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Abstract

Graph embedding is a transformation of nodes of a network into a set of vectors. A good
embedding should capture the underlying graph topology and structure, node-to-node rela-
tionship, and other relevant information about the graph, its subgraphs, and nodes them-
selves. If these objectives are achieved, an embedding is a meaningful, understandable, and
often compressed representation of a network. Unfortunately, selecting the best embedding
is a challenging task and very often requires domain experts.

In this paper, we extend the framework for evaluating graph embeddings that was re-
cently introduced in [15]. Now, the framework assigns two scores, local and global, to each
embedding that measure the quality of an evaluated embedding for tasks that require good
representation of local and, respectively, global properties of the network. The best embed-
ding, if needed, can be selected in an unsupervised way, or the framework can identify a few
embeddings that are worth further investigation. The framework is flexible, scalable, and
can deal with undirected/directed, weighted/unweighted graphs.

1 Introduction

Network Geometry is a rapidly developing approach in Network Science [12] which enriches the
system by modelling the nodes of the network as points in a geometric space. There are many
successful examples of this approach that include latent space models [20], and connections
between geometry and network clustering and community structure [34, 9]. Very often, these
geometric embeddings naturally correspond to physical space, such as when modelling wireless
networks or when networks are embedded in some geographic space [7, 14].

Another important application of geometric graphs is in graph embeddings [1]. In order to
extract useful structural information from graphs, one might want to try to embed them in a
geometric space by assigning coordinates to each node such that nearby nodes are more likely
to share an edge than those far from each other. Moreover, the embedding should also capture
global structure and topology of the associated network, identify specific roles of nodes, etc.
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Due to their spectacular successes in various applications, graph embedding methods are
becoming increasingly popular in the machine learning community. They are widely used for
tasks such as node classification, community detection, and link prediction but other applica-
tions such as anomaly detection are currently explored. As reported in [3], the ratio between
the number of papers published in top 3 conferences (ACL, WWW, KDD) closely related to
Computational Social Science (CSS) applying symbol-based representations and the number of
papers using embeddings decreased from 10 in 2011 to 1/5 in 2020. We expect this trend to
continue with embeddings eventually playing a central role in many machine learning tasks.

There are over 100 algorithms proposed in the literature for node embeddings. The tech-
niques and possible approaches to construct the desired embedding can be broadly divided into
the following three families: linear algebra algorithms, random walk based algorithms, and deep
learning methods [1, 18]. All of these algorithms have plenty of parameters to tune, the dimen-
sion of the embedding being only one of them but an important one. Moreover, most of them are
randomized algorithms which means that even for a given graph, each time we run them we get
a different embedding, possibly of different quality. As a result, it is not clear which algorithm
and which parameters one should use for a given application at hand. There is no clear winner
and, even for the same application, the decision which algorithm to use might depend on the
properties of the investigated network [5].

In the initial version of the framework, as detailed in [15], only undirected, unweighted
graphs were considered. A null model was introduced by generalizing the well-known Chung-
Lu model [4] and, based on that, a global divergence score was defined. The global score
can be computed for each embedding under consideration by comparing the number of edges
within and between communities (obtained via some stable graph clustering algorithm) with
the corresponding expected values under the null model. This global score measures how well
an embedding preserves the global structure of the graph. In order to handle huge graphs, a
landmark-based version of the framework was introduced in [16], which can be calibrated to
provide a good trade-off between performance and accuracy.

In this paper, we generalize the original framework in several ways. Firstly, we add the
capability of handling both directed and undirected graphs as well as taking edge weights into
account. Moreover, we introduce a new, local score which measures how well each embedding
preserves local properties related to the presence of edges between pairs of nodes. The global
and local scores can be combined in various ways to select good embedding(s). We illustrate the
usefulness of our framework for several applications by comparing those two scores, and we show
various ways to combine them to select embeddings. After appropriate adjustments to directed
and/or weighted graphs, landmarks can be used the same way as in the original framework to
handle huge graphs.

The paper is structured as follows. The framework is introduced in Section 2. The Geometric
Chung-Lu model that is the heart of the framework is introduced and discussed in Section 3.
Section 4 presents experiments justifying the usefulness of the framework and investigating the
quality of a scalable approximation algorithm. Finally, some conclusions and future work is
outlined in Section 5.

Finally, let us mention that standard measures such as various correlations coefficients, the
accuracy, and the AMI (Adjusted Mutual Information) score are not formally defined in this
paper. The reader is directed to any book on data science or machine learning (for example,
to [18]) for definitions and more.
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2 The Framework

In this section, we introduce the unsupervised framework for comparing graph embeddings, the
main contribution of this paper. Subsection 2.1 is devoted to high level description and intu-
ition behind the two embedding quality scores, local and global one, returned by the framework.
The algorithm that computes them is formally defined in Subsection 2.2. Looking at the two
scores to make an informed decision which embedding to chose is always recommended but
if one wants to use the framework to select the best embedding in an unsupervised manner,
then one may combine the two scores into a single value. We discuss this process in Subsec-
tion 2.3. The description of the scoring algorithm assumes that the graph is unweighted and
directed. Generalizing it to undirected or weighted graphs is straightforward and we discuss it
in Subsection 2.4.

2.1 Intuition Behind the Algorithm

The proposed framework is multi-purposed, that is, it independently evaluates embeddings using
two approaches.

The first approach looks at the network and the associated embeddings “from the distance”,
trying to see a “big picture”. It evaluates the embeddings based on their ability to capture global
properties of the network, namely, edge densities. In order to achieve it, the framework compares
edge density between and within the communities that are present (and can be easily recovered)
in the evaluated graph G with the corresponding expected edge density in the associated random
null-model. This score is designed to identify embeddings that should perform well in tasks
requiring global knowledge of the graph such as node classification or community detection. We
will call this measure a global score.

The second approach looks at the network and embeddings “under the microscope”, trying
to see if a local structure of a graph G is well reflected by the associated embedding. The local
score will be designed in such a way that it is able to evaluate if the embedding is a strong
predictor of (directed) adjacency between nodes in the network. In general, this property could
be easily tested using any strong supervised machine learning algorithm. However, our objective
is to test not only predictive power but also explainability of the embedding (sometimes referred
to as interpretability). Namely, we assume that the adjacency probability between nodes should
be monotonically linked with their distance in the embedding and their in and out degrees. This
approach has the following advantage: embeddings that score well should not only be useful for
link prediction but they should perform well in any task that requires a local knowledge of the
graph. To achieve this, we use the same random null-model as we use to calculate the global
score to estimate the probability of two nodes to be adjacent. This question is the well-known
and well-studied problem of link prediction in which one seeks to find the node pairs most likely
to be linked by an edge. When computing the local score we calculate a ranking of the node
pairs from most to least likely of being linked. A common evaluation method for such problem
is to compute the AUC (area under the ROC curve). It is important to note that the AUC
is independent of the ratio between the number of edges and the number of non-edges in the
graph. As a result, the it can be easily approximated using random sampling.

Despite the fact that the global and local scores take diametrically different points of view,
there is often correlation between the two. Good embeddings tend to capture both global
and local properties and, as a result, they score well in both approaches. On the other hand,
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poor embeddings have problems with capturing any useful properties of graphs and so their
corresponding scores are both bad. Nevertheless, they are certainly not identical and we will
show examples in which the two scores are different.

2.2 The Algorithm

In this section, and later in the paper, we use [n] to denote the set of natural numbers less than or
equal to n; that is, [n] := {1, . . . , n}. Given a directed graph G = (V,E) (in particular, given its
in- and out- degree distributions win and wout on V ) and an embedding E : V → Rk of its nodes
in k-dimensional space, we perform the steps detailed below to obtain (∆g

E(G),∆`
E(G)), a pair

of respectively global and local divergence scores for the embedding. Indeed, as already men-
tioned the framework is multi-purposed and, depending on the specific application in mind, one
might want the selected embeddings that preserve global properties (density based evaluation)
and/or pay attention to local properties (link based evaluation). As a result, we independently
compute the two corresponding divergence scores, ∆g

Ei(G) and ∆`
Ei(G), to provide the users of

the framework with a more complete picture and let them make an informative decision which
embedding to use. We typically apply this algorithm to compare several embeddings E1, . . . , Em
of the same graph, and select the best one via argmini∈[m] ∆Ei(G), where ∆Ei(G) is the combined
divergence score that takes into account the scores of the competitors and that can be tuned for
a given application at hand.

Note that our algorithm is a general framework and some parts have flexibility. We clearly
identify these below and provide a specific, default, approach that we applied in our implemen-
tation. In the description below, we assume that the graph is directed and unweighted, and we
then discuss how the framework deals with undirected and/or weighted graphs.

The code can be accessed at the GitHub repository1. The first version of the framework
(c.f. [15]) was designed for undirected, unweighted graphs, and only used the density based
evaluation. Since it was used for experiments reported in various papers, for reproducibility
purpose the code can still be accessed on GitHub2.

2.2.1 Global (Density Based) Evaluation: ∆g
E(G)

Step 1: Run some stable graph clustering algorithm on G to obtain a partition C of the set of
nodes V into ` communities C1, . . . , C`.
Note: In our implementation, we used the ensemble clustering algorithm for unweighted graphs
(ECG) which is based on the Louvain algorithm [2] and the concept of consensus clustering [30],
and is shown to have good stability. For weighted graphs, by default we use the Louvain
algorithm.
Note: In some applications, the desired partition may be provided together with a graph (for
example, when nodes contain some natural labelling and so some form of a ground-truth is
provided). The framework is flexible and allows for communities to be provided as an input
to the framework instead of using a clustering algorithm. In Appendix C we present a number
of experiments that show that the choice of clustering algorithm does not affect the score in a
significant way (provided the clustering is stable and of good quality).

1https://github.com/KrainskiL/CGE.jl
2https://github.com/ftheberge/Comparing_Graph_Embeddings
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Step 2: For each i ∈ [`], let ci be the proportion of directed edges of G with both endpoints in
Ci. Similarly, for each 1 ≤ i, j ≤ `, i 6= j, let ci,j be the proportion of directed edges of G from
some node in Ci to some node in Cj . Let

c̄ = (c1,2, c2,1, . . . , c1,`, c`,1, c2,3, c3,2, . . . , c`−1,`, c`,`−1),

ĉ = (c1, . . . , c`), (1)

and let c = c̄⊕ĉ be the concatenation of the two vectors with a total of 2
(
`
2

)
+` = `2 entries which

together sum to one. This graph vector c characterizes the partition C from the perspective of
the graph G.
Note: The embedding E does not affect the vectors c̄ and ĉ (and so also c). They are calculated
purely based on G and the partition C.

Step 3: For a given parameter α ∈ R+ and the same partition of nodes C, we consider the
Geometric Chung-Lu Directed Graph model G(win,wout, E , α) presented in Section 3 that can
be viewed in this context as the associated null-model. For each 1 ≤ i, j ≤ `, i 6= j, we compute
bi,j , the expected proportion of directed edges of G(win,wout, E , α) from some node in Ci to
some node in Cj . Similarly, for each i ∈ [`], let bi be the expected proportion of directed edges
within Ci. That gives us another two vectors:

b̄E(α) = (b1,2, b2,1, . . . , b1,`, b`,1, b2,3, b3,2, . . . , b`−1,`, b`,`−1),

b̂E(α) = (b1, . . . , b`), (2)

and let bE(α) = b̄E(α)⊕ b̂E(α) be the concatenation of the two vectors with a total of `2 entries
which together sum to one. This model vector bE(α) characterizes the partition C from the
perspective of the embedding E .
Note: The structure of graph G does not affect the vectors b̄E(α) and b̂E(α); only its degree
distribution win, wout, and embedding E are used.
Note: We used the Geometric Chung-Lu Directed Graph model but the framework is flexible.
If, for any reason (perhaps there are some restrictions for the maximum edge length; such
restrictions are often present in, for example, wireless networks) it makes more sense to use
some other model of random geometric graphs, it can be easily implemented here. If the model
is too complicated and computing the expected number of edges between two parts is challenging,
then it can be approximated easily via simulations.

Step 4: Compute the distance ∆α between the two vectors, c and bE(α), in order to measure
how well the model G(win,wout, E , α) fits the graph G.
Note: We used the well-known and widely used Jensen–Shannon divergence (JSD) to measure
the dissimilarity between two probability distributions, that is, ∆α = JSD(c,bE(α)). The JSD
was originally proposed in [24] and can be viewed as a smoothed version of the Kullback-Leibler
divergence.
Note: Alternatively, one may independently treat internal and external edges to compensate the
fact that there are 2

(
`
2

)
= Θ(`2) coefficients related to external densities whereas only ` ones

related to internal ones. Then, for example, after appropriate normalization of the vectors a
simple average of the two corresponding distances can be used, that is,

∆α =
1

2
·
(
JSD(c̄, b̄E(α)) + JSD(ĉ, b̂E(α))

)
.
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Depending on the application at hand, other weighted averages can be used if more weight needs
to be put on internal or external edges.

Step 5: Select α̂ = argminα ∆α, and define the global (density based) score for embedding E on
G as ∆g

E(G) = ∆α̂.
Note: The parameter α is used to define a distance in the embedding space, as we detail in
Section 3. In our implementation we simply checked values of α from a dense grid, starting
from α = 0 and finishing the search if no improvement is found for 5 consecutive values of α.
Clearly, there are potentially faster ways to find an optimum value of α but, since our algorithm
is fast performing grid search, this approach was chosen as both easy to implement and robust
to potential local optima.

2.2.2 Local (Link Based) Evaluation: ∆`
E(G)

Step 6: We let

S+ = {(u, v) ∈ V × V, u 6= v;uv ∈ E},
S− = {(u, v) ∈ V × V, u 6= v;uv /∈ E}.

For a given parameter α ∈ R+, we again consider the Geometric Chung-Lu Directed Graph
model G(win,wout, E , α) detailed in Section 3. Let p(u, v) be the probability of a directed edge
u→ v to be present under this model.

The ROC (Receiver Operating Characteristic) is a curve showing the performance of a clas-
sification model at all classification thresholds (for the edge probabilities in the present context).
The AUC (area under the ROC curve) provides an aggregate measure of performance across all
possible classification thresholds which can be interpreted as the probability that a randomly
chosen positive sample (here, a pair of nodes connected by an edge) is ranked higher that a
negative sample (a pair of nodes without an edge). Thus, the AUC can be expressed as follows:

pα =

∑
(s,t)∈S+

∑
(u,v)∈S− 1{p(s, t) > p(u, v)}
|S+| · |S−|

.

As a result, the AUC measures how much the model is capable of distinguishing between the two
classes, S+ and S−. In other words, it may be viewed as the probability that p(s, t) > p(u, v),
provided that a directed edge s → t and a directed non-edge u 6→ v are selected uniformly at
random from S+ and, respectively, S−.
Note: In practice, there is no need to investigate all |S+| · |S−| pairs of nodes. Instead, we can
randomly sample (with replacement) k pairs (si, ti) ∈ S+ and k pairs (ui, vi) ∈ S− and then
compute

p̂α =

∑k
i=1 1{p(si, ti) > p(ui, vi)}

k
to approximate pα. The value of k is adjusted so that the approximate 95% confidence interval,
namely, [

p̂α − 1.96
√
p̂α(1− p̂α)/k, p̂α + 1.96

√
p̂α(1− p̂α)/k

]
is shorter that some precision level. In our implementation the default value of k is set to
k = 10,000 so that the length of the interval is guaranteed to be at most 0.02.

Step 7: Select α̂ = argminα(1− p̂α), and define the local (link based) score for embedding E on
G as ∆`

E(G) = 1− p̂α̂.
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2.3 Combined Divergence Scores for Evaluating Many Embeddings

As already mentioned a few times, the framework is multi-purposed and, depending on the spe-
cific application in mind, one might want the selected embeddings that preserve global properties
(global, density based evaluation) or pay more attention to local properties (local, link based
evaluation). That is the reason, we independently compute the two corresponding divergence
scores, ∆g

Ei(G) and ∆`
Ei(G).

In order to compare several embeddings for the same graph G, we repeat steps 3–7 above,
each time computing the two scores for a given embedding. Let us stress again that steps 1–2
are done only once; that is, we use the same partition of the graph into ` communities for all
embeddings. In order to select (in an unsupervised way) the best embedding to be used, one
may simply compute the combined divergence score, a linear combination of the two scores:

∆Ei(G) = q ·
(∆g
Ei(G) + ε)

minj∈[m](∆
g
Ej (G) + ε)

+ (1− q) ·
(∆`
Ei(G) + ε)

minj∈[m](∆
`
Ej (G) + ε)

(3)

for a fixed parameter q ∈ [0, 1], carefully selected for a given application at hand, and ε = 0.01,
introduced to prevent rare but possible numerical issues when one of the scores is close to zero.
Note that ∆Ei(G) ≥ 1 and ∆Ei(G) = 1 if and only if a given embedding Ei does not have a better
competitor in any of the two evaluation criteria. Of course, the lower the score, the better the
embedding is. The winner Ej can easily be identified by taking j = argmini ∆Ei(G).

Let us briefly justify the choice of function (3). First note that both ∆g
Ei(G) and ∆`

Ei(G)
are in [0, 1]. However, since they might have different orders of magnitude (and typically they
do), the corresponding scores need to be normalized. In decision theory, one typically simply
tunes q to properly take this into account. While we allow for the more advanced user to
change the value of q, we believe that it is preferable to provide a reasonable scaling when the
default value of q, namely, q = 1/2 is used. When choosing a normalization by minimum we
were guided by the fact that it is not uncommon that most of the embeddings score poorly in
both dimensions; if this is so, then they affect for example the average score but they ideally
should not influence the selection process. On the other hand, the minimum clearly should not
be affected by bad embeddings. In particular, the normalization by the minimum allows us to
distinguish the situation in which two embeddings have similar but large scores (indicating that
both embeddings are bad) from the situation in which two embeddings have similar but small
scores (one of the two corresponding embeddings can still be significantly better).

Finally, let us mention that while having a single score assigned to each embedding is useful,
it is always better to look at the composition of the scores,(

(∆g
Ei(G) + ε)

minj∈[m](∆
g
Ej (G) + ε)

,
(∆`
Ei(G) + ε)

minj∈[m](∆
`
Ej (G) + ε)

)
,

to make a more informative decision. See Subsection 4.3 for an example of such a selection
process.

2.4 Weighted and Undirected Graphs

For simplicity, we defined the framework for unweighted but directed graphs. Extending the
density based evaluation to weighted graphs can be easily and naturally done by considering the
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sum of weights of the edges instead of the number of them; for example, ci is the proportion of
the total weight concentrated on the directed edges with both endpoints in Ci. For the link based
evaluation, we need to adjust the definition of the AUC so that it is equal to the probability
that p(s, t) > p(u, v) times the weight of a directed edge s → t (scaled appropriately such that
the average scaled weight of all edges investigated is equal to one), provided that a directed edge
s→ t is selected from S+ (the set of all edges) and a directed non-edge u 6→ v is selected from
S− (the set of non-edges), both of them uniformly at random. As before, such quantity may be
easily and efficiently approximated by sampling.

On the other hand, clearly undirected graphs can be viewed as directed ones by replacing each
undirected edge uv by two directed edges uv and vu. Hence, one can transform an undirected
graph G to its directed counterpart and run the framework on it. However, the framework is
tuned for a faster running-time when undirected graphs are used but, of course, the divergence
score remains unaffected.

3 Geometric Chung-Lu Model

The heart of the framework is the associated random graph null-model that is used to design both
the global and the local score. The Geometric Chung-Lu model, a generalization of the original
Chung-Lu model [4], was introduced in [15] to benchmark embeddings of undirected graphs
(at that time only from the global perspective). Now, we need to generalize it even further to
include directed and weighted graphs. We do it in Subsection 3.1. A scalable implementation
in discussed in Subsection 3.2.

3.1 Geometric Directed Model

In the Geometric Chung-Lu Directed Graph Model we are not only given the expected degree
distribution of a directed graph G

win = (win1 , . . . , w
in
n ) = (deginG (v1), . . . ,deginG (vn))

wout = (wout1 , . . . , woutn ) = (degoutG (v1), . . . ,degoutG (vn))

but also an embedding E of nodes of G in some k-dimensional space, E : V → Rk. In particular,
for each pair of nodes, vi, vj , we know the distance between them:

di,j = dist(E(vi), E(vj)).

It is desired that the probability that nodes vi and vj are adjacent to be a function of di,j , that
is, to be proportional to g(di,j) for some function g. The function g should be a decreasing
function as long edges should occur less frequently than short ones. There are many natural
choices such as g(d) = d−β for some β ∈ [0,∞) or g(d) = exp(−γd) for some γ ∈ [0,∞). We use
the following, normalized function g : [0,∞)→ [0, 1]: for a fixed α ∈ [0,∞), let

g(d) :=

(
1− d− dmin

dmax − dmin

)α
=

(
dmax − d

dmax − dmin

)α
,

where

dmin = min{dist(E(v), E(w)) : v, w ∈ V, v 6= w}
dmax = max{dist(E(v), E(w)) : v, w ∈ V }
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are the minimum, and respectively the maximum, distance between nodes in embedding E .
One convenient and desired property of this function is that it is invariant with respect to an
affine transformation of the distance measure. Clearly, g(dmin) = 1 and g(dmax) = 0; in the
computations, we can use clipping to force g(dmin) < 1 and/or g(dmax) > 0 if required. Let
us also note that if α = 0 (that is, g(d) = 1 for any d ∈ [dmin, dmax) with the convention that
g(dmax) = 00 = 1), then the pairwise distances are neglected. As a result, in particular, for
undirected graphs we recover the original Chung-Lu model. Moreover, the larger parameter α
is, the larger the aversion to long edges is. Since this family of functions (for various values of
the parameter α) captures a wide spectrum of behaviours, it should be enough to concentrate
on this choice but one can easily experiment with other functions. So, for now we may assume
that the only parameter of the model is α ∈ [0,∞).

The Geometric Chung-Lu Directed Graph model is the random graph G(win,wout, E , α) on
the set of nodes V = {v1, . . . , vn} in which each pair of nodes vi, vj , independently of other pairs,
forms a directed edge from vi to vj with probability pi,j , where

pi,j = xouti xinj g(di,j)

for some carefully tuned weights xini , x
out
i ∈ R+. The weights are selected such that the expected

in-degree and out-degree of vi is wini and, respectively, wouti ; that is, for all i ∈ [n]

wouti =
∑

j∈[n],j 6=i

pi,j = xouti

∑
j∈[n],j 6=i

xinj g(di,j),

wini =
∑

j∈[n],j 6=i

pj,i = xini
∑

j∈[n],j 6=i

xoutj g(di,j).

Additionally, we set pi,i = 0 for i ∈ [n] which corresponds to the fact that the model does not
allow loops.

In Appendix A we prove that there exists the unique selection of weights, unless G has an
independent set of size n− 1, that is, G is a star with one node being part of every edge. (Since
each connected component of G can be embedded independently, we always assume that G is
connected.) This very mild condition is satisfied in practice. Let us mention that in Appendix A
it is assumed that g(di,j) > 0 for all pairs i, j. In our case, g(di,j) = 0 for a pair of nodes that are
at the maximum distance. It causes no problems in practice but, as mentioned earlier, one can
easily scale the outcome of function g(·) to move away from zero without affecting the divergence
score in any non-negligible way.

Finally, note that it is not clear how to find weights explicitly but they can be easily and
efficiently approximated numerically to any desired precision. In Appendix A, we prove that,
if the solution exists, which is easy to check, then the set of right hand sides of the equations,
considered as a function from R2n to R2n, is a local diffeomorphism everywhere in its domain.
As a result, standard gradient root-finding algorithms should be quite effective in finding the
desired weights. In our implementation we use even simpler numerical approximation procedure.
Note: The specification of the Geometric Chung-Lu Directed Graph Model implies that the
probability of having a directed edge from one node to another one increases with their out-
and, respectively, in- degrees and decreases with the distance between them. This is a crucial
feature that ensures that the local divergence score is explainable. For instance, potentially one
could imagine embeddings where nodes that are far apart are more likely to be connected by an
edge. However, under our framework, such embeddings would get a low local score.
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3.2 Approximated but Scalable Implementation

The main bottleneck of the algorithm is the process of tuning 2n weights xouti , xini ∈ R+ (i ∈ [n])
in the Geometric Chung-Lu Graph (both in directed as well as in undirected counterpart). This
part requires Θ(n2) steps and so it is not feasible for large graphs. Fortunately, one may modify
the algorithm slightly to obtain a scalable approximation algorithm that can be efficiently run
on large networks. It was done for the framework for undirected graphs in [16] to obtain the
running time of O(n lnn) which is practical.

The main idea behind our approximation algorithm is quite simple. The goal is to group
together nodes from the same part of the partition C obtained in Step 1 of the algorithm that are
close to each other in the embedded space. Once such refinement of partition C is generated, one
may simply replace each group by the corresponding auxiliary node (that we call a landmark)
that is placed in the appropriately weighted center of mass of the group it is associated with. The
reader is directed to [16] for more details. Minor adjustments are only needed for the density
based evaluation to accommodate directed graphs and approximating the link based score is
easy. Both issues are discussed in Appendix B.

The framework, by default, uses the approximation algorithm for networks with 10,000 nodes
or more. In Subsection 4.4 we show how well the approximation algorithm works in practice.

4 Experiments

In this section we detail some experiments we performed showing that the framework works as
desired. In Subsection 4.1 we provide descriptions of both synthetic and real-world networks that
we used for the experiments. A few embedding algorithms for directed graphs are introduced in
Subsection 4.2. We used two of them for our experiments. In Subsection 4.3 we present results of
an experiment with a small “toy example” to illustrate how one can use the framework to select
the best embedding amongst several ones. As explained earlier, in order to have a scalable
framework that can be used to evaluate huge graphs, we introduced landmarks to provide
approximated scores. We show in Subsection 4.4 that this approximation works well. Finally,
we ran experiments showing the usefulness of the framework. In Subsection 4.5 we show that the
global score may be used to predict how good the evaluated embedding is for algorithms that
require good global properties such as node classification or community detection algorithms.
Similarly, the correlation between the local score and the ability of embeddings to capture local
properties (for example with link prediction algorithm) is investigated in Subsection 4.6. A few
more experiments showing the differences between the two scores are presented in Subsection 4.7.

4.1 Synthetic and Real-World Graphs

In order to test the framework, we performed various experiments on both synthetic and real-
world networks.

4.1.1 Stochastic Block Model

To model networks with simple community structure, we used the classical Stochastic Block
Model (SBM) [13] (see [8] for an overview of various generalizations). The model takes the
following parameters as its input: the number of nodes n, a partition of nodes into ` communities,
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and an `× ` matrix P of edge probabilities. Two nodes, u from ith community and v from jth
community, are adjacent with probability Pij and the events associated with different pairs of
nodes are independent. The model can be used to generate undirected graphs in which case
matrix P should be symmetric but one can also use the model to generate directed graphs.

For our experiments, we generated directed SBM graphs with n = 10,000 nodes and 30
communities of similar size. Nodes from two different communities are adjacent with probability
Pij = 0.001 = 10/n and nodes from the same community are adjacent with probability Pii =
0.025 = 250/n. As a result, about 54% of the edges ended up between communities.

4.1.2 LFR Model

The LFR (Lancichinetti, Fortunato, Radicchi) model [22, 21] generates networks with commu-
nities and at the same time it allows for the heterogeneity in the distributions of both node
degrees and of community sizes. As a result, it became a standard and extensively used method
for generating artificial networks. The original model [22] generates undirected graphs but it was
soon after generalized to directed and weighted graphs [21]. The model has various parameters:
the number of nodes n, the mixing parameter µ that controls the fraction of edges that are
between communities, power law exponent γ for the degree distribution, power law exponent β
for the distribution of community sizes, average degree d, and the maximum degree ∆.

For our experiments, we generated two families of directed graphs that we called LFR and
noisy-LFR. To generate LFR graphs we used n = 10,000, µ = 0.2, γ = 3, β = 2, d = 100,
and ∆ = 500 whereas for noisy-LFR we used n = 10,000, µ = 0.5, γ = 2, β = 1, d = 100, and
∆ = 500.

4.1.3 ABCD Model

In order to generate undirected graphs, we used an “LFR-like” random graph model, the Ar-
tificial Benchmark for Community Detection (ABCD graph) [17] that was recently introduced
and implemented3, including a fast implementation that uses multiple threads (ABCDe)4. Undi-
rected variant of LFR and ABCD produce graphs with comparable properties but ABCD/ABCDe
is faster than LFR and can be easily tuned to allow the user to make a smooth transition be-
tween the two extremes: pure (independent) communities and random graph with no community
structure.

For our experiments, we generated ABCD graphs on n = 10,000 nodes, ξ = 0.2 (the
counterpart of µ ≈ 0.194 in LFR), γ = 3, β = 2, d = 8.3, and ∆ = 50. The number of edges
generated was m = 41,536 and the number of communities was ` = 64.

4.1.4 EU Email Communication Network

We also used the real-world network that was generated using email data from a large European
research institution [28]. The network is made available through Stanford Network Analysis
Project [23]5. Emails are anonymized and there is an edge between u and v if person u sent person
v at least one email. The dataset does not contain incoming messages from or outgoing messages

3https://github.com/bkamins/ABCDGraphGenerator.jl/
4https://github.com/tolcz/ABCDeGraphGenerator.jl/
5https://snap.stanford.edu/data/email-Eu-core.html
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to the rest of the world. More importantly, it contains “ground-truth” community memberships
of the nodes indicating which of 42 departments at the research institute individuals belong to.
As a result, this dataset is suitable for experiments aiming to detect communities but we ignore
this external knowledge in our experiments.

The associated EMAIL directed graph consists of n = 1005 nodes, m = 25,571 edges, and
` = 42 communities.

4.1.5 College Football Network

In order to see the framework “in action”, in Section 4.3 we performed an illustrative experiment
with the well-known College Football real-world network with known community structures.
This graph represents the schedule of United States football games between Division IA colleges
during the regular season in Fall 2000 [10]. The associated FOOTBALL graph consists of 115
teams (nodes) and 613 games (edges). The teams are divided into conferences containing 8–12
teams each. In general, games are more frequent between members of the same conference than
between members of different conferences, with teams playing an average of about seven intra-
conference games and four inter-conference games in the 2000 season. There are a few exceptions
to this rule, as detailed in [25]: one of the conferences is really a group of independent teams,
one conference is really broken into two groups, and 3 other teams play mainly against teams
from other conferences. We refer to those as outlying nodes.

4.2 Node Embeddings

As mentioned in the introduction, there are over 100+ node embedding algorithms for undirected
graphs. There are also some algorithms explicitly designed for directed graphs, or that can
handle both types of graphs, but their number is much smaller. We selected two of them for our
experiments, Node2Vec and HOPE, but there are more to choose from. Embeddings were
produced for 16 different dimensions between 2 and 32 (with a step of 2).

4.2.1 Node2Vec

Node2Vec6 [11] is based on random walks performed on the graph, an approach that was
successfully used in Natural Language Processing. In this embedding algorithm, biased random
walks are defined via two main parameters. The return parameter (p) controls the likelihood of
immediately revisiting a node in the random walk. Setting it to a high value ensures that we are
less likely to sample an already-visited node in the following two steps. The in-out parameter
(q) allows the search to differentiate between inward and outward nodes so we can smoothly
interpolate between breadth-first-search (BFS) and depth-first search (DFS) exploration. We
tested three variants of parameters p and q: (p = 1/9, q = 9), (p = 1, q = 1), and (p = 9, q = 1/9).

4.2.2 HOPE

HOPE (High-Order Proximity preserved Embedding) [27] is based on the notion of asymmetric
transitivity; for example, the existence of several short directed paths from node u to node v
makes the existence of a directed edge from u to v more plausible. The algorithm learns node

6https://github.com/eliorc/node2vec
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embeddings as two concatenated vectors representing the source and the target roles. HOPE
can also be used for undirected graphs, in which case the source and target roles are identical, so
only one is retained. Four different high order proximity measures can be used within the same
framework. For our experiments we used three of them: Katz, Adamic-Adar, and personalized
PageRank (denoted in our experiments as katz, aa and, respectively, ppr).

4.2.3 A Few Other Ones

Similarly to HOPE, APP (Asymmetric Proximity Preserving) [32] is also using asymmetric
transitivity and is based on directed random walks and preserved rooted page rank proximity
between nodes. It learns node embedding as a concatenation of two vectors representing the
node’s source and target roles. NERD (Node Embeddings Respecting Directionality) [19] also
learns 2 embeddings for each node as a source or a target, using alternating random walks with
starting nodes used as a source or a target; this approach can be interpreted as optimizing
with respect to first order proximity for 3 graphs: source-target (directed edges), source-source
(pointing to common nodes) and target-target (pointed to by common nodes). Other methods
for directed graphs try to learn node embeddings as well as some directional vector field. For ex-
ample, ANSE (Asymmetric Node Similarity Embedding) [6] uses skip-gram-like random walks,
namely, forward and reverse random walks, to limit dead-end issues. It also has an option to
embed on a hypersphere. In another method that also try to learn a directional vector field [29],
a similarity kernel on some learned manifold is defined from two components: (i) a symmetric
component, which depends only on distance, and (ii) an asymmetric one, which depends also on
the directional vector field. The algorithm is based on asymptotic results for (directed graph)
Laplacians embedding, and the directional vector space can be decoupled.

4.3 Illustration of the Framework

In order to illustrate the application of the framework, we ran the two embedding algorithms
(HOPE and Node2Vec) in different dimensions and sets of parameters on the FOOTBALL
graph. For each combination of the parameters, an embedding was produced and assessed with
our framework. Local and global scores were normalized, as explained in Subsection 2.3, and are
presented in Figure 1. In particular, good embeddings are concentrated around the auxiliary
point (1, 1) that corresponds to the embedding that is the best from both local and global
perspective. (Such embedding might or might not exist.)

We recommend to select the best embedding by careful investigation of both scores but,
alternatively, one can ask the framework to decide which embedding to use in an unsupervised
fashion. In order to do it, one may combine the global and the local scores, as explained in
Equation (3), to make a decision based on a single combined divergence score. This way we
identified the best and the worst embeddings. To visualize the selected embeddings in high
dimensions we needed to perform dimension reduction that seeks to produce a low dimensional
representation of high dimensional data that preserves relevant structure. For that purpose
we used the Uniform Manifold Approximation and Projection (UMAP)7 [26], a novel manifold
learning technique for dimension reduction. UMAP is constructed from a theoretical framework
based in Riemannian geometry and algebraic topology; it provides a practical scalable algorithm
that applies to real world datasets. The results are presented in Figure 2. The embedding

7https://github.com/lmcinnes/umap
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Figure 1: Normalized global and local scores for FOOTBALL graph.

presented on the left hand side shows the winner that seems to not only separate nicely the
communities but also puts pairs of communities far from each other if there are few edges between
them; as a result, both scores are good. The embedding in the middle separates communities
but the nodes within communities are clumped together resulting in many edges that are too
short. There are also a lot of edges that are too long. As a result, the local score for this
embedding is bad. Finally, the embedding on the right has a clear problem with distinguishing
communities and some of them are put close to each other resulting in a bad global score.

Figure 2: 2-dimensional projections of embeddings of FOOTBALL graph according to the
framework: the best (left), the worst with respect to the local score (middle), and the worst
with respect to the global score (right).

4.4 Approximating the Two Scores

Let us start with an experiment testing whether our scalable implementation provides a good
approximation of both measures, the density based (global) score ∆g

E(G), and the link based
(local) score ∆`

E(G). We tested SBM, LFR, and noisy-LFR graphs with the two available
embeddings (using the parameters and selected dimensions as described above). The number of
landmarks was set to be 5 times larger than the number of communities in each graph, namely,
SBM graph used 30 ·5 = 150 landmarks, LFR had 75 ·5 = 375 landmarks, and for noisy-LFR
the number of landmarks was set to 54 · 5 = 270.

Figures 3 and 4 present the results of experiments for LFR graph and both embedding algo-
rithms. (Experiments for other graphs can be found in Appendix C.) The first figure shows how
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Figure 3: Approximated vs. exact global scores for LFR graphs and HOPE (left) and
Node2Vec (right) embeddings.
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Figure 4: Approximated vs. exact local scores for LFR graphs and HOPE (left) and Node2Vec
(right) embeddings.

well the global score is approximated by a scalable algorithm and the second figure concentrates
on the local score. Recall that graphs on 10,000 nodes are, by default, the smallest graphs for
which the framework uses scalable algorithm. The default setting in the framework is to use
at least 4 landmarks per community and at least 4

√
n of them overall, so 400 landmarks for

graphs of size 10,000 and many more for larger graphs. In our experiment, we see good results
with even fewer landmarks. This was done in purpose to test approximation precision in a
challenging corner case. As expected, global properties reflected by the global score are easier
to approximate than local properties investigated by the local score that are more sensitive to
small perturbations. Nevertheless, both scores are approximated to a satisfactory degree. The
Pearson correlation coefficients for both HOPE and Node2Vec are close to 1 for the global
score and roughly 0.99 for the local score. For other standard correlation measures see Tables 1
and 2.

Graph-Embedding Pearson Spearman Kendall-Tau
SBM10K-HOPE 0.98 0.98 0.94
SBM10K-N2V 1.0 1.0 0.97
LFR10K-HOPE 1.0 1.0 0.99
LFR10K-N2V 1.0 1.0 0.99
nLFR10K-HOPE 1.0 1.0 1.0
nLFR10K-N2V 1.0 0.96 0.87

Table 1: Correlation between approximated and (exact) global scores.

15



Graph-Embedding Pearson Spearman Kendall-Tau
SBM10K-HOPE 0.99 0.99 0.92
SBM10K-N2V 0.99 0.97 0.87
LFR10K-HOPE 0.99 0.99 0.93
LFR10K-N2V 0.99 0.98 0.90
nLFR10K-HOPE 1.0 1.0 0.98
nLFR10K-N2V 1.0 0.99 0.94

Table 2: Correlation between approximated and (exact) local scores.

Finally, we checked if the number of landmarks used by the framework as a default value
(namely, 4

√
n) is a good choice. We see in Figures 5 and 6 that the approximation quickly stabi-

lizes and so there is no need for a large number of landmarks to get the desired approximation.
As commented earlier, the local score is more challenging to approximate (see Figure 6 again)
and the Pearson correlation between the approximated and the exact local scores does not seem
to tend to 1 quickly but it is very close to 1, providing a satisfactory precision.
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Figure 5: Pearson correlation between approximated and exact global scores for SMB, LFR,
noisy-LFR graphs and HOPE (left) and Node2Vec (right) embeddings.
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Figure 6: Pearson correlation between approximated and exact local scores for SMB, LFR,
noisy-LFR graphs and HOPE (left) and Node2Vec (right) embeddings.

4.5 Node Classification and Community Detection vs. the Global Score

It is expected and desired that the global score measures how useful a given embedding is for any
application that requires a good understanding of a global structure of the network. In our next
experiments, we tested two such applications: node classification and community detection.
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Node classification task aims to train a model to learn to which class a node belongs to.
Typically, the goal is to label each node with a categorical class (binary classification or multi-
class classification), or to predict a continuous number (regression). The process is supervised
in nature, that is, the model is trained using a subset of nodes that have ground-truth labels.

For each graph (SBM, LFR, noisy-LFR, and EMAIL), each of the two embeddings
(HOPE and Node2Vec) was used as an input for community detection task based on XG-
Boost model. XGBoost8 is an open-source software library that provides a regularizing gradient
boosting framework, the algorithm of choice for many winning teams of machine learning com-
petitions. Since we aim to have a fair benchmark evaluating if an embedding extracts any
useful global properties of the network instead of optimizing the quality of the outcome, we
used vanilla XGBoost with default hyper-parameters. For each embedding we conducted 10
independent repetitions of the standard training process. First, nodes with the corresponding
embedding was randomly partitioned into a training and a test set (25% of all observations).
Then, XGBoost model was trained on the training set together with the corresponding labels
indicated the ground-truth community the nodes belong to. Finally, the model was used to
predict the communities on the test set and the accuracy was reported.

Similarly, in order to investigate how much of the community structure got preserved by the
evaluated embeddings, each embedding was independently clustered 20 times using the classic k-
means algorithm, a well-known method that aims to partition n vectors into k clusters in which
each vector belongs to the cluster with the nearest mean (center of mass). As before, since we
aim for a fair and easy benchmark rather than a carefully tuned specific approach, we simply
used the vanilla k-means algorithm and the value of k set to the true number of communities.
The adjusted mutual information (AMI) score was then calculated based on the two partitions
of the set of nodes: the clusters assignment returned by the k-means algorithm and the ground-
truth communities. This approach is similar to the one used in the recent paper [31] in which
the authors investigate if embeddings can be used to detect communities.

The results of both experiments are presented on Figure 7 (the accuracy score for node
classification task is presented on the left side whereas the AMI score for community detection
task can be found on the right side). The embeddings that are identified by the framework
as good (left-bottom corner, close to the auxiliary point (1, 1) representing the hypothetical
perfect score) tend to perform well in both applications (large balls representing large values of
the accuracy/AMI). On the other hand, poorly scored embeddings (top-right corner) perform
poorly (small balls). The same conclusion is obtained after more rigorous investigation of the
correlation coefficients between the accuracy/AMI and the global/local scores (see Table 3 and,
respectively, Table 4). Let us note that the rank-based correlations (Spearman and Kendall-
Tau) report a smaller correlation for Node2Vec embeddings as in our experiment we generated
many embeddings that were comparable and of very good quality. As a result, their rankings
with respect to the global/local scores and the accuracy/AMI might not be exactly the same
but, in any case, the framework was able to distinguish good embeddings from bad ones. More
experiments can be found in Appendix C. In particular, since the accuracies and the AMI scores
are not always easy to compare on Figure 7, we present them directly as functions of local and
global scores.

8https://github.com/dmlc/xgboost
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Figure 7: Global and local scores with accuracy (left) and AMI (right) overlay for SBM, LFR,
noisy-LFR, EMAIL graphs and HOPE, Node2Vec embeddings.

4.6 Link Prediction vs. the Local Score

As discussed in the previous section, the global score returned by the framework captures how
well the embedding preserves global properties of embedded networks. Similarly, it is expected
and desired that the local score evaluates the power of embeddings to encapsulate local proper-
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Graph-Embedding
Pearson Spearman Kendall-Tau
Global Local Global Local Global Local

SBM10K-HOPE -0.97 -0.99 -1.0 -1.0 -0.97 -0.96

SBM10K-N2V -0.9 -0.82 -0.57 -0.57 -0.42 -0.42

LFR10K-HOPE -0.96 -0.93 -1.0 -0.97 -0.97 -0.89

LFR10K-N2V -0.8 -0.71 -0.25 -0.23 -0.16 -0.14

NLFR10K-HOPE -0.98 -0.98 -1.0 -1.0 -0.96 -0.96

NLFR10K-N2V -0.91 -0.85 -0.14 -0.1 -0.08 -0.04

EMAIL-HOPE -0.97 -0.68 -0.9 -0.72 -0.77 -0.61

EMAIL-N2V -0.86 -0.87 -0.69 -0.69 -0.54 -0.54

Table 3: Correlation coefficients between the accuracy scores in node classification task and
global/local scores (averaged over all parameters).

Graph-Embedding
Pearson Spearman Kendall-Tau
Global Local Global Local Global Local

SBM10K-HOPE -0.98 -0.99 -1.0 -1.0 -0.97 -0.95

SBM10K-N2V -0.93 -0.85 -0.91 -0.91 -0.8 -0.81

LFR10K-HOPE -0.98 -0.96 -1.0 -0.97 -0.96 -0.89

LFR10K-N2V -0.82 -0.73 -0.76 -0.75 -0.6 -0.59

NLFR10K-HOPE -0.99 -0.99 -0.99 -0.99 -0.95 -0.95

NLFR10K-N2V -0.92 -0.86 -0.4 -0.39 -0.29 -0.29

EMAIL-HOPE -0.86 -0.46 -0.62 -0.48 -0.54 -0.42

EMAIL-N2V -0.86 -0.87 -0.77 -0.80 -0.61 -0.65

Table 4: Correlation coefficients between the AMI scores in community detection task and
global/local scores (averaged over all parameters).

ties. In the next experiment, we tested one local algorithm, namely, link prediction algorithm.

Indeed, most the the methods for directed graph embeddings are validated via link predic-
tion [33], where one deletes a subset of edges (typically randomly selected) and then measures
how well they can be recovered. A commonly used scoring method is the AUC obtained from
ranking of node pairs from most to least likely to have an edge between them. A variation of
that approach is known as node recommendation, where one removes some outgoing edges for a
subset of nodes and try to recover the most likely missing neighbours. Another score that may
potentially be used is to compare precision and recall amongst the top-k candidate node pairs
for a specific k. This is useful, for example, if one has a limited “budget” to investigate if a
given pair of nodes are actually linked by an edge or not, so one can only test a small number
of pairs.

In our experiments, for each of the four graphs we tested (SBM, LFR, noisy-LFR, and
EMAIL), given graph G, we randomly selected 5% of its edges, and removed them to form a
graph G′. Then we took another random sample of non-adjacent pairs of nodes in G, set E′.
Both classes had the same number of pairs of nodes so that the test set created in such a way
was balanced. Our goal was to train a model that uses one of the embeddings of graph G′ to
detect which pairs of nodes in E∪E′ are adjacent in G. We repeated this process independently
5 times (with 5 different seed values) and reported the average AUC scores.

For each of the two algorithms (HOPE and Node2Vec), each combination of their pa-
rameters and 16 dimensions we tested, we produced an embedding of graph G′. For evaluation
purpose, we computed both the global and the local divergence scores for the produced em-
bedding. In order to create a training set for the classifier, we considered all pairs of adjacent
nodes in G′ (the positive class) as well as a random subset of pairs of non-adjacent nodes (the
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negative class) that is of the same size as the number of edges in G′ (as for the test sets, to
keep both classes balanced). Finally, we concatenated embeddings of pairs of nodes representing
edges/non-edges into feature vectors to be used for prediction. Such training set was used to
train XGBoost model with default hyper-parameter values. As already mentioned, in order to
measure the quality of this simple model, we computed the AUC score that provides a measure
of separability, as it tells us how capable the model is of distinguishing between the two classes,
edges E and non-edges E′, both coming from the original graph G. (Note that some pairs of
nodes in the test set might overlap with pairs of nodes in the training set. Even more, some
positive pair in the test set might be negative in the training one.)

Graph-Embedding Pearson Spearman Kendall-Tau
Global Local Global Local Global Local

SBM10K-HOPE -0.92 -0.95 -0.99 -0.96 -0.91 -0.83

SBM10K-N2V -0.81 -0.73 -0.3 -0.31 -0.21 -0.22

LFR10K-HOPE -0.94 -0.91 -0.99 -0.95 -0.94 -0.82

LFR10K-N2V -0.92 -0.9 -0.91 -0.87 -0.82 -0.74

NLFR10K-HOPE -0.96 -0.87 -0.97 -0.9 -0.89 -0.73

NLFR10K-N2V -0.91 -0.95 -0.96 -0.9 -0.86 -0.74

EMAIL-HOPE -0.9 -0.49 -0.75 -0.43 -0.58 -0.35

EMAIL-N2V -0.8 -0.86 -0.65 -0.76 -0.48 -0.57

Table 5: Correlation coefficients between the AUC scores in link prediction task and global/local
scores (averaged over all parameters).

The results of this experiment are presented on Figure 8. The embeddings that score well
by the framework (left-bottom corner of the plots, near to the auxiliary point (1, 1)) turn out
to perform well in predicting links (large balls representing large values of AUC) and the oppo-
site is true for the embeddings that are identified as poor ones (right-top corner of the plots).
More rigorous approach can be found in Table 5 where the correlation coefficients between the
AUC and the global/local scores are reported. As before, since there are many Node2Vec em-
beddings that are almost indistinguishable, ranking-based correlation coefficients report weaker
correlation. The framework has no chance to predict the exact ranking of the embeddings based
on their global/local scores but it is clearly able to identify good embeddings and separate them
from bad ones. As usual, more experiments can be found in Appendix C, including counterpart
of Figure 8 presenting the AUC score as functions of local and global scores.

4.7 More Challenging Situations

Based on experiments in Subsection 4.5, we see that both global (as expected) and local (far from
being obvious) scores correlate well with the quality of both node classification and community
detection. Similarly, experiments in Subsection 4.6 imply that both scores correlate with the
quality of link prediction algorithm (this time, we expect this from the local score but not
necessarily from the global one). We see such behaviour as the two scores often correlate with
one another. Indeed, for a relatively easy graph to deal with, a good quality embedding should
be able to preserve both local and global properties of the network. On the other hand, poor
quality embeddings (for example, when the dimension is too small or the parameters are not
properly selected) typically fail to produce anything useful, from any of the two perspectives.
Our synthetic models and EMAIL graph seem to confirm this. However, it is expected and
plausible that large, real-world graphs are more challenging to deal with. For such graphs, it
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Figure 8: Global and local scores with AUC overlay for SBM, LFR, noisy-LFR, EMAIL
graphs and HOPE, Node2Vec embeddings.

might be difficult if not impossible to find an embedding that scores well from both perspectives.
In such situations, one needs to make a decision which embedding to use based on a specific
application at hand (using either global or local properties). In order to illustrate such situations,
we experimented with an undirected ABCD graph and 32 dimensional Node2Vec embedding
(with parameters set to p = q = 1).

First, we rewired a specified fraction p of edges within each community. The rationale behind
it is that such operation should destroy local properties of the embedding (many edges within
communities are now long with respect to the associated embedding and some pairs of close
nodes are not adjacent) but global properties should remain unchanged.

We independently generated 5 graphs with the following rewiring fractions: p = 0.2, p = 0.4,
p = 0.6, p = 0.8, and p = 1.0; note that p = 0 corresponds to the original ABCD graph. As
expected, the global score and the quality of both node classification and community detection
algorithms remain the same. More importantly, the local score increases (the quality of the
embedding gets worse) and the quality of link prediction algorithm (AUC) gets worse—see
Figure 9 (left).

In order to test the opposite scenario, we kept the original ABCD graph but slightly modified
the original embedding. Each community was independently rescaled by a factor of q > 1.
Formally, all points in the embedding that are associated with nodes that belong to a given
community increased their distance from the center of mass of this community while keeping
the direction from it. The idea behind this approach is that, on average, the distance between
nodes from different communities (most pairs of nodes) remain the same, and the distance
between nodes within one community is only slightly increased (small fraction of pairs of nodes
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Figure 9: Comparison of local/global scores (and associated quality measures for various tasks)
for rewired graphs (left) and rescaled embeddings (right).

anyway). As a result, local properties should be preserved almost as well as in the original
embedding. On the other hand, inflated communities tend to overlap more in the embedded
space than before and, as a result, the global quality measure should decrease.

We independently generated 5 embeddings with the following re-scaling factors: q = 1.1,
q = 1.2, q = 1.3, q = 1.4, and q = 1.5; note that q = 1 corresponds to the original embedding.
As expected, the local score and the quality of link prediction algorithm remain the same. More
importantly, the global score increases (the quality of the embedding gets worse) and the quality
of both node classification (accuracy) and community detection (AMI) get worse—see Figure 9
(right).

The conclusion can be summarized as follows. Global score might not be able to detect
problems with a given embedding if these problems are local by nature. For example, despite
the fact that an embedding properly captures between-community distances, it may inaccurately
reflect relationships between nodes within communities. On the other hand, local score might
fail to capture the fact that in the embedding, communities (treated globally as a cloud of points)
are not appropriately separated. For this reason, although in many cases global and local scores
are consistent, they are in general not equivalent and it is useful to calculate them both and
investigate carefully.

5 Conclusions

In this paper, we introduced a framework that assigns two scores (global and local) for embed-
dings of a given graph. The two scores measure the ability of analyzed embeddings to preserve
global and, respectively, local properties of the embedded graph. The code is written in Julia
(high-level, high-performance, dynamic programming language) and easily available on-line. The
framework is easy to use (knowledge of Julia is not required to use it; default parameters should
be suitable for most cases) and flexible (more advanced users may easily play with parameters).

If the embeddings need to be used for unsupervised tasks, the framework is able to identify
the best embedding in an unsupervised way via combined divergence score. However, the user
might still want to consider a few embeddings that score well from both perspectives and, if
possible, select an embedding generated by a simple/explainable algorithm. In particular, there
is usually no need to use very high dimensional embeddings if the improvement is marginal. On
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the other hand, if the embedding is to be used for supervised tasks, the best course of action
might be to consider a number of top-scoring embeddings and select the winner by performing
a standard supervised selection for a given application at hand.

Let us also discuss some potential future directions. In [5], some throughout analysis of
the original framework for undirected graphs (and using only the global score) was performed.
A natural next step is to test in more detail the current version of the framework (using the
two scores) on both real-world and synthetic networks. More importantly, it would be valuable
to show the predictive power and usefulness of the framework for a large data-set and some
real-world important application. The industry partners we collaborate with provide a positive
feedback so far but having a publishable results of experiments performed on publicly available
data-sets will be of high value.

When analyzing the correlation between the link prediction algorithm and the local score
(Subsection 4.6), we independently performed a few more experiments investigating the reason
why embeddings are able to predict missing links. In particular, we created two additional
training sets. The first training set was the same as the original one but with 5 additional
columns: in- and out- degrees for both nodes as well as the distance between them. The second
training set consisted with only these 5 additional columns. The quality of models obtained by
using both such training sets turned out to be comparable to the original one we used for our
tests. As expected, the richer set typically gave slightly better quality results but not always.
This implies that the embeddings encoded the most important information about the graph via
the distances between nodes (or XGBoost was not able to extract more from other sources). This
suggests that the Geometric Chung-Lu (GCL) model should be able to accurately model the
shape of the embedded networks as they require exactly the 5 columns as the parameters/input.
We plan to use the GCL model, along with graph-based communities and other properties such
as transitive closure, to build a better quality link prediction algorithm. Another potential
and important application is to detect overlapping communities or to detect anomalies. In both
cases, the GCL model equipped with a good embedding would be the heart of such an algorithm.

6 Acknowledgement

Experiments were conducted using SOSCIP9 Cloud infrastructure. Launched in 2012, the
SOSCIP consortium is a collaboration between Ontario’s research-intensive post-secondary
institutions and small- and medium-sized enterprises (SMEs) across the province. Working
together with the partners, SOSCIP is driving the uptake of AI and data science solutions and
enabling the development of a knowledge-based and innovative economy in Ontario by supporting
technical skill development and delivering high-quality outcomes. SOSCIP supports industrial-
academic collaborative research projects through partnership-building services and access to
leading-edge advanced computing platforms, fuelling innovation across every sector of Ontario’s
economy.

For our experiments, we used Compute G4-x8 (8 vCPUs, 32 GB RAM) machines and Ubuntu
18.04 operating system. Computation used for experimentation and calibration of the scripts
took approximately 1500 vCPU-hours. For reproducibility purpose, the scripts and results
presented in this paper can be found on GitHub repository10.

9https://www.soscip.org/
10https://github.com/KrainskiL/UnsupervisedFrameworkForComparingGraphEmbeddings

23

https://www.soscip.org/
https://github.com/KrainskiL/UnsupervisedFrameworkForComparingGraphEmbeddings


References

[1] Aggarwal, M. and Murty, M.N., 2021. Machine Learning in Social Networks: Embedding
Nodes, Edges, Communities, and Graphs. Springer Nature.

[2] Blondel, V.D., Guillaume, J.L., Lambiotte, R. and Lefebvre, E., 2008. Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory and experiment,
2008(10), p.P10008.

[3] Chen, H., Yang, C., Zhang, X., Liu, Z., Sun, M. and Jin, J., 2021. From Symbols to
Embeddings: A Tale of Two Representations in Computational Social Science. Journal of
Social Computing, 2(2), pp.103-156.

[4] Chung, F., Chung, F.R., Graham, F.C., Lu, L. and Chung, K.F., 2006. Complex graphs
and networks (No. 107). American Mathematical Soc.
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[18] Kamiński, B., Pra lat, P. and Théberge, F., 2022, Mining Complex Networks. Chapman and
Hall/CRC.

[19] Khosla, M., Leonhardt, J., Nejdl, W. and Anand, A., 2019, September. Node representa-
tion learning for directed graphs. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (pp. 395-411). Springer, Cham.

[20] Krioukov, D., 2016. Clustering means geometry in networks. In APS March Meeting Ab-
stracts (Vol. 2016, pp. Y12-005).

[21] Lancichinetti, A. and Fortunato, S., 2009. Benchmarks for testing community detection
algorithms on directed and weighted graphs with overlapping communities. Physical Review
E, 80(1), p.016118.

[22] Lancichinetti, A., Fortunato, S. and Radicchi, F., 2008. Benchmark graphs for testing
community detection algorithms. Physical review E, 78(4), p.046110.
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A Appendix—Geometric Chung-Lu Directed Graph Model is
Well-defined

Let us state the problem in a slightly more general setting. Fix n = 2m, where m is some
natural number. Suppose that for each pair i, j ∈ [n] we have aij = aji ∈ R+ if i ≤ m, j > m,
j 6= i+m, and we have aij = 0 otherwise, that is, if i, j ∈ [m] or i, j ∈ [2m] \ [m] or j = i+m.
The aij elements taken together form a matrix A, which is symmetric. Finally, for each i ∈ [n]
we have bi ∈ R+ ∪ {0}, and

m∑
i=1

bi =
n∑

i=m+1

bi > 0. (4)

In our application, m = |V | is the number of nodes in a non-empty directed graph G =
(V,E), and elements of vector b = (bi)i∈[n] correspond to the degree distribution of the graph:
for i ∈ [m], bi is the out-degree of vi (that is, bi = wouti ), and for i ∈ [2m]\ [m], bi is the in-degree
of vi−m (that is, bi = wini−m). The assumption that

∑m
i=1 bi =

∑n
i=m+1 bi > 0 is satisfied as the

total in-degree is equal to the total out-degree, and the graph is not empty. Positive elements
of matrix A satisfy ai,j+m = aj+m,i = g(di,j) ∈ (0, 1] for i, j ∈ [m], i 6= j, and correspond to
the distances between embeddings of the corresponding nodes vi and vj . The case i = j is
excluded as indices i and i+m correspond to the same node in the original directed graph and
so ai,i+m = ai+m,i = g(di,i) = 0. Finally, since isolated nodes may be ignored, we may assume
that wouti + wini > 0, that is,

bi + bi+m > 0 for all i ∈ [m]. (5)

Our goal is to investigate if there is a solution, xi ∈ R+ ∪ {0} for i ∈ [n], of the following
system of equations:

bi = xi

n∑
j=1

aijxj for all i ∈ [n]. (6)

If there is one, then is this solution unique? The solution to (6) will yield the solution to our
problem: for i ∈ [m], xouti = xi and xini = xi+m.

The m = 2 case is a degenerate case that exhibits a different behaviour but it is easy to inves-
tigate. In this case, by assumption (4), b1 = b4 = x1x4a12 and b2 = b3 = x2x3a21. There are infi-
nite number of solutions, each of them being of the form (x1, x2, x3, x4) = (s, t, b2/(a12t), b1/(a12s))
for some t, s ∈ R+. Having said that, in our application, all of these solutions yield the same
random graph with the following distribution: p12 = x1x4a12 = b1 = wout1 and p21 = x2x3a21 =
b2 = wout2 .

Suppose now that m ≥ 3. We will show that the desired solution of (6) exists if

n∑
i=m+1

bi > bj + bj+m for j ∈ [m], (7)

and
m∑
i=1

bi > bj + bj−m for j ∈ [2m] \ [m] (8)
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(also recall that by assumption (4),
∑m

i=1 bi =
∑n

i=m+1 bi > 0, and by assumption (5), bi+bi+m >
0 for all i ∈ [m]). In other words, the condition is that the in-degree of any node vi is smaller
than the sum of out-degrees of nodes other than vi, and the out-degree of vi is smaller than
the sum of in-degrees of nodes other than vi. This is a very mild condition that holds in our
application. Indeed, properties (7)–(8) with non-strict inequalities are satisfied for all directed
graphs G, and strict inequalities are satisfied unless G has an independent set of size n−1, that
is, G is a star with one node being part of every edge.

These degenerate cases can be ignored in further analysis, as such configurations of b allow
to reconstruct the graph deterministically. The implementation of the framework identifies such
cases and returns the corresponding 0/1 values of pij . For degenerate cases, the corresponding
system of equations (6) might or might not have a solution depending on the parameters. For
example when m = 3 and b = (2, 0, 0, 0, 1, 1) the system has infinitely many solutions of the
form (t, 0, 0, s, 1/(a51t), 1/(a61t))) for any t, s > 0, all of them yielding the same deterministic
graph: p12 = p13 = 1, p21 = p23 = p31 = p32 = 0. However, for m = 3, b = (2, 1, 1, 2, 1, 1)
and non zero elements aij equal to 1 the system has no solutions. We do not try to classify
cases when the system has the solution in the proof as they lead to deterministic graphs and we
handle them in the implementation of the framework separately anyway.

Let us make the following observations that will be useful later on. Provided that proper-
ties (7)–(8) are satisfied, the following properties hold:

• xi = 0 if and only if bi = 0. Indeed, if xi = 0, then trivially bi = 0. Suppose then that
bi = 0 and by symmetry we may assume that i ∈ [m]. By properties (7)–(8), bj > 0 for
at least one value of j ∈ [2m] \ [m] and j 6= i+m. It follows that xj > 0, aij > 0, and so
bi ≥ xiaijxj . As a result, xi has to be equal to zero in order for bi to be zero.

• we may assume that x1 = 1. Indeed, one can reorder the nodes so that b1 > 0. Then,
one can multiply xi for all i ∈ [m] by any positive constant α ∈ R+ and divide xi for all
i ∈ [2m] \ [m] by α and the solution will not change.

The last observation means that we need to introduce the constraint x1 = 1 if we ever hope
to prove the uniqueness of the solution. If we do not do that, then there will be an infinite
number of solutions but all of them will yield the same edge distribution for the random graph
as the particular solution we are searching for.

We will start with proving the uniqueness. After that, we will show that (7)–(8) are sufficient
conditions.

A.1 Uniqueness

Let us assume that m ≥ 3. For a contradiction, suppose that we have two different solutions:
x = (xi)i∈[n] (xi ∈ R+, i ∈ [n]) with x1 = 1 and y = (yi)i∈[n] (yi ∈ R+, i ∈ [n]) with y1 = 1. It
follows that for all i ∈ [n] we have

bi = fi(x) = fi(y), where fi(x) = xi

n∑
j=1

aijxj .
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Let us analyze what happens at point z = tx + (1 − t)y for some t ∈ [0, 1] (that is, zi =
txi + (1− t)yi, i ∈ [n]). For each i ∈ [n] we get

fi(z) = (txi + (1− t)yi)
n∑
j=1

aij(txj + (1− t)yj)

=

n∑
j=1

aij
(
t2xixj + t(1− t)(xiyj + xjyi) + (1− t)2yiyj

)
= fi(x)t2 +

t(1− t)
xiyi

(fi(y)x2i + fi(x)y2i ) + fi(y)(1− t)2

= bi

(
t2 +

t(1− t)
xiyi

(x2i + y2i ) + (1− t)2
)

= bi

(
1− 2t(1− t) +

t(1− t)
xiyi

(x2i + y2i )

)
= bi

(
1 +

t(1− t)
xiyi

(x2i − 2xiyi + y2i )

)
= bi

(
1 + t(1− t)(xi − yi)2

xiyi

)
=: gi(t).

Note that g′i(1/2) = 0 for all i (as either xi− yi vanishes and so gi(t) is a constant function or it
does not vanish but then gi(t) is a parabola with a maximum at t = 1/2). For convenience, let
v = (x + y)/2 and s = (x− y)/2 (that is, vi = (xi + yi)/2 and si = (xi − yi)/2 for all i ∈ [n]).
It follows that

dgi
dh

(
v + hs | h = 0

)
= 0.

On the other hand,

gi(v + hs) =
n∑
j=1

aij(vi + hsi)(vj + hsj)

and so
dgi
dh

(v + hs) =

n∑
j=1

aij(si(vj + hsj) + sj(vi + hsi)).

Combining the two observations, we get that

0 =
dgi
dh

(
v + hs | h = 0

)
=

n∑
j=1

aij(sivj + sjvi). (9)

Now, for i ≥ 1, let ui = si/vi, provided that vi 6= 0. Recall that in particular s1 =
(x1 − y1)/2 = 0 and v1 = (x1 + y1)/2 = 1, as we assumed that x1 = y1 = 1, and so u1 = 0.
Additionally, if vi = 0 (that is, the corresponding node has in-degree 0 or out-degree 0), then
we may take ui = 0, as it will cancel out anyway. Denote the set of indices i when vi = 0 by Z.
Substituting it to (9) we get:

n∑
j=1

aijvivj(ui + uj) = 0.
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Notice that we can rescale all ui’s by the same multiplicative factor so that u` = 1 for some
` ∈ [n] and for all other indices |ui| ≤ 1 (potentially with negative rescaling factor). For index `
we have:

n∑
j=1

a`jv`vj(u` + uj) =
n∑
j=1

a`jv`vj(1 + uj) = 0.

But this possible only if ` ∈ [m], as otherwise the left hand side of the above equation is at least
its first term, namely, a`1v`v1(1 + u1) = a`1v` > 0. If ` ∈ [m], then we get

n∑
j=m+1

a`jv`vj(u` + uj) =
n∑

j=m+1

a`jv`vj(1 + uj) = 0

as a`j = 0 for j ∈ [m]. But this means that uj = −1 for j ∈ [n] \ ([m] ∪ Z).
Let us concentrate on any index `′ ∈ [n] \ ([m] ∪ Z) (note that this set is non-empty). For

this index, we have the following condition:

m∑
j=1

a`′jv`′vj(u`′ + uj) =
m∑
j=1

a`′jv`′vj(−1 + uj) = 0.

However, since |uj | ≤ 1 for all j ∈ [m], all entries of the sum are non-negative and so they
would all have to be equal to 0 for the sum to be 0. This is not possible as u1 = 0 and so
a`′1v`′v1(−1 + u1) = −a`′1v`′ < 0. The desired contradiction shows that the solution is unique.

A.2 Sufficiency

We will continue assuming that m ≥ 3. For a contradiction, suppose that there exists a vector
b = (bi)i∈[n], that satisfies (7)–(8), and

∑m
i=1 bi =

∑n
i=m+1 bi > 0 (assumption (4)) but for

which there is no solution to the system (6). Without loss of generality, since one can reorder
nodes and relabel in- and out-degrees if needed, we may assume that b1 is a largest value in
vector b. We will call such vectors infeasible. On the other hand, vectors that yield a solution
x = (xi)i∈[n], with xi ≥ 0 for all i, will be called feasible. As proved earlier, if the solution exists,
then it must be unique (remember that we assume that x1 = 1). We will introduce more vectors
b (both feasible and infeasible) below but we assume that matrix A is fixed.

Let us now construct another vector b′ = (b′i)i∈[n] for which there exists a solution to (6)
(that is, b′ is feasible) but also b′1 = b1 is a largest element in b′. Indeed, it can be done easily
by, for example, taking x′1 = 1, x′i = s for i ∈ [m]\{1} (s is a fixed but sufficiently small positive
constant for the inequalities below to hold), and x′i = b1/(

∑
j∈[n] a1j) = b1/(

∑
j∈[n]\[m] a1j) for

i ∈ [n] \ [m]. Vector b′ is now defined by the system (6). We immediately get that

b′1 = x′1
∑
j∈[n]

a1jx
′
j =

∑
j∈[n]\[m]

a1jx
′
j = b1.

Also, s can be made arbitrarily small so that b′i < b1 for i ∈ [m] \ {1}. Finally, for i ∈ [n] \ [m]
we have

b′i = x′i
∑
j∈[m]

aijx
′
j = x′iai1 + x′i

m∑
j=2

aijs = b1
ai1∑

j∈[n] a1j
+ x′i

m∑
j=2

aijs.
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Since m ≥ 3, the first term is smaller than b1. Hence, since s can be made arbitrarily small, we
can ensure that b′i < b1. The desired properties hold.

We will consider points along the line segment between b′ and b, namely,

b(t) = (bi(t))i∈[n] = (1− t)b′ + tb, for t ∈ [0, 1].

Since b′ is feasible and we already proved that (7)–(8) are necessary conditions, we know that
b′ satisfies (7)–(8). But, as a result, not only b and b′ satisfy these properties but also b(t)
satisfies them for any t ∈ [0, 1]. In particular, it follows that there exists a universal constant
ε > 0 such that for any t ∈ [0, 1] we have

(1− ε)
n∑

i=m+2

bi(t) > b1(t). (10)

Fix t ∈ [0, 1) and suppose that b(t) is feasible. Let x(t) = (xi(t))i∈[n] be the (unique) solution
for b(t). From the analysis performed in the proof of uniqueness of the solution it follows that
our transformation is a local diffeomorphism, that is, the differential of the transformation is
bijective for the admissible values of xi and bi. (Note that this also covers the case t = 0. This
case is on the boundary of the considered range of t but it is an interior point of the domain
of the mapping.) In the following considerations, we assume that point x1 and b1 are removed
from the analysis (as they are fixed) and also that the indices from the set Z (that is, as defined
above, the set of indices i for which vi = 0) are excluded as they are fixed. As a result we may
move to a manifold of a dimension n′ < n by dropping the dimensions that are fixed. In the
considered manifold, any open set in Rn′ containing (part of) x(t) is mapped to an open set in
Rn′ containing (part of) b(t). In particular, there exists δ > 0 such that b(s) is feasible for any
t−δ ≤ s ≤ t+δ. Combining this observation with the fact that b′ = b(0) is feasible, b = b(1) is
not feasible we get that there exists T ∈ (0, 1] such that b(T ) is not feasible but b(t) is feasible
for any t ∈ [0, T ). Indeed, if no such T exists (that is, there is no minimal infeasible t ∈ (0, 1]),
then there would exist a decreasing sequence of infeasible values of t that converges to a feasible
t. This is not possible as in some neighbourhood of a feasible point t, points are also feasible.

Consider any sequence (ti)i∈N of real numbers ti ∈ [0, T ) such that ti → T as i → ∞; for
example, ti = T (1− 1/i). All limits from now on will be for i→∞. Recall that b(ti) is feasible
and so x(ti) is well-defined.

Before we move forward, let us show that there exists a sufficiently large but universal
constant ∆ such that for all t ∈ [0, T ) and all i (except possibly i = m+ 1), we have xi(t) ≤ ∆.
Indeed, by our assumption on the solution, x1(t) = 1 ≤ ∆. By the equation (6) for b1(t) = b1,
we have for i ∈ [n] \ [m+ 1]

xi(t) =
1

a1i
· x1(t)a1ixi(t) <

1

a1i
· x1(t)

n∑
j=1

a1jxj(t) =
b1(t)

a1i
=

b1
a1i
≤ ∆.

But this immediately means that xi(t) are also bounded for i ∈ [m] by considering any equation
for bi(t) ≤ b1(t) = b1 where i ∈ [n] \ ([m] ∪ Z). This implies that only xm+1(t) can potentially
be unbounded.

If xm+1(t) is bounded for all t ∈ [0, T ), then by the Bolzano-Weierstrass theorem the se-
quence ti has a subsequence (x(tsi))i∈[n] such that ‖x(tsi)‖ → c for some c ∈ R. However, if this
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is the case then, by continuity of our transformation, the limiting value b(T ) would be feasible,
giving us the desired contradiction. It remains to consider the case when xm+1(tsi) → ∞ for
some subsequence si. However, this implies that xj(tsi) → 0 for all j ∈ [m] \ {1}. This means
that in the limit we have xi(T ) = bi(T )/ai1 for i ∈ [n] \ [m + 1]. Substituting it into the first
equation we get

b1(T ) = x1(T )
n∑

i=m+2

a1ixi(T ) = 1 ·
n∑

i=m+2

a1i · bi(T )/ai1 =
n∑

i=m+2

bi(T ).

This contradicts (10), which concludes the proof.

As a final note, let us observe that the proof implies that if b1 gets close to
∑n

i=m+2 bi (from
below) and bm+1 > 0, then indeed xm+1 will grow to be a large number. This consideration
has a numerical impact as it might affect the convergence of numeric algorithms finding xi due
to floating point computation precision issues. The proof also shows that the case when the
conditions (7)–(8) are not satisfied (that is, we would have an equality instead of inequality)
will have a solution if bm+1 = 0 and otherwise will not have a solution (this corresponds to the
two examples we have given earlier).

A.3 Model with Loops

In order to accommodate loops that are present in the graph, we relax the assumption that
ai,i+m = 0 for i ∈ [m] and now assume that ai,i+m ≥ 0 for i ∈ [m]. However, using the notation
from the previous section we will additionally assume that a1,m+1 > 0, that is, for the largest
element of b, we assume that the corresponding node has a loop. This auxiliary assumption is
satisfied in our application as, in fact, all landmarks have loops.

The m = 2 case continues to be a degenerate case that has to be delt with independently.
Consider the following set of equations:

b1
b2
b3
b4

 =


a13 a14 0 0
0 0 a23 a24
a13 0 a23 0
0 a14 0 a24



x1x3
x1x4
x2x3
x2x4

 .
As before, we assume that x1 = 1 and, since b1 + b2 = b3 + b4 the system reduces to:

b1b2
b3

 =

a13 a14 0 0
0 0 a23 a24
a13 0 a23 0



x3
x4
x2x3
x2x4

 =

a14 0 a13 0
0 a24 0 a23
0 0 a13 a23



x4
x2x4
x3
x2x3

 .
Equivalently, since b1 is the largest element of b, for some non-negative pi and positive q = a23:p1p2

p3

 =

1 0 0 −q
0 1 0 q
0 0 1 q



x4
x2x4
x3
x2x3

 .
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If x2 = 0, we get a unique positive solution for x3 and x4 and it exists only if p2 = 0 (which
happens for b2 = 0). On the other hand, if x2 > 0 (recall that, by assumption, xi ≥ 0), then
in the above system of equations one can reduce x3 and x4 leaving only x2 as a variable in the
quadratic equation:

Q(x2) = q(p1 + p3)x
2
2 + (−p2q + p3q + p1)x2 − p2 = 0.

Since x2 > 0, we get that p2 = x2(x4 + qx3) > 0. (Note that if x3 = x4 = 0, then b3 = b4 = 0
and, as a consequence, b1 = b2 = 0 which gives as a contradiction as b1 > 0.) As the term
(p1 + p3)q is positive and −p2 is negative we get that there exists exactly one positive solution
x2 of this equation. Indeed, since Q(0) = −p2 < 0 and the parabola Q(x2) has the coefficient
(p1 + p3)q > 0 associated with the quadratic term, there is exactly one positive solution x2 > 0.
Now, assuming that x2 > 0, from the third equation we see that x3 > 0 and from the first
equation we get that x4 > 0.

In summary, for m = 2, subject to the constraint x1 = 1, the solution of the system always
exists and is unique. If m ≥ 3 we also show that the solution exists always. The part of the
proof of uniqueness remains unchanged. The part for sufficiency also remains unchanged until
we reach the case where we consider xm+1(tsi)→∞. However as a1,m+1 > 0 this is not possible
since x1 = 1 and b1 is fixed. So we are left with the cases that ‖x(tsi)‖ → c for some c ∈ R which
means that b(t) always converges to a feasible solution as t → 1 (even if in conditions (7)–(8)
we have an equality).

B Appendix—Scalable Implementation with Landmarks

Recall that in Step 1 of the algorithm, we obtain a partition C of the set of nodes V into `
communities: C1, . . . , C`. The partition is then carefully refined by repeatedly splitting some
parts of it with the goal to reach precisely n′ = 4

√
n parts; n′ might be adjusted by more

experienced user, if needed. (The number of communities is typically relatively small. However,
if ` ≥ 4

√
n, then of course there is no need to do the refinement. However, in such rare cases

each part in the initial partition is forced to be split into s parts anyway. We fixed s = 4 as a
default value.) The heuristic algorithm is quite involved as it needs to find a good compromise
between the quality of the approximation and the speed. The reader is directed to [16] for more
details on how the refinement is obtained.

Once the partition is refined, each part Ci is replaced by its landmark ui. The procedure
depends on whether we deal with undirected or directed graphs. Let us start with undirected
graphs. The position of landmark ui in the embedded space Rk is assigned as follows:

E(ui) =

∑
j∈Ci

wj E(vj)∑
j∈Ci

wj
. (11)

In order to measure a variation within a cluster, we also compute the weighted sum of squared
errors:

ei =
∑
j∈Ci

wj dist
(
E(ui), E(vj)

)2
. (12)

The expected degree of landmark ui (that we denote as w′i in order to distinguish it from wi,
the expected degree of node wi) is the sum of the expected degrees of the associated nodes in
the original model, that is, w′i :=

∑
j∈Ci

wj .
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The approximated algorithm uses the auxiliary Geometric Chung-Lu (GCL) model on the
set of landmarks V = {u1, . . . , un′} in which each pair of landmarks ui, uj , independently of
other pairs, forms an edge with probability p′i,j , where

p′i,j = x′ix
′
jg(di,j)

for some carefully tuned weights x′i ∈ R+. Additionally, for i ∈ [n′], the probability of creating
a self loop around landmark ui is equal to

p′i,i = (x′i)
2g(di,i), where di,i =

√
ei∑

j∈Ci
wj
.

Note that the “distance” di,i from landmark ui to itself is an approximation of the unobserved
weighted average distance da,b over all pairs of nodes a and b associated with ui. The weights
are selected such that the expected degree of landmark ui is w′i; that is, for all i ∈ [n′]

w′i =
∑
j∈[n′]

p′i,j = x′i
∑
j∈[n′]

x′jg(di,j).

The relationship between the weights in the auxiliary model and the original one is expected to
be as follows: for any node vk ∈ Ci associated with landmark ui we have

xk ≈ x′i
wk∑
j∈Ci

wj
.

The adjustment for directed graph is straightforward. We use the same algorithm and
positions for landmarks, that is, we still use (11) and (12) but with wj being the total degree of
landmark uj , namely, wj = winj + woutj . The probability for an ordered pair of landmarks ui, uj
to form a directed edge in the auxiliary Geometric Chung-Lu Directed Graph Model is equal to

p′i,j = x′
out
i x′

in
j g(di,j)

and

p′i,i = x′
out
i x′

in
i g(di,i), where di,i =

√
ei∑

j∈Ci
wj
.

As before, any node vk ∈ Ci associated with landmark ui inherits a fraction of its weights, that
is, we expect that the original weights are well approximated by the following:

xoutk ≈ x′outi

woutk∑
j∈Ci

woutj

and xink ≈ x′
in
i

wink∑
j∈Ci

winj
.
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C Additional Experiments

In this section, we present a few more plots that are complementing the ones shown in the main
paper.

• Figure 10: The global and local scores returned by the framework are presented for the
four graphs considered earlier (SMB, LFR, noisy-LFR, and EMAIL). The results for 3
variants of Node2Vec and HOPE (shown in different colours) and a range of dimensions
(size of the dots) are presented. One can see some correlation between the two scores, but
not a perfect one. Higher dimension generally yields better results but with Node2Vec
we observe that several choices of parameters give similarly good results. This can be
important for some applications: for example, selecting a lower dimensional embedding
(requiring less storage space) that still gives good results.

• Figure 11: With the three synthetic graphs (SMB, LFR, and noisy-LFR) and the
same algorithms as above, we compare the exact global score with the landmark-based
approximate score when using the number of landmarks as described in Subsection 4.4.
The correlation coefficients are also reported. All plots show that the landmark-based
approximations are very good.

• Figure 12: The counterpart of Figure 11 but for the local score. Again, we see good results
for the approximations with just a little more variability than what was observed for the
global score.

• Figure 13: This plot shows the relationship between the accuracy for the task of node
classification and the framework’s global score. The experiments are performed for the
same graphs and embeddings as in Figure 10.

• Figure 14: This plot shows the relationship between the AMI for the task of community
detection and the framework’s global score. Again, the experiments are performed for the
same graphs and embeddings as in Figure 10.

• Figure 15: This plot shows the relationship between the AUC for the task of link prediction
and the framework’s local score. One more time, the experiments are performed for the
same graphs and embeddings as in Figure 10.

• Figure 16: This plot shows the relationship between the accuracy for the task of node
classification and the framework’s normalized global score and normalized local score.
The plots convey the same information as in Figure 7, but with breakdown by the local
and global score to highlight the relationship between the scores and accuracy.

• Figure 17: This plot shows the relationship between the AMI for the task of community
detection and the framework’s normalized global score and normalized local score. The
plots convey the same information as in Figure 7, but with breakdown by the local and
global score to highlight the relationship between the scores and AMI.

• Figure 18: This plot shows the relationship between the AUC for the task of link prediction
and the framework’s normalized global score and normalized local score. The plots convey
the same information as in Figure 8, but with breakdown by the local and global score to
highlight the relationship between the scores and AUC.
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• Figure 19: This plot is a counterpart of Figure 1 which presents normalized global and
local scores for FOOTBALL graph. The only difference is that instead of using the
default ECG clustering algorithm, Infomap, Louvain, and Spinglass algorithms are used.
The results are indistinguishable showing that the choice of clustering algorithm is not
important.

• Figure 20: This plot shows the global score for FOOTBALL graph computed using the
ground-truth clusters vs. the counterparts with clusters obtained by Infomap, Louvain, and
Spinglass algorithms. As before, the conclusion is that the choice of clustering algorithm
is not important.
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C.1 Illustration of the Framework
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Figure 10: Global and local scores for SBM, LFR, noisy-LFR, EMAIL graphs with HOPE
(left) and Node2Vec (right) embeddings.
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C.2 Approximating the Two Scores
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Figure 11: Approximated vs. exact global scores for SBM, LFR, noisy-LFR graphs and
HOPE (left), Node2Vec (right) embeddings.
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Figure 12: Approximated vs. exact local scores for SBM, LFR, noisy-LFR graphs and HOPE
(left), Node2Vec (right) embeddings.
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C.3 Node Classification and Community Detection vs. the Global Score
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Figure 13: Node classification: global score vs. accuracy for SBM, LFR, noisy-LFR, EMAIL
graphs and HOPE (left), Node2Vec (right) embeddings.
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Figure 14: Community detection: global score vs. AMI for SBM, LFR, noisy-LFR, EMAIL
graphs and HOPE (left), Node2Vec (right) embeddings.
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C.4 Link Prediction vs. the Local Score
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Figure 15: Link prediction: local score vs. AUC for SBM, LFR, noisy-LFR, EMAIL graphs
and HOPE (left), Node2Vec (right) embeddings.
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C.5 Node Classification vs. the Normalized Scores
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Figure 16: Node Classification: normalized global score (left) and normalized local score (right)
vs. accuracy for SBM, LFR, noisy-LFR, EMAIL graphs.
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C.6 Community Detection vs. the Normalized Scores
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Figure 17: Community Detection: normalized global score (left) and normalized local score
(right) vs. AMI for SBM, LFR, noisy-LFR, EMAIL graphs.
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C.7 Link Prediction vs. the Normalized Scores
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Figure 18: Link prediction: normalized global score (left) and normalized local score (right) vs.
AUC for SBM, LFR, noisy-LFR, EMAIL graphs.
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C.8 Normalized Scores vs. Clustering Techniques
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Figure 19: Normalized local and global score for FOOTBALL graph with clustering obtained
by Infomap, Louvain, and Spinglass algorithms.
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Figure 20: Global score for FOOTBALL graph computed using the ground-truth clusters vs.
the counterparts with clusters obtained by Infomap, Louvain, and Spinglass algorithms. AMI
scores showing the similarity between the ground-truth partition and partitions found by the
three algorithms are also reported.
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