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Abstract. We consider the localization game played on graphs in which a cop tries
to determine the exact location of an invisible robber by exploiting distance probes.
The minimum number of probes necessary per round to locate the robber on a given
graph G is the localization number ζ(G). In this paper, we improve the bounds for
dense random graphs determining the asymptotic behaviour of ζ(G). Moreover, we
extend the argument to sparse graphs.

1. Introduction

Graph searching focuses on the analysis of games and graph processes that model
some form of intrusion in a network and efforts to eliminate or contain that intrusion.
One of the best known examples of graph searching is the game of Cops and Robbers,
wherein a robber is loose on the network and a set of cops attempt to capture the
robber. For a book on graph searching see [6].

In this paper we consider the Localization Game that is related to the well studied
Cops and Robbers game. For a fixed integer k ≥ 1, the localization game with k
sensors is a two player combinatorial game played on a graph G which is known to both
players. To initialize the game, the cops first choose a set S1 ⊆ V (G) with |S1| = k,
which we refer to as the cops’ sensors. The robber then chooses a vertex v ∈ V (G) to
start at, whose location on the graph is hidden from the cops. The cops then learn the
graph distance between the current position of the robber and the vertices of S1. If this
information is sufficient to locate the robber, then the cops win immediately. Otherwise,
a new round begins, and the cops now choose another arbitrary subset S2 ⊆ V (G) of
size k, based on all the past information available to them. At this point, the robber is
allowed to move to any vertex at distance at most 1 from its current location, and may
base this decision on the history of the cops’ sensors (i.e., S1 and S2). The distances
of the robber’s new location to the vertices of S2 are then presented to the cops, at
which point the cops win if these new distance values in conjunction with the previous
ones are sufficient to locate the robber. If the cops’ information is still insufficient to
win the game, then another round begins, and the robber may choose where to move
based on the cops’ current choice of sensor locations, and all previous choices. These
rounds continue iteratively until the cops are able to locate the robber, in which case
we say that the cops win, or the game proceeds indefinitely, in which case we say that
the robber wins. We emphasize that the cops only win, provided their strategy beats
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all robber strategies, and thus is a worst-case win condition. An alternative “robber
first” definition of the localization game involves the robber moving first in each round,
in particular, choosing their move prior to the initial placement of the cops’ sensors.
Since both games require a worst case guarantee for the cops to win, these games are
equivalent. We define both localization games in more detail in Section 4.1.

Given G, the localization number, written ζ(G), is the minimum k so that the cops
can eventually locate the robber using sets S of size k. The localization game was
introduced for one probe (k = 1) in [19, 18] and was further studied in [9, 10, 8, 7, 13, 5].
Most notably, Haslegrave et al. [13] showed that if ∆ is the maximum degree of G, then
ζ(G) is at most (∆+1)2/4+1. Upper bounds on the localization number are desirable,
as deciding whether or not ζ(G) ≤ k is NP-hard, even for graphs of diameter 2, as
proven by Bosek et al. [8]. The localization number is related to the metric dimension of
a graph in a way that is analogous to how the cop number is related to the domination
number. The metric dimension of a graph G, written β(G), is the minimum number of
probes needed in the localization game so that the cops can win in one round (see [12]).
It follows that ζ(G) ≤ β(G), but in many cases this inequality is far from tight. See
[1] for a more detailed overview of the history of results for deterministic graphs. Very

recently, Ódor and Thiran [16] studied a game on G(n, p) similar to the localization
game, in which the robber is not allowed to move, and the cops place a single sensor
in each turn based on the currently revealed distance probes to the robber. This game
was introduced by Seager [17], and the parameter of interest is the number of rounds
necessary to locate the robber, called the sequential metric dimension. It is clear that
the sequential metric dimension is not greater than the metric dimension, however its
relationship with the localization number is uncertain (see [2] for a generalization of
the sequential metric dimension to multiple sensors). In Section 2, our results imply
that the localization number can be strictly less than the sequential metric dimension.

In this paper we present results obtained for the binomial random graph G(n, p).
More precisely, G(n, p) is a distribution over the class of graphs with vertex set [n] in

which every pair {i, j} ∈
(
[n]
2

)
appears independently as an edge in G with probability p.

Note that p = p(n) may (and usually does) tend to zero as n tends to infinity. We say
that G(n, p) has some property asymptotically almost surely or a.a.s. if the probability
that G(n, p) has this property tends to 1 as n goes to infinity. The localization number
has also recently been studied for random geometric graphs in [15].

Given two functions f = f(n) and g = g(n), we will write f = O(g) if there exists
an absolute constant α such that f ≤ α · g for all n, f = Ω(g) if g = O(f), f = Θ(g) if
f = O(g) and f = Ω(g), and we write f = o(g) or f � g if the limit limn→∞ f/g = 0.
In addition, we write f = ω(g) or f � g if g = o(f), and unless otherwise specified,
ω will denote an arbitrary function that is ω(1), assumed to grow slowly. We will also
write f ∼ g if f = (1 + o(1))g.

The localization number for dense random graphs (specifically the diameter two case)
was studied in [11]. The results obtained in [11] can be summarized as follows. If the
approximate average degree satisfies d := p · n = nx+o(1) for some x ∈ (1/2, 1), then the
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following holds a.a.s. for G ∈ G(n, p):

(1 + o(1))(2x− 1)
n log n

d
≤ ζ(G) ≤ (1 + o(1))f(x)

n log n

d
,

where

f(x) :=

{
x if 2/3 < x < 1

1− x/2 otherwise.

Hence, the order of magnitude of ζ(G) is determined for this range of d = nx+o(1). If
d = p · n = n1+o(1) and p ≤ 1 − 3 log log n/ log n, then the following holds a.a.s. for
G ∈ G(n, p):

ζ(G) ∼ 2 log n

log(1/ρ)
,

where
ρ := p2 + (1− p)2.

Thus, the asymptotic behaviour of ζ(G) was determined in this range.

In this paper, we improve the bounds for dense graphs showing that if d := p · n =
nx+o(1) for some x ∈ (1/2, 1), then a.a.s. ζ(G(n, p)) ∼ xn log n/d. Our proofs can be
easily generalized so we extend our results to cover sparser graphs (see Theorems 5.1,
6.1 and 6.2 in Sections 5 and 6). The main results are stated in Section 2. Notation
and some auxiliary observations are presented in Section 3. Section 4 provides a precise
definition of the localization game, and a convenient reformulation of the game so that
it can be viewed as a perfect information combinatorial game. Finally, lower and upper
bounds are proved in Section 5 and, respectively, Section 6.

2. Results

Recall that the asymptotic behaviour of the localization number is already determined
for graphs with d = Θ(n) and so we may concentrate on d = o(n). Our results are
slightly stronger than what is stated below but our goal is to summarize the most
important consequences. The reader is directed to Sections 5 and 6 for more details.
The first theorem below concentrates on random graphs with diameter i+1 and average
degree not too close to the threshold where the diameter drops to i. Diameter is a
natural parameter to consider when studying the localization number since the diameter
naturally bounds the amount of information one can obtain from a single sensor. This
result follows immediately from Theorem 5.1 and Theorem 6.1.

Theorem 2.1. Suppose that d := p · n is such that log n � d � n. Suppose that
i = i(n) ∈ N is such that di � n and di+1/n− 2 log n→∞. Then, the following holds
a.a.s. for G ∈ G(n, p):

(log d− 3 log log n)
n

di
≤ ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n)

n

di
.

As a result, if d ≥ (log n)ω for some ω = ω(n)→∞ as n→∞, then

ζ(G) ∼ n log d

di
.
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In particular, if there exists i ∈ N such that d = nx+o(1) for some x ∈ ( 1
i+1
, 1
i
), then

ζ(G) ∼ xn log n

di
.

Before we move to our next result, let us mention the relationship between ζ(G) and
β(G). The bounds for β(G) obtained in [4] are quite technical but for the range of d
covered by Theorem 2.1 we see that the following holds a.a.s. for G ∈ G(n, p):

(1 + o(1))
n log(di)

di
≤ β(G) ≤ (1 + o(1))

n log n

di
.

In [11], it was conjectured that when d = nx+o(1) for some x ∈ (2/3, 1), we have
that ζ(G) < β(G). In this case, since i = 1, our asymptotic bound on ζ(G) matches
with the lower bound on β(G) given above, and so in order to prove or disprove such a
conjecture, one would need to obtain new bounds on the metric dimension.

On the other hand, for sparser graphs (of diameter at least 3; i ≥ 2), it follows that
ζ(G) < β(G). In fact, if d = nx+o(1) for some x ∈ ( 1

i+1
, 1
i
), i ∈ N \ {1}, then a.a.s.

i + o(1) ≤ β(G)/ζ(G) ≤ 1/x + o(1) < i + 1 and so these two graph parameters are
a multiplicative constant far away from each other (the ratio is roughly equal to the
diameter of the graph). Moreover, for very sparse graphs, say for example d = log6 n,
a.a.s. ζ(G) = Θ(n log log n/di) whereas β(G) = Θ(n log n/di), implying that for such a

value of d, ζ(G) = o(β(G)). We remark that the results of Ódor and Thiran [16] show
that the sequential metric dimension of G ∈ G(n, p) is a.a.s. within a constant factor
of β(G). As such, ζ(G) is also dominated by the sequential metric dimension of G for
this parameter range of G(n, p).

We are less precise once we get closer to the threshold where the diameter drops from
i+ 1 to i. If c = c(n) := di/n = Θ(1), then we only determine the order of ζ(G). When
c → ∞ as n → ∞, then the upper bound for ζ(G) does not match the corresponding
lower bound. Thus, determining the behaviour of the localization number when c→∞
remains an open problem. Below, we state the result for c = Θ(1) and we direct the
reader for more details on the case when c→∞ to Sections 5 and 6. This result follows
immediately from Theorem 5.1 and Theorem 6.2.

Theorem 2.2. Suppose that d := p · n is such that log3 n � d � n. Suppose that
i = i(n) ∈ N is such that c = c(n) := di/n→ A ∈ R+. Then, the following holds a.a.s.
for G ∈ G(n, p):

(log d− 3 log log n)
1

A
≤ ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n)

eA

1− e−A
.

As a result, if d ≥ (log n)3+ε for some ε > 0, then

ζ(G) = Θ

(
n log d

di

)
.
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3. Probabilistic Preliminaries

In this section we give a few preliminary results that will be useful for the proof of
our main result. First, we introduce some graph theoretic notation and conventions,
followed a specific instance of Chernoff’s bound that we will find useful. Finally, we
mention some specific expansion properties that G(n, p) has and state the well-known
result about the diameter of G(n, p).

3.1. Notation and Conventions. For a vertex v ∈ V of some graph G = (V,E), let
S(v, i) and N (v, i) denote the set of vertices at distance exactly and at most i from v,
respectively. For any V ′ ⊆ V , let S(V ′, i) =

⋃
v∈V ′ S(v, i) and N (V ′, i) =

⋃
v∈V ′ N (v, i).

Through the paper, all logarithms with no subscript denoting the base will be taken
to be natural. Finally, as typical in the field of random graphs, for expressions that
clearly have to be an integer, we round up or down but do not specify which: the choice
of which does not affect the argument.

3.2. Concentration inequalities. We shall make use of the following concentration
inequality. Let X ∈ Bin(n, p) be a random variable with the binomial distribution
with parameters n and p. Then, a consequence of Chernoff’s bound (see e.g. [14,
Corollary 2.3]) is that

P(|X − EX| ≥ ε · EX)) ≤ 2 exp

(
−ε

2 · EX
3

)
(1)

for 0 < ε < 3/2.

3.3. Expansion properties. In this paper, we focus on dense random graphs, that is,
graphs with average degree asymptotic to d := p ·n� log n. Such dense random graphs
will have some useful expansion properties that hold a.a.s., or more precisely, we can
say with reasonable precision how large the neighbourhoods of many sets of vertices
are. We will use the following two technical lemmas, where the first one is proven in [4].

Lemma 3.1 ([4]). Let ω = ω(n) be a function tending to infinity with n such that ω ≤
(log n)4(log log n)2. Then the following properties hold a.a.s. for G = (V,E) ∈ G(n, p).
Suppose that ω · log n ≤ d := p ·n = o(n). Let V ′ ⊆ V with |V ′| ≤ 2 and let i = i(n) ∈ N
be such that di = o(n). Then,

|S(V ′, i)| =
(

1 +O

(
1√
ω

)
+O

(
di

n

))
di|V ′|.

In particular, for every x, y ∈ V (x 6= y) we have that

|S(x, i) \ S(y, i)| =
(

1 +O

(
1√
ω

)
+O

(
di

n

))
di.

Remark 3.2. Before continuing, let us indicate a high level overview of how we are
going to apply Lemma 3.1 (or other properties of G(n, p) that hold a.a.s.). This is a
standard technique in the theory of random graphs but it is quite delicate. We wish
to use the expansion properties guaranteed a.a.s. by Lemma 3.1, but we also wish to
avoid working in a conditional probability space, as doing so would make the necessary
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probabilistic computations intractable. Thus, we will work in the unconditional proba-
bility space of G(n, p), but we will provide an argument which assumes G(n, p) has the
expansion properties of Lemma 3.1. Since these properties hold a.a.s. the probability
of the set of outcomes in which our argument does not apply to is o(1), and thus can
be safely excised at the end of the argument. We provide more details as they become
relevant in our specific applications of this technique, namely, in Lemma 5.2.

For the next lemma we need to assume that our random graph is slightly denser,
namely, that d := p · n� log3 n.

Lemma 3.3. Let ω′ = ω′(n) be a function tending to infinity with n such that ω′ ≤
(log n)2(log log n)2. Then the following properties hold a.a.s. for G = (V,E) ∈ G(n, p).
Suppose that ω′ log3 n ≤ d := p · n = o(n). Suppose that i = i(n) ∈ N is such that
c = c(n) := di/n = Ω(1) and c ≤ 3 log n. Then, for every x, y ∈ V (x 6= y) we have
that

|S(x, i) \ S(y, i)| =
(

1 +O

(
1√
ω′

))
n(1− e−c)e−c,

provided c ≤ log n− 4 log log n. For log n− 4 log log n ≤ c ≤ 3 log n, we have that

|S(x, i) \ S(y, i)| = O
(
log4 n

)
.

Proof of Lemma 3.3. Fix any x, y ∈ V (x 6= y). Since d = o(n) and di = Ω(n), it
follows that i ≥ 2. We expose edges around vertices x and y to compute (or calculate)
N ({x, y}, i − 1). Note that di−1 = di/d = cn/d = O(n log n/d) = O(n/(ω′ log2 n)) =
o(n). Hence, by Lemma 3.1 applied with ω = ω′ log2 n, we may assume that

|S(x, i− 1) \ S(y, i− 1)| =

(
1 +O

(
1√
ω

)
+O

(
di−1

n

))
di−1

=

(
1 +O

(
1√

ω′ log n

)
+O

(
1

ω′ log n

))
di−1

=

(
1 +O

(
1√

ω′ log n

))
di−1.

Similarly,

|S(y, i− 1)| =
(

1 +O

(
1√

ω′ log n

))
di−1.

Let X = X(x, y) = |S(x, i) \ S(y, i)|. It is clear that v ∈ V \ N ({x, y}, i − 1) belongs
to S(x, i) \ S(y, i) if and only if v has a neighbour in S(x, i− 1) \ S(y, i− 1) but has no
neighbour in S(y, i− 1). Formally,

E[X] =
(
n− |N ({x, y}, i− 1)|

) (
1− (1− p)|S(x,i−1)\S(y,i−1)|

)
(1− p)|S(y,i−1)|.
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Since

(1− p)
(
1+O

(
1√

ω′ logn

))
di−1

= exp

(
−
(

1 +O

(
1√

ω′ log n

))
di

n

)
= exp

(
−c+O

(
c√

ω′ log n

))
= e−c exp

(
O

(
1√
ω′

))
= e−c

(
1 +O

(
1√
ω′

))
,

we get that

E[X] =

(
1 +O

(
di−1

n

))
n(1− e−c)e−c

(
1 +O

(
1√
ω′

))
=

(
1 +O

(
1√
ω′

))
n(1− e−c)e−c.

Suppose first that c ≤ log n − 4 log log n so that E[X] ≥ (1 + o(1)) log4 n. It follows
from Chernoff’s bound (1), applied with ε = 1/

√
ω′ ≥ (log n)−1(log log n)−1, that

X =

(
1 +O

(
1√
ω′

))
n(1− e−c)e−c

with probability at least

1− exp
(
−Θ(ε2E[X])

)
= 1− exp

(
− Ω((log n)2/(log log n)2)

)
= 1− o(n−2).

The desired property holds by the union bound taken over all pairs x, y.
For log n−4 log log n < c ≤ 3 log n, we have E[X] ≤ (1 +o(1)) log4 n. We may couple

the binomial random variable X with another random variable Y ≥ X with expectation
equal to (1 + o(1)) log4 n. Then, we may use Chernoff’s bound (1) with, say, ε = 1 to
get that X ≤ Y ≤ (2 + o(1)) log4 n with the desired probability. (Alternatively, one
could use a more general version of Chernoff’s bound that allows ε ≥ 3/2.) The desired
bound for X = X(x, y) holds a.a.s. for all pairs of x, y. �

3.4. Diameter of G(n, p). We will use the following well-known result.

Lemma 3.4 ([3], Corollary 10.12). Suppose that d := p · n� log n and

di+1/n− 2 log n→∞ and di/n− 2 log n→ −∞.

Then the diameter of G ∈ G(n, p) is equal to i+ 1 a.a.s.

4. Definition and Reformulation of the Localization Game

In this section, we will first provide a precise definition of the localization game, and
then provide a reformulation of the game that will be easier to deal with when proving
our results.
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4.1. Definition of the Localization Game. Let G = (V,E) be a connected graph.
Given a set S ⊆ V of size k, S = {s1, s2, . . . , sk}, and a vertex v ∈ V , we say the
S-signature of v is the vector d = d(S, v) = (d1, d2, . . . , dk) where di = d(si, v) is the
distance from si to v for each 1 ≤ i ≤ k. Then the localization game with k sensors is
a game played with two players, the cops and the invisible, moving robber. In the first
round, the cops choose a set S1 ⊆ V , |S1| = k (called the sensor locations), the robber
chooses any vertex v1 ∈ V , and then the cops receive the S1-signature of v1, say d1. If
the S1-signature of v1 is sufficient to determine the location of the robber, the cops win,
otherwise the game continues to the next round. Then, in round i, the cops choose a
new set Si ⊆ V , and the robber chooses a vertex vi ∈ N (vi−1, 1) as her new location,
and the cops learn the Si-signature of vi, say di.

While playing the localization game, both the cops and the robber are aware of the
underlying graph and all the previous cops’ moves. However, the cops are not aware of
the exact location of the robber, but the robber is aware of every move that the cops
have made. Thus, the robber has perfect information in the localization game, while
the cops do not.

We call the sequence (d1,d2, . . . ,di) the info trail of the walk (v1, v2, . . . , vi) with
respect to sensor locations (S1, S2, . . . , Si). Then the cops win in round i if the info
trail of the robber is sufficient to determine the location of the robber, and otherwise
the game proceeds to round i + 1. More precisely, the cops win in round i if for every
two walks (we will assume here that G is reflexive so consecutive vertices in a walk
can be equal), W = (w1, w2, . . . , wi) and X = (x1, x2, . . . , xi), both with info trail
(d1,d2, . . . ,di) with respect to (S1, S2, . . . , Si), we have wi = xi.

The localization number of the graph G, denoted ζ(G), is defined to be the least
integer k such that the cops can win the localization game with k sensors in finite time,
regardless of the strategy of the robber. Observe that we could alter our definitions
to accommodate the “robber first” variant of the localization game–that is, when the
robber moves first in each round, prior to the placement of the cops’ sensors. However,
it is easy to see that this will not change the definition of the localization number. We
thus focus on the “cop first” variant for the remainder of the paper.

4.2. Reformulation of the Game with Perfect Information for the Cops. Since
the definition of the localization number requires the cops to be able to win in finite
time regardless of the strategy of the robber, we can view this problem equivalently as
follows: when the cops choose S1, we partition the vertex set V into R1

1 ∪R1
2 ∪ . . .∪R1

`1

such that the sets R1
j are the equivalence classes of vertices in V that have the same

S1-signature for 1 ≤ j ≤ `1. Then, instead of choosing a specific location, the robber
can choose some equivalence class R1

j1
. Then once the cops choose S2, we partition the

set N (R1
j1
, 1) into equivalence classes R2

1 ∪R2
2 ∪ . . .∪R2

`2
so that every vertex in R2

j has

the same S2-signature. Then the robber chooses a set R2
j2

. Iteratively, in round i, once

the cops choose Si, this gives the partition N (Ri−1
ji−1

, 1) = Ri
1 ∪Ri

2 ∪ . . .∪Ri
`i

with every

vertex in Ri
j having the same Si-signature, then the robber chooses some Ri

ji
. In this

version of the game, the cops win in round i if the robber is forced to choose a set Ri
ji

with only one vertex, that is, |Ri
ji
| = 1. In this reformulation, both players have perfect



LOCALIZATION GAME FOR RANDOM GRAPHS 9

information. In particular, it is a combinatorial game and so one of the players must
have a winning strategy; that is, a strategy which wins against all of the other player’s
strategies simultaneously.

It can be seen that these two formulations of the localization game are equivalent in
the sense that if the robber performs the walk (v1, v2, . . . , vi) in response to sensor loca-
tions (S1, S2, . . . , Si), this is equivalent to the robber choosing sets (R1

j1
, R2

j2
, . . . , Ri

ji
),

and if there is enough information to determine that the robber is at vi at time i, it
must be because Ri

ji
= {vi} has only one element. Conversely, if the robber chooses

sets (R1
j1
, R2

j2
, . . . , Ri

ji
) in response to the cops choosing sensor locations (S1, S2, . . . , Si),

then there exists at least one walk (v1, v2, . . . , vi) with vk ∈ Rk
jk

for each 1 ≤ k ≤ i,

and if |Ri
ji
| = 1, we must have Ri

ji
= {vi} and every walk that shares an info trail with

(v1, v2, . . . , vi) must have terminal vertex vi, so the cops locate the robber. Thus, the
two formulations are equivalent in terms of the value of ζ(G), and throughout the rest
of the paper we will work with this perfect information reformulation of the localization
game.

Throughout the rest of the paper, when a robber chooses a set Ri
ji

on turn i, we will

denote that set simply by Ri for the remainder of the game.

5. Lower Bound

In this section, we prove our lower bound. Our upper bound of o(n log log n) for di

is not best possible. For di = Ω(n) we do not manage to determine the asymptotic
behaviour of ζ(G) and so we content ourselves with a slightly weaker bound. Moreover,
note that if d ≤ log3 n, then the lower bounds in Theorems 2.1 and 2.2 are negative
and so they trivially hold. Hence, in this section we may concentrate on d ≥ log3 n.

Theorem 5.1. Suppose that d := p · n is such that log3 n ≤ d � n. Let i = i(n) ∈ N
be the largest integer such that di � n log log n. Suppose that di+1/n − 2 log n → ∞.
Then the following holds a.a.s. for G ∈ G(n, p):

ζ(G) ≥ (log d− 3 log log n)
n

di
.

We say that two vertices v, w are diametrically opposite, provided the distance be-
tween them equals the diameter of the graph. Our goal is to bound the number of
vertices which are diametrically opposite to all the vertices in the set of sensors. In this
way, we prove Theorem 5.1 by arguing that a greedy strategy works for the robber,
provided the number of sensors of the cops is sufficiently small. Specifically, the strat-
egy of the robber is to maintain maximum distance from all of the sensors. In doing
so, they are able to evade the cops indefinitely, and thus win the game.

In order to show that this greedy strategy works, first recall that by Lemma 3.4,
a.a.s. G has diameter i+ 1. The lemma below strengthens this result, by ensuring that
no matter where the sensors of the cops are placed, there always exists a large selection
of vertices which are simultaneously at distance i+ 1 from all of the sensors.
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Lemma 5.2. Suppose that d := p · n is such that log3 n ≤ d� n. Let i = i(n) ∈ N be
the largest integer such that di � n log log n. Let

s :=
(

log d− 3 log log n
) n
di

and r :=
n log3 n

d
.

Then the following holds a.a.s. for G = (V,E) ∈ G(n, p): for every set S ⊆ V with
|S| = s, we have that

|V \ N (S, i)| = n− |N (S, i)| ≥ r/2.

Proof. Let S ⊆ V be a set of size s. We will sequentially expose edges incident to S in
order to determine N (S, i−1). Specifically, for v ∈ S, we expose edges via the following
procedure:

• For j = 0, . . . , i− 2 do:
expose the edges of G incident to N (v, j) which are still unexposed.

Let us denote Ev as the information regarding the edges of G we reveal by following
this procedure for a fixed v ∈ S; that is, Ev corresponds to the vertex pairs of

(
V
2

)
which

are exposed, as well as indications as to whether each exposed vertex pair is an edge
of G. Similarly, denote E as the information revealed after following this procedure for
each v ∈ S.

We first note that Ev is sufficient to determine S(v, j) for each v ∈ S and j =
1, . . . i− 1. At this point, let us say that the set S is good, provided for each v ∈ S and
j = 1, . . . , i− 1 it holds that

|S(v, j)| =
(

1 + o

(
1

log n

))
dj.

Now, for each v ∈ S, we have N (v, i− 1) = {v} ∪
⋃i−1

j=1 S(v, j), so if S is good then

|N (v, i− 1)| = 1 +
i−1∑
j=1

|S(v, j)|

= 1 +
i−1∑
j=1

(
1 + o

(
1

log n

))
dj

=

(
1 + o

(
1

log n

))
di−1,

where the last equality follows from the fact that dj = o(dj+1/ log n) for all 1 ≤ j < i−1.
Thus,

|N (S, i− 1)| =

∣∣∣∣∣⋃
v∈S

N (v, i− 1)

∣∣∣∣∣ ≤
(

1 + o

(
1

log n

))
di−1s, (2)

provided S is good.
Our goal is to determine the size of the set R = R(S) := V \ N (S, i), the set of

vertices that are at distance at least i + 1 from every vertex of S. Note that at this
point, edges within N (S, i−1) as well as edges between N (S, i−2) and V \N (S, i−1)
have been exposed. However, of greater importance is the fact that the edges between
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N (S, i − 1) \ N (S, i − 2) and V \ N (S, i − 1) have not as yet been exposed. As such,
the edges of G between V \ N (S, i− 1) and N (S, i− 1) \ N (S, i− 2) are independent
from E . Moreover, the set R is exactly the set of vertices in V \ N (S, i − 1) that are
not adjacent to any vertex in N (S, i − 1) \ N (S, i − 2). Thus, |R| conditional on E is
distributed as a binomial of parameters |V \ N (S, i − 1)| and (1 − p)|N (S,i−1)\N (S,i−2)|.
In particular, its expectation is

E
[
|R|
∣∣∣ E] = |V \ N (S, i− 1)| · (1− p)|N (S,i−1)\N (S,i−2)|.

Now, if S is good, then we may apply (2) to ensure that

|V \ N (S, i− 1)| · (1− p)|N (S,i−1)\N (S,i−2)|

≥ (n− 2di−1s) ·
(

1− d

n

)(1+o(1/ logn))di−1s

∼ n · exp
(
− (1 + o (1/ log n)) dis/n

)
∼ n · exp (− log d+ 3 log log n) = n log3 n/d = r.

Thus,

E
[
|R| | E

]
· 1S is good = |V \ N (S, i− 1)| · (1− p)|N (S,i−1)\N (S,i−2)| · 1S is good

≥ (1 + o(1)) · r · 1S is good,

where 1A is the indicator function of the event A. So, since r = n log3 n/d,

E
[
|R| | E

]
· 1S is good ≥ (1 + o(1)) · n log3 n/d · 1S is good. (3)

Let us now apply the Chernoff bound to |R| conditional on E . Observe then that

Pr
(
|R| ≤ r/2

∣∣∣ E) ≤ exp
(
−Θ

(
E
[
|R|
∣∣∣ E])) . (4)

Thus, after multiplying each side of (4) by 1S is good, it holds that

Pr(|R| ≤ r/2 | E) · 1S is good ≤ exp(−Θ(E
[
|R| | E

]
)) · 1S is good

≤ exp(−Θ(n log3 n/d)) · 1S is good,

where the final line follows from (3). Moreover, whether or not S is good can be
determined by E , so

Pr(|R| ≤ r/2 | E) · 1S is good = Pr(|R| ≤ r/2 and S is good | E).

Thus, after taking expectations we get that

Pr(|R| ≤ r/2 and S is good) ≤ exp(−Θ(n log3 n/d)) · Pr(S is good). (5)
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We must now show that a.a.s. for any set S, we have that |R(S)| ≥ r/2. Now, by
applying Lemma 3.1 together with (5) and the union bound, we get that

Pr
(
∪S∈(V

s)
|R(S)| ≤ r/2

)
≤ Pr

(
∪S∈(V

s)
|R(S)| ≤ r/2 and S is good

)
+ Pr

(
∪S∈(V

s)
S is bad

)
≤
(
n

s

)
exp(−Θ(n log3 n/d)) + o(1).

Observe however that(
n

s

)
exp(−Θ(n log3 n/d)) ≤

(ne
s

)s
exp(−Θ(n log3 n/d))

≤ exp(s log n−Θ(n log3 n/d))

= exp(Θ(n log2 n/di)−Θ(n log3 n/d))

= exp(Θ(−Θ(n log3 n/d)) = o(1).

It follows that a.a.s. R(S) ≥ r/2 for all sets S ∈
(
V
s

)
. �

Lemma 5.2 ensures that a.a.s. no matter where the cops decide to place their sensors,
the equivalence class with signature (i+ 1, . . . , i+ 1) will be of size at least r/2. Thus,
in order to survive the first round, the robber may choose this equivalence class. The
next lemma allows us to bound the number of vertices which are not reachable by the
robber, and thus ensure that the robber always has a feasible follow-up move.

Lemma 5.3. Suppose that d := p · n is such that log n� d� n. Let

r :=
n log3 n

d
.

Then the following holds a.a.s. for G = (V,E) ∈ G(n, p): for every set R ⊆ V with
|R| = r/4, we have

|V \ N (R, 1)| ≤ r/4.

Proof. Fix R ∈
(

V
r/4

)
. Our goal is to estimate the size of the set U = U(R) := V \

N (R, 1), that is, the set of vertices of V \ R that are not adjacent to any vertex in R.
Clearly,

Pr(|U | ≥ r/4) ≤
(
|V \R|
r/4

)(
(1− p)|R|

)r/4
≤
(
n

r/4

)(
(1− p)r/4

)r/4
≤
(

4ne

r

)r/4

· exp

(
−d
n
· r

4
· r

4

)
≤ exp

(r
4

log n− r

16
log3 n

)
= exp

(
−Θ(r log3 n)

)
.



LOCALIZATION GAME FOR RANDOM GRAPHS 13

Hence, by the union bound, the probability that some set U(R) does not satisfy the
desired bound for its size is at most(
n

r/4

)
exp

(
−Θ(r log3 n)

)
≤ exp

(
Θ(r log n)−Θ(r log3 n)

)
= exp

(
−Θ(r log3 n)

)
= o(1).

It follows that a.a.s. |U(R)| ≤ r/4 for all sets R ∈
(

V
r/4

)
. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Since we aim for a statement that holds a.a.s. we may assume
that we have a deterministic graph G that satisfies the properties in the conclusions of
Lemmas 5.2, 5.3 and 3.4. The strategy for the robber is simple; he always stays in the
equivalence class of vertices whose Sj-signature is (i+ 1, i+ 1, . . . , i+ 1).

Let r := n log3 n/d, and s :=
(

log d− 3 log log n
)

n
di

. Assume the cops first choose a

set S1 of size s as the sensor locations. Combining Lemma 5.2 and Lemma 3.4 we see
that the equivalence class of vertices with S1-signature (i + 1, i + 1, . . . , i + 1), call it
X1 = V1 is of size at least r/2 ≥ r/4. Indeed, Lemma 5.2 provides an upper bound for
the size of all equivalence classes with at least one value at most i in their signatures.
Lemma 3.4 guarantees that the only other equivalence class is the one with signature
(i+ 1, i+ 1, . . . , i+ 1). The robber will choose this equivalence class. We can continue
iteratively: for j ∈ N, assume that the robber has chosen a set Vj of size at least r/4, and
the cops respond with sensors at the set Sj+1. Then let Xj+1 be the set of all vertices
with Sj+1-signature (i+1, i+1, . . . , i+1). By Lemma 5.2 and Lemma 3.4, |Xj+1| ≥ r/2,
and by Lemma 5.3, Vj+1 := N(Vj, 1)∩Xj+1 is of size at least r/4. Thus the robber can
always choose the equivalence class of vertices with signature (i + 1, i + 1, . . . , i + 1),
and this class will always be of size at least r/4. This shows that if the cops have s
sensors, then they will never be able to locate the robber. �

6. Upper Bound

In this section, we will prove two upper bounds. The first one will apply to random
graphs with p · n � log n, the diameter equal to i + 1, and when di = o(n). The
second bound will cover the remaining cases, provided that p · n � log3 n. In the
previous section, the robber was able to employ a greedy strategy of always staying
diametrically opposite to all the sensors. In order to prove the upper bound, we will
not give an explicit strategy for the cops, but instead we will use the probabilistic
method to show that there exists a winning strategy for the cops.

Theorem 6.1. Suppose that d := p ·n is such that log n� d� n. Let i = i(n) ∈ N be
the largest integer such that di � n. If di+1/n− 2 log n→∞, then the following holds
a.a.s. for G ∈ G(n, p):

ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n)
n

di
.

Proof. In fact, we will prove something slightly stronger. Let

ω = ω(n) := min

{
d

log n
,
n

di
, (log n)4(log log n)2

}
.
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Since d� log n and di � n, we get that ω →∞ as n→∞. Suppose thatGn = (Vn, En)
is a family of graphs which satisfies the following properties:

For each n ∈ N
(a) |Vn| = n,
(b) for every x, y ∈ Vn (x 6= y) and j ∈ N such that 1 ≤ j ≤ i we have that

|S(x, j) \ S(y, j)| = (1 +O(1/
√
ω)) · dj,

(c) the diameter of Gn is i+ 1,
(d) the maximum degree of Gn is (1 + o(1)) · d.

Assuming these conditions, there exists some N ∈ N (which depends only on the bounds
in (b) and (d), and not on the family Gn) such that for all n ≥ N , (deterministically)

ζ(Gn) ≤ k :=

(
1 +

1

ω1/3

)
(log d+ 2 log log n)

n

di
∼ (log d+ 2 log log n)

n

di
.

The result will follow from Lemma 3.1 (that shows that G(n, p) satisfies property
(b) and (d) a.a.s. with a uniform choice of error function) and Lemma 3.4 (that shows
that property (c) is satisfied a.a.s.). Indeed, Lemma 3.1 can be applied as d ≥ ω log n,
di/n ≤ 1/ω = O(1/

√
ω), and ω ≤ (log n)4(log log n)2–see the definition of ω. Lemma 3.4

can be applied as di/n− 2 log n = o(1)− 2 log n→ −∞ and, by assumption, di+1/n−
2 log n→∞.

Let us then concentrate on a deterministic family of graphs Gn = (Vn, En) satisfying
propeties (a)-(d). Recall that in Section 4 we reformulated the game so that it can be
viewed as a perfect information game, and so we may assume that the moves of the
robber are guided by a perfect player that has a fixed strategy for a given deterministic
graph Gn. In particular, the robber chooses sets (R1

j1
, R2

j2
, . . . , Ri

ji
) in response to the

cops choosing sensor locations (S1, S2, . . . , Si). Such responses are predetermined before
the game actually starts. See Section 4 for more details.

On the other hand, to get an upper bound for the localization number, the cops are
going to use a simple strategy, namely, at each round t of the game, the cops choose
a random set St ⊆ Vn of cardinality k for the sensor locations (regardless of anything
that happened during the game thus far). Clearly, this is a sub-optimal strategy but,
perhaps surprisingly, it turns out that it works very well.

Trivially, |N (R1
j1
, 1)| ≤ n. Our goal is to show that with high probability, for each

round t, we have
|N (Rt+1

jt+1
, 1)| ≤ |N (Rt

jt , 1)|/ log n.

As a result, this bound will hold a.a.s. for 1 ≤ t ≤ tF := log n/ log log n, and so
|N (Rt+1

jt+1
, 1)| ≤ n/ logt n. In particular, we will get that |N (RtF+1

jtF+1
, 1)| ≤ 1 and so the

cops win before the end of round tF + 1.
Suppose that at some round t, the robber “occupies” the set Rt

jt in response to the
cops choosing sensor locations (S1, S2, . . . , St). As mentioned above, the cops choose the
set St+1 at random. We generate this random set as follows: select k vertices to form
St+1 one by one, each time choosing a random vertex with uniform probability from
the set of vertices not selected yet. Once St+1 is fixed, the set N (Rt

jt , 1) is partitioned

into sets having the same St+1-signatures. The robber then has to pick Rt+1
jt+1

, one of
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the equivalence classes. We will show that, regardless of her choice, |N (Rt+1
jt+1

, 1)| ≤
|N (Rt

jt , 1)|/ log n will hold with high probability.
There are (

|N (Rt
jt , 1)|

2

)
≤ |N (Rt

jt , 1)|2

pairs of vertices within N (Rt
jt , 1). Let us focus on one such pair, x, y, and suppose that

the cops put a sensor on some vertex v ∈ Vn. Note that this pair is distinguished by v
if and only if v belongs to the set

D(x, y) :=
⋃
j≥0

(
S(x, j) \ S(y, j)

)
∪
(
S(y, j) \ S(x, j)

)

=
i⋃

j=0

(
S(x, j) \ S(y, j)

)
∪
(
S(y, j) \ S(x, j)

)
.

Indeed, if v ∈ S(x, j) \ S(y, j), then the distance between v and x is j, but the same is
not true for the distance between v and y. Moreover, since the diameter of Gn is i+ 1
(property (c)), in order to distinguish the pair x, y, the distance from v to at least one
of x, y has to be at most i. This justifies the equality above. By Property (b), we may
estimate the size of the distinguishing set as follows:

|D(x, y)| =
i∑

j=0

(1 +O(1/
√
ω))2dj = (1 +O(1/

√
ω))2di.

The probability that the pair cannot be distinguished by any of the sensors in St+1 is
at most(

1− |D(x, y)|/n
)k

=
(

1− (1 +O(1/
√
ω))2di/n

)k
= exp

(
− (1 +O(1/

√
ω))2dik/n

)
= exp

(
− (1 + 1/ω1/3)(1 +O(1/

√
ω))2(log d+ 2 log log n)

)
≤ exp

(
− 2(log d+ 2 log log n)

)
=

1

d2 log4 n
.

Let Xt+1 be the number of pairs in N (Rt
jt , 1) with the same signature in St+1. Since

E[Xt+1] ≤ |N (Rt
jt , 1)|2d−2 log−4 n, it follows immediately from Markov’s inequality that

Xt+1 ≤ |N (Rt
jt , 1)|2d−2 log−3 n with probability at least 1−1/ log n. If this bound holds,

then we say the round is good. If this is the case, then, regardless which equivalence
class of the partition of N (Rt

jt , 1) = Rt+1
1 ∪ Rt+1

2 ∪ . . . ∪ Rt+1
`t+1

the robber selects as her

response, the selected set Rt+1
jt+1

is of size at most 2
√
Xt+1 ≤ 2|N (Rt

jt , 1)|d−1 log−3/2 n.
Indeed, note that

Xt+1 =

`t+1∑
j=1

(
|Rt+1

j |
2

)
≥
(
|Rt+1

jt+1
|

2

)
≥ |Rt+1

jt+1
|2/4.
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Finally, since the maximum degree of Gn is asymptotic to d (property (d)), the closed
neighbourhood of Rt+1

jt+1
, |N (Rt+1

jt+1
, 1)|, has size at most

(2 + o(1))|N (Rt
jt , 1)| log−3/2 n ≤ |N (Rt

jt , 1)| log−1 n,

as required.
It remains to show that a.a.s. the first tF = log n/ log log n rounds are good. Since

each round is not good with probability at most 1/ log n, the probability that some
round is not good is at most tF/ log n = o(1), and the proof is finished. We get that
this randomized strategy for k cops works a.a.s. and so the probability it works is larger
than, say, 1/2 for n sufficiently large. It follows that the cops have a winning strategy
and so the claimed bound for ζ(Gn) holds deterministically. �

Before we move to the upper bound that covers the remaining cases, let us briefly
discuss why the bound changes. The size of the set D(x, y) defined in the proof above
that distinguishes the pair of vertices (x, y) plays an important role in the proof—the
larger the set, the smaller the upper bound we get. We noticed that

s = s(n) := |D(x, y)| =
∑
j≥0

sj,

where

sj :=
∣∣∣(S(x, j) \ S(y, j)

)
∪
(
S(y, j) \ S(x, j)

)∣∣∣ .
Suppose that d � log3 n. Let i = i(n) ∈ N be the largest integer such that di ≤

3n log n, and let c = c(n) = di/n. Observe then that di+1/n− 2 log n→∞. Moreover,
if c = o(1), then the previous bound of Theorem 6.1 applies; in particular, the diameter
is equal to i+ 1 a.a.s. For this case, si is the dominating term in the sum: s ∼ si ∼ 2di.
If c → A ∈ (0,∞), then s ∼ si ∼ 2n(1 − e−A)e−A; in particular, s increases when
A ∈ (0, log 2) reaching its maximum at (1/2+o(1))n but then it starts decreasing when
A ∈ (log 2,∞). When c→∞ but

c− (log d− log log d)→ B ∈ R,
then s is dominated by two terms: si−1 ∼ 2di−1, and

si ∼ 2ne−c ∼ 2n(log d)e−B

d
∼ 2nce−B

d
= 2di−1e−B.

It follows that s ∼ si−1 + si ∼ 2di−1(1 + e−B) ∼ 2ne−c(eB + 1). In particular, s ∼ 2ne−c

when B → −∞ and s ∼ 2di−1 when B →∞. Here is the summary of our observations:

s ∼



2di if c = o(1)

2n(1− e−A)e−A if c→ A ∈ R+

2ne−c if c→∞ and c− (log d− log log d)→ −∞
2di−1(1 + e−B) = 2ne−c(eB + 1) if c− (log d− log log d)→ B ∈ R
2di−1 if c− (log d− log log d)→∞ and c ≤ 3 log n.

We are now ready to cover the remaining cases that Theorem 6.1 did not cover, and
finalize the upper bound.
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Theorem 6.2. Suppose that d := p · n is such that log3 n � d � n. Let i = i(n) ∈ N
be the largest integer such that di ≤ 3n log n, and c = c(n) = di/n. Then, the following
holds a.a.s. for G ∈ G(n, p).

(i) if c→ A ∈ R+, then

ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n)
eA

1− e−A
.

(ii) if c→∞ and c− (log d− log log d)→ −∞, then

ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n) ec .

(iii) if c− (log d− log log d)→ B ∈ R, then

ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n)
ec

eB + 1

∼ (log d+ 2 log log n)
n

di−1(1 + e−B)
.

(iv) if c− (log d− log log d)→∞ and c ≤ 3 log n, then

ζ(G) ≤ (1 + o(1)) (log d+ 2 log log n)
n

di−1
.

Proof. The proof of this theorem is almost identical to the one of Theorem 6.1, and so
we will only highlight the differences. We will use the definitions of s and sj that we
introduced right before the statement of this theorem. We used Lemma 3.1 to estimate
s in Theorem 6.1 but this time we will also need Lemma 3.3. As the asymptotic
behaviour of s changes, we will need to adjust k accordingly. However, in each case,
k ∼ 2n(log d+ 2 log log n)/s. We will deal with each case independently.

For part (i), after setting

ω′ = ω′(n) = min

{
d

log3 n
,

log2 n

(log log n)2

}
,

we get that

s =
i∑

j=0

sj =
i−1∑
j=0

sj + si = (1 + o(1))2di−1 + (1 +O(1/
√
ω′))2n(1− e−A)e−A

= (1 +O(1/
√
ω′))2n(1− e−A)e−A,

and so the upper bound has to be adjusted to

k :=

(
1 +

1

ω′1/3

)
(log d+ 2 log log n)

eA

1− e−A
.

For part (iii), we set

ω′ = ω′(n) = min

{
d

log3 n
, log log n

}
,
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and observe that

si = (1 +O(1/
√
ω′))2n(1− e−c)e−c

= (1 +O(1/
√
ω′))2n(1 +O(1/c))e−c

= (1 +O(1/
√
ω′))2ne−c

= (1 +O(1/
√
ω′))2nd−1(log d)e−B

= (1 +O(1/
√
ω′))2nd−1c(1 +O(log log d/ log d))e−B

= (1 +O(1/
√
ω′))2cnd−1e−B

= (1 +O(1/
√
ω′))2di−1e−B.

On the other hand,

i−1∑
j=0

sj = (1 +O(1/d))si−1 = (1 +O(1/(
√
ω′ log n)))2di−1 = (1 +O(1/

√
ω′))2di−1.

It follows that s = (1 + O(1/
√
ω′))2di−1(1 + e−B), and so the upper bound has to be

adjusted to

k :=

(
1 +

1

ω′1/3

)
(log d+ 2 log log n)

n

di−1(1− e−B)
.

For part (ii), we observe that si/si−1 = e−B → ∞. One can apply a trivial bound
s ≥ si = (1+O(1/

√
ω′))2di−1e−B and adjust the definition of k to get the desired bound.

Similarly, for part (iv), we observe that si/si−1 = e−B → 0. (In fact, if c−2 log n→∞,
then a.a.s. the diameter of a random graph is i and so there is no need to consider si
anymore.) This time we use the fact that s ≥ si−1 = (1+O(1/

√
ω′))2di−1. The claimed

bound holds and the proof is finished. �

7. Concluding Remarks

We were able to determine the asymptotics of the localization number for G(n, p) as
long as the average degree d = (log n)ω for some function ω = ω(n)→∞. When d is a
bit smaller (but still satisfying d ≥ (log n)3+ε for any ε > 0), we were able to determine
the order of magnitude of ζ(G), but not the leading constant. It would be interesting
to determine the exact behaviour of ζ(G) in this range, and also could be interesting
to push this further, allowing the average degree d to approach a constant. In this very
sparse regime, G(n, p) does not have the nice expansion properties (see Section 3.3)
that we relied on in the proofs of our results, so new techniques would be necessary to
determine ζ(G).

Another interesting avenue of further research would be to study the localization
number of the random regular graph. In particular, for constant degree d, we know
that any d-regular graph G satisfies ζ(G) ≤ (d + 1)2/4 + 1 [13], however the example
that shows this bound is sharp is an infinite d-regular tree, so it seems possible that
the random d-regular graph will a.a.s. have much smaller localization number than this
upper bound.
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