)/n) 3 Y with E[Y ] = (`+1)/2 ≥ 20(k+1) lnn. We
get from Chernoff’s bound (2.1) (applied with ε = 1/2) that Y ≤ `+1

4
with probability

at most

2 exp

(
−E[Y ]

12

)
=

2

n(20/12)(k+1)
= o

(
1

nk+1 lnn

)
.

By the union bound (over at most nk vertices at level k and at most log5/4 n rounds),
with probability 1− o (1/n), each vertex at level k increases the number of blue neigh-
bours by a multiplicative factor of 5/4 each round, reaching at least n/2 blue neighbours
by the end of the second phase. We may assume that this property holds once we enter
the third phase.

The third (and last) phase lasts 3 log2 n rounds. This time, let us concentrate on a
given white vertex w at level k + 1. This vertex has k + 1 neighbours at level k, each
of which has at least n/2 blue neighbours. Hence, vertex w stays white by the end of
this phase with probability at most((

1

2

)k+1
)3 log2 n

= 2−3(k+1) log2 n =
1

n3(k+1)
= o

(
1

nk+2

)
.
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By the union bound (over at most nk+1 vertices at level k + 1), with probability 1 −
o (1/n), all vertices at level k + 1 turn blue by the end of this phase and so property
P(k + 1) holds. �

Since we aim for a statement that holds a.a.s., we may assume that P(n/ ln2 n) holds
after o(n) rounds, and continue the process from there. We say that a vertex at layer
k is happy if all but at most ` = `(n) = ln5 n neighbours at layer k − 1 are blue.
Similarly, a vertex at layer k is very happy if not only it is happy but also all but at
most ` neighbours at layer k + 1 are blue. (Note that a happy or even a very happy
vertex might still be white.) Trivially, all vertices at levels up to n/ ln2 n+ 1 are happy
(including level n/ ln2 n + 1), and all vertices at levels before level n/ ln2 n are very
happy.

Suppose that for some integer k, n/ ln2 n ≤ k ≤ n − 1, all vertices at levels up to k
are happy (including level k). We will show that after one single round all vertices at
layer k + 1 are going to be happy and all vertices at layer k − 1 are going to be very
happy with probability 1− o (1/n). By the union bound (over all possible values of k),
we will get that a.a.s. after less than n rounds all vertices of the hypercube are going
to be very happy.

For simplicity, by Lemma 2.1 we may assume that all vertices at level k are white
(despite the fact that they are happy). Let us concentrate on a given vertex w at level
k. Since w is happy and all of its blue neighbours at level k − 1 are happy too, the
probability that w stays white is at most(

1− k − `
n

)k−`
≤ exp

(
−(1 + o(1))

k2

n

)
=: p.

Now, the probability that a given vertex at level k + 1 is not happy is at most(
k + 1

`

)
p` ≤ n` exp

(
−(1 + o(1))

k2

n
`

)
= exp

(
` lnn− (1 + o(1))

k2

n
`

)
≤ exp

(
ln6 n− (1 + o(1))n lnn

)
using k ≥ n

ln2 n

= o

(
1

2n n

)
.

Then the property that all vertices at level k + 1 are happy holds with probability
1− o(1/n) by the union bound (over at most 2n vertices at level k + 1).

We may also show that all vertices at level k − 1 are very happy with probability
1− o(1/n). If k ≥ n− `, then all vertices at level k− 1 are trivially very happy as they
have less than ` neighbours at level k, so there is nothing to show. If k ≤ n − ` (but
still k ≥ n/ ln2 n), then a given vertex at level k− 1 is not very happy with probability
at most (

n− (k − 1)

`

)
p` ≤ n` exp

(
−(1 + o(1))

k2

n
`

)
= o

(
1

2n n

)
,
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and the desired bound holds by the union bound (over at most 2n vertices at level
k − 1).

At this point we may assume that all vertices of the hypercube are very happy. It is
easy to see that a.a.s. all remaining white vertices will turn blue in one single round.
Indeed, since all vertices are very happy, the probability that some vertex stays white
is at most

2n
(

1− n− 2`

n

)n−2`

= 2n
(

2`

n

)(1+o(1))n

= exp (O(n)− (1 + o(1))n lnn)

= o(1).

The proof is finished. �

4. Grids

This section is devoted to proving part (b) of Theorem 1.5. The theorem is stated for
grids but we also consider zero-forcing on tori, which we introduce both for convenience
and because we get for free the same result on tori as for grids. Let us start with a
formal definition of grids and tori. The m by n grid graph Gm×n is the mn vertex graph
that is the Cartesian product of a path on m vertices and a path on n vertices. The m
by n torus graph Tm×n is the Cartesian product of a cycle on m vertices and a cycle on
n vertices.

We can restrict our focus to the square grid Gn×n or the square torus graph Tn×n.
For a non-square grid Gn×m with n < m, once a central n × n square is all blue, the
two adjacent columns turn blue with probability one on the next time-step and so on.
Thus pt (Gn×m) ≤ pt (Gn×n) +

⌈
m−n

2

⌉
. A similar argument holds for the non-square

torus. Hence, it will be straightforward to generalize the results for asymmetric cases
which we will do once we are done with symmetric cases.

We define the origin of Gn×n to be the central vertex if n is odd and one of the four
central vertices if n is even (the choice can be made arbitrarily as all of them are the
same up to symmetry). Since Tn×n is vertex transitive, we may fix any vertex of Tn×n to
be the origin of Tn×n. For a given positive integer k < n

2
we define the k-principal-square

to be the 2k + 1 by 2k + 1 sub-grid centred on the origin.

Let s =
⌊
n/ ln2 n

⌋
. We will work in phases, where in phase i we start with all vertices

in an is-principal-square being blue and end with all vertices in an (i + 1)s-principal-
square being blue. For simplicity, by Lemma 2.1 we may assume that at the beginning of
each phase the only vertices that are blue are the ones that belong to the corresponding
principal-square. In fact, during each phase we will turn a few more vertices white (if
needed) so that the process behaves more predictably. We aim to bound the number of
time-steps it takes to go from the is-principal-square to the (i + 1)s-principal square.
As a result, in total there will be at most 1

2
ln2 n phases. Note that the only phase that

potentially differs between the grid and the torus is the final phase.
Let us start with the following simple observation that will allow us to ignore a few

initial and final phases.
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Lemma 4.1. Let k ≥ 1. Suppose that at time t0 all vertices in a k-principal-square
are blue. Then with probability 1− o (1/n) at time t0 + 6 lnn all vertices in a (k + 1)-
principal-square are blue.

Proof. Let k ≥ 1, and suppose that at time t0 all vertices in a k-principal-square are
blue. Note that vertices adjacent to a blue vertex with three blue neighbours turn
blue with probability 1, and so all vertices adjacent to a non-corner vertex of the k-
principal-square will turn blue at time t0 + 1. There are twelve (eight if k = 1) vertices
in the (k + 1)-principal square that do not turn blue deterministically: the four corner
vertices and the eight (four if k = 1) vertices adjacent to the corners. We will call these
corner–adjacent.

A corner–adjacent vertex has a blue neighbour at time t0 and so the probability that
it stays white in one time-step is at most 3/4. The probability it remains white after

4 lnn steps is at most
(

3
4

)4 lnn
and so the probability that all corner–adjacent vertices

are blue at time t0 + 4 lnn is at least 1− 8
(

3
4

)4 lnn
= 1− o (1/n).

Conditioning on a corner vertex having two blue neighbours at time t1 = t0 + 4 lnn,
the probability it stays white after the next time-step is at most (3/4)2 = 9/16. The

probability it is white after a further 2 lnn time-steps is at most
(

9
16

)2 lnn
. In particular,

the probability that all four corner vertices are blue at time t1 + 2 lnn steps is at least

1− 4
(

9
16

)2 lnn
= 1− o (1/n). �

Lemma 4.1 tells us that with high probability any single phase takesO (6s lnn) = o(n)
time-steps, so we may safely ignore what happens in the first five phases and the last
phase. In particular, our argument is the same whether we are run the process on the
grid or the torus. Hence, we may focus on the square grid graph Gn×n.

Recall that s = bn/ ln2 nc. Let 5 ≤ i < n/2s and suppose that at time t0 all vertices
in the (is)-principal-square are blue. By Lemma 2.1, we may assume that these are
the only blue vertices at that point of the process. We will show that with probability
1− o (1/n), at time t0 + (1 + ε+ o(1))s all vertices in the (i+ 1)s-principal-square are
blue, where ε > 0 will be an explicit, very small constant that we are not ready to
introduce yet.

For simplicity, we identify the vertices of Gn×n with pairs (a, b) from the set{
−
⌊
n− 1

2

⌋
, . . . ,

⌊n
2

⌋}
×
{
−
⌊
n− 1

2

⌋
, . . . ,

⌊n
2

⌋}
in the natural way with the origin at (0, 0). In particular, note that a k-principal-
square contains all vertices (a, b) with |a| ≤ k and |b| ≤ k. We will focus on the
top-right quadrant where both coordinates are positive; by symmetry, the argument for
the other quadrants will be exactly the same.

In order to control how the process progresses with time, we will pay attention to a
few blue vertices at the top-right corner that are at the same distance from the origin.
Hence, the following definition will be useful. For fixed positive integer d, we define a
d-window (rooted at vertex (a− d+ 1, b)) to be a d-tuple of vertices(

(a− d+ 1, b), (a− d+ 2, b− 1), (a− d+ 3, b− 2), . . . , (a, b− d+ 1)
)
,
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where d < a, b < n/2. Note that the distance of all vertices from such a d-window from
the origin is a+ b− d+ 1.

Blue vertices from a d-window at distance ` from the origin will most likely turn
some other vertices at distance ` + 1 from the origin to be blue. If that happens,
we will simply move the window appropriately and continue the process. In order to
compute the transition probabilities between given configurations that might occur in
a d-window, it will be convenient to assume that each blue vertex in the window has
exactly two blue neighbours, namely the bottom and the left neighbours. We may do
so based on the following observation.

Lemma 4.2. Suppose that at time t, a k × k sub-grid of vertices are all blue for some
integer k ≥ 2. Let v be the top-right corner (blue) vertex of this sub-grid. If a neighbour
of v turns blue at time t+1, then it is the top-right corner of a (k−1)×(k−1) sub-grid
of vertices that are all blue.

Proof. Consider the four vertices adjacent to v. Clearly, the vertex below v and the
vertex to the left of v are each the top right corner of a (k − 1)× (k − 1) all blue grid.
Let u be the vertex to the right of v. The column of k− 2 vertices directly below u are
all blue at time t+ 1 with probability 1 (as each is adjacent to a blue vertex with three
blue neighbours at time t). Thus, if u turns blue at time t+ 1, then it is the top-right
corner of a (k− 1)× (k− 1) blue sub-grid—see Figure 1. An analogous argument holds
for the vertex above v. �

t+ 1t
time time

v

Figure 1. A 5× 5 blue sub-grid at time t and a 4× 4 blue sub-grid at
time t+ 1 as described in Lemma 4.2.

Now, we are ready to define an auxiliary process, which monitors the behaviour of
the original process, giving a sequence of triples (Dj, Cj, tj) of d-windows Dj at times
tj, and associated binary d-tuples Cj indicating which vertices in the d-window are blue
at time tj and which ones are white (1 represents blue and 0 represents white). This
process will control the expansion of the blue principal squares and so can be used to
upper bound the number of rounds needed to reach the end of a given phase. We will
run this process for at most 3s steps and stop it prematurely if the end of the phase is
not reached after 3s rounds. However, we will show that we do not stop prematurely
with probability 1− o (1/n) and, in fact, when d is large enough, with this probability
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we will finish in almost s rounds which is a trivial lower bound for the number of rounds
needed to finish a given phase.

(1) We start with D0 = ((is− d+ 1, is), . . . , (is, is− d+ 1)) and time-step t0. Since all
vertices in D0 are blue, the corresponding configuration is C0 = (1, . . . , 1). (In fact,
the initial triple is not important. Another natural starting point would be to start
with a d-window including vertex (is, is) and so would have only one blue vertex
in the corresponding configuration.)

(2) Given the triple (Dj, Cj, tj), we define triple (Dj+1, Cj+1, tj+1) differently according
to whether Cj contains a blue vertex or not. Suppose that Dj is a d-window rooted
at vertex (a− d+ 1, b).

(3) If Cj contains a blue vertex, let tj+1 = tj + 1 and consider the d-windows

X = ((a− d+ 1, b+ 1), . . . , (a, b− d+ 2)) and

Y = ((a− d+ 2, b), . . . , (a+ 1, b− d+ 1)).

Let Dj+1 be whichever of X or Y has more blue vertices at time tj+1 (see Figure 2 for
an illustration). If they have an equal number of blue vertices, then pick one of the
two uniformly at random. Let Cj+1 be the corresponding configuration capturing
the information about which vertices in the window are blue at time tj+1. Go to
step (2).

Y

X

Dj

Figure 2. A 6-window Dj and 6-windows X, Y as defined in Step (3)
of the auxiliary process. Since Y has more blue vertices, Dj+1 = Y .

(4) If Cj is all white (that is, all vertices in Dj are white at time tj), we set tj+1 = tj.
In this situation we need to introduce an auxiliary triple (Dj+1, Cj+1, tj+1) that
corresponds to an earlier d-window that is not all white at time tj. To that end
we chose Dj+1 to have the same distance from the origin as Dj−1. Note that Cj−1

is not all zeros and represents a configuration in the d-window Dj−1 at time tj−1;
indeed, the process is designed in such a way that no Cj−1 and Cj can be all zeros at
any step in this process. We may simply fix Dj+1 = Dj−1 and Cj+1 = Cj−1 but our
goal is to create a memory-less Markov chain so we will follow a different strategy.
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Let (x, y) be a random vertex in Dj−1 that was blue at time tj−1. Let Dj+1 be
the d-window centred on (x, y). To be specific, if d is odd then let

Dj+1 =

((
x− d− 1

2
, y +

d− 1

2

)
, . . . ,

(
x+

d− 1

2
, y − d− 1

2

))
,

and if d is even then let Dj+1 be one of((
x− d− 2

2
, y +

d− 2

2

)
, . . . ,

(
x+

d

2
, y − d

2

))
and ((

x− d

2
, y +

d

2

)
, . . . ,

(
x+

d− 2

2
, y − d− 2

2

))
chosen uniformly at random. At time tj−1, (x, y) is blue and it follows from
Lemma 4.2 that (x− 1, y) and (x, y − 1) are blue and have three blue neighbours.
(See the discussion below for details about implications of Lemma 4.2.) This means
at time tj+1 = tj = tj−1 + 1, the vertices (x− 1, y+ 1), (x, y), (x+ 1, y− 1) are each
blue and in Dj+1. Applying Lemma 2.1, we may assume that any vertices in Dj+1

that are not one of (x − 1, y + 1), (x, y), (x + 1, y − 1) are white at time tj+1 = tj.
Let us stress again that by our choice of (x, y), Dj+1 is not all white at time tj+1.
Go to step (2).

Recall that we start the current phase at time t0 with all vertices in the (is)-principal-
square being blue. Moreover, we already dealt with the first few phases so i ≥ 5. By
this assumption, every vertex in the starting d-window D0 is the top-right corner of a
(2is+1−d)×(2is+1−d) blue sub-grid at time t0. Applying Lemma 4.2 recursively for
each j, we see that if a vertex in Dj turns blue at time tj because of its blue neighbour
in Dj−1, then it is the top-right corner of a (2is + 1 − d − j) × (2is + 1 − d − j) blue
sub-grid. In particular, since we run the auxiliary process for at most 3s steps, it will
be the top-right corner of a 3× 3 blue sub-grid.

We are now ready to investigate the transition probabilities between configurations
Cj and guide the auxiliary process so that it yields a Markov chain. Suppose that Dj =
((a−d+1, b), . . . , (a, b−d+1)). Let us first investigate step (3) of the auxiliary process.
By the assumption of this step, Cj is not all zeros; that is, Dj contains a blue vertex at
time tj. By Lemma 2.1 we may assume that at time tj all vertices in the next d-windows
X = ((a− d+ 1, b+ 1), . . . , (a, b− d+ 2)) and Y = ((a− d+ 2, b), . . . , (a+ 1, b− d+ 1))
are white, and that the vertices (a− d, b+ 1) and (a+ 1, b− d) are white. Moreover, as
discussed above, Lemma 4.2 implies that any vertex in Dj that is blue at time tj has
exactly two blue neighbours. Thus the probability that a vertex in X ∪ Y turns blue
at time tj + 1 is exactly 1− (1/4)2 = 15/16 if it has two blue neighbours in Dj at time
tj, 1 − 1/4 = 3/4 if it has one blue neighbour in Dj at time tj, and 0 otherwise. In
particular, the configuration Cj+1 representing the state of Dj+1 at time tj+1 depends
only on the configuration Cj representing the state of Dj at time tj. The transition
probability Pd(C,C

′) between any two possible configurations C and C ′ can be easily
computed.
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Now, let us investigate step (4). This is set up so that if Cj is all white (that is,
Dj contains no blue vertices at time tj) then deterministically Cj+1 consists of three
centred consecutive blue vertices and all other vertices white. In particular, for d ≥ 3
odd and C all white, Pd(C,C

′) = 1 if C ′ = (0, . . . , 0︸ ︷︷ ︸
(d−3)/2

, 1, 1, 1, 0, . . . , 0︸ ︷︷ ︸
(d−3)/2

) and 0 otherwise.

For d ≥ 4 even and C all white,

Pd(C,C
′) =


1/2 if C ′ = (0, . . . , 0︸ ︷︷ ︸

(d−4)/2

, 1, 1, 1, 0, . . . , 0︸ ︷︷ ︸
(d−2)/2

) or (0, . . . , 0︸ ︷︷ ︸
(d−2)/2

, 1, 1, 1, 0, . . . , 0︸ ︷︷ ︸
(d−4)/2

)

0 otherwise.

Finally, for the degenerate case d = 2 and C all white, P2(C,C ′) = 1 if C ′ is all blue,
and 0 otherwise.

Since the state of Dj+1 at time tj+1 (namely, configuration Cj+1) depends only on
the state of Dj at time tj (namely, configuration Cj) independent of the time and the
choice of vertices, we can capture the behaviour of the process using a Markov chain
(Cj)

∞
j=0 on state space Ω = {0, 1}d. For example, when d = 2 the Markov chain has

transition matrix

P2 =


0 0 0 1

1/16 9/32 3/32 9/16
1/16 3/32 9/32 9/16
1/256 15/256 15/256 225/256


where the states are in the order (0, 0), (0, 1), (1, 0), (1, 1). It is easy to see that for any
d this Markov chain is irreducible and aperiodic, and so it has a limiting distribution
which is equal to the stationary distribution. We define µd to be the probability of the
all white state C = (0, 0, . . . , 0) in the limiting distribution.

The next lemma is the crux of our argument.

Lemma 4.3. Take s = bn/ ln2 nc. Let 5 ≤ i < n/(2s) and suppose that at time t0
all vertices in the (is)-principal-square are blue. With probability 1 − o (1/n), before
the end of round t0 + (1 + o(1)) 1−µd

1−2µd
2s all vertices in the (i+ 1)s-principal-square are

blue, where µd is the probability of the all white state C = (0, 0, . . . , 0) in the limiting
stationary distribution of the Markov’s chain Pd defined above.

Applying the Lemma together with earlier observations we immediately obtain the
following corollary.

Corollary 4.4. The following bound holds a.a.s.:

pt (Gn×n) ≤ (1 + o(1))
1− µd
1− 2µd

n,

where µd is the probability of the all white state C = (0, 0, . . . , 0) in the limiting sta-
tionary distribution of the Markov’s chain Pd defined above.

Proof of Lemma 4.3. Let us fix an integer d ≥ 2. Suppose we run the auxiliary process
(Dj, Cj, tj) monitoring the trajectory of the d-window for ` steps. Let w be the number
of steps we spend in the all white state C = (0, 0, . . . , 0). We have that t` = t0 + `−w,
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since when we are in the all white state tj+1 = tj, and tj+1 = tj + 1 otherwise. The
distance of D0 from the origin is 2(is) − d + 1. The distance of D` from the origin is
2(is) − d + 1 + ` − 2w, since when we are in the all white state Dj+1 is one closer to
the origin than Dj, and otherwise Dj+1 is one further from the origin than Dj.

Applying Chernoff–Heoffding bounds for Markov chains (equation (2.3)), we have
that

P
(

(1− δ)µd` ≤ w ≤ (1 + δ)µd`
)
≥ 1− c exp (−cδ2`)

for 0 ≤ δ ≤ 1, where c is some positive constant depending only on the Markov chain
(in particular, independent of ` and δ). Set

` =

(
2

1− 2µd
+

ln4 n√
n

)
s ≥ s and δ =

ln2 n√
n
.

(Note that µd ≤ 1/77 implies that ` < 3s, which is the number of steps taken. We will
show that µd satisfies this property below and so we may assume that the process does
not stop prematurely.) Then, using that s = bn/ ln2 nc, we have that with probability
1− o (1/n) the distance of D` from the origin is at least

2is− d+ 1 + `− 2(1 + δ)µd`

= 2is+O(1) + (1− 2µd)

(
1−Θ

(
ln2 n√
n

))
`

= 2is+O(1) + (1− 2µd)

(
1−Θ

(
ln2 n√
n

))
2

1− 2µd

(
1 + Θ

(
ln4 n√
n

))
s

= 2(i+ 1)s+ Θ(
√
n ln2 n),

and the number of rounds in this phase that passed in the original zero-forcing process
is equal to

t` − t0 = `− w ≤ (1− (1− δ)µd)` = (1− µd)
(

1 + Θ

(
ln2 n√
n

))
`

= (1 + o(1))
1− µd
1− 2µd

2s.

It remains to show that the d-windows Dj are travelling broadly North-East rather
than North or East, in order to be sure of obtaining a principal square as opposed
to a rectangle. To that end, let us define the discrepancy disc(D) of a d-window
D = (a − d + 1, b), . . . , (a, b − d + 1) to be a − b. The discrepancy captures how far
from the North-East diagonal the d-window is shifted. The discrepancy of D0 is 0. By
definition, disc (Dj+1) differs from disc (Dj) by at most one if Dj is not all white at
time tj, and differs from disc (Dj) by at most d if Dj is all white at time tj.

Define a sequence (jk)k≥0 where j0 = 0 and for k > 0, jk is the least j > jk−1

such that Dj is all white at time tj (that is, Cj = (0, 0, . . . , 0)). For any j for which
Cj 6= (0, 0, . . . , 0), the probability that Cj+1 = (0, 0, . . . , 0) is at least (1/16)d+1. Hence,
the probability that we do not hit an all white state after 2 ·16d+1 lnn consecutive steps,
is at most (

1− (1/16)d+1
)2·16d+1 lnn ≤ exp(−2 lnn) = 1/n2.
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Thus, since there are at most ` = o(n) terms in the sequence, we have jk − jk−1 ≤
2 · 16d+1 lnn for all k with probability 1 − o (1/n). Since we aim for a statement that
holds with probability 1−o (1/n), we may assume that this property is deterministically
satisfied.

Consider the sequence (disc (Djk))k≥0. Based on our assumption, for all k ≥ 1

| disc (Djk)− disc
(
Djk−1

)
| ≤ d+ tk − tk−1 ≤

(
2 · 16d+1 + o(1)

)
lnn ≤ 3 · 16d+1 lnn.

By symmetry of the auxiliary process, we know that given disc
(
Djk−1

)
and integer a the

probability that disc (Djk) = disc
(
Djk−1

)
+ a must be the same as the probability that

disc (Djk) = disc
(
Djk−1

)
− a. Thus the sequence (disc (Djk))k≥0 is a martingale. We

can apply the Azuma–Hoeffding inequality (2.2) with b =
√
` ln2 n and 2 · 16d+1 ln2 n ≤

jk ≤ ` to see that

P (| disc (Djk) | ≥ b) ≤ 2 exp

(
−b2

2 · k · 3 · 16d+1 ln2 n

)
= 2 exp

(
−` ln4 n

O(` ln2 n)

)
= o (1/n) ,

and so

P
(
| disc (D`) | ≤

√
` ln2 n+ 3 · 16d+1 lnn

)
≥ 1− o (1/n) ,

where the additional term 3 · 16d+1 lnn needs to be added because the last term in the
sequence (jk)k≥0 can be smaller than ` but, with the desired probability, not smaller
than `− 3 · 16d+1 lnn.

Putting all of this together, we conclude that with probability 1 − o (1/n), at time
t` = t0 + (1 + o(1)) 1−µd

1−2µd
2s there is a blue vertex at distance 2(i + 1)s + Θ

(√
n ln2 n

)
from the origin with a discrepancy of less than

√
` ln2 n = O (

√
n lnn) = o

(√
n ln2 n

)
.

Using Lemma 4.2 for the last time, we get that this blue vertex is the top-right corner
of a (2is + 1 − d − `) × (2is + 1 − d − `) all blue sub-grid at time t`. Since i ≥ 5, we
get that

2is+ 1− d− ` ≥ (i+ 1)s+ 4s+ 1− d− 3s > (i+ 1)s,

and so this all blue sub-grid entirely contains the top-right quadrant of the (i + 1)s-
principal-square.

By symmetry, the same conclusion holds for the other three quadrants and so with
probability 1 − o (1/n) at time t0 + (1 + o(1)) 1−µd

1−2µd
2s the (i + 1)s-principal-square is

entirely blue. The proof of the lemma is finished. �

The only thing remaining to finish the main theorem is to calculate the stationary
distribution of the Markov chain and thus µd. Based on Corollary 4.4, each value of µd
implies that a.a.s.,

pt (Gn×n) ≤ (1 + εd + o(1))n, where εd :=
1− µd
1− 2µd

− 1 =
µd

1− 2µd
.

When d = 2 or d = 3 the transition matrix is small enough to be calculated by hand
and one can check that µ2 = 1/77 and µ3 = 1861/491117, respectively. It gives us
ε2 = 1/75 ≤ 0.01334 and ε3 = 1861/487395 ≤ 0.003819. For d ≤ 7, one can use a



TIGHT BOUNDS ON PROBABILISTIC ZERO FORCING ON HYPERCUBES AND GRIDS 17

computer to calculate the exact fractions in the transition matrix and thus the exact
values of µd. This gives

µ4 =
11439524

9092101243

µ5 =
1133763610798567

2542177028478096119

µ6 =
112666827183116235892325831063

686127236264864409019398540749761

µ7 =
536778086928248989283123883507309287148693034345565

8663791645046173690408989931892492266198652103814670581
.

For larger values of d, we must move to numerical approximations. Rounding errors
become a concern for d > 14 when the minimum entry in the transition matrix is close
to the precision of the computer. Below we summarize these numerical values in the
table. In particular, when d = 14 we obtain ε14 < 10−7 and the main theorem holds.

d µd εd
2 0.012987012987012988 0.013333333333333334
3 0.0037893210782766634 0.0038182582915294574
4 0.0012581826460420552 0.001261356680213082
5 0.0004459813766302923 0.0004463795305453566
6 0.00016420690103551534 0.00016426084656466706
7 6.1956486134 · 10−5 6.1964164298 · 10−5

8 2.3776197997 · 10−5 2.3777328666 · 10−5

9 9.2381456535 · 10−6 9.2383163433 · 10−6

10 3.6235531968 · 10−6 3.6235794573 · 10−6

11 1.4319129399 · 10−6 1.4319170406 · 10−6

12 5.6925354755 · 10−7 5.6925419565 · 10−7

13 2.2742611942 · 10−7 2.2742622287 · 10−7

14 9.1236746477 · 10−8 9.1236763126 · 10−8
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