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Abstract

Graph embedding is a transformation of nodes of a graph into a set of vectors. A good embedding should
capture the graph topology, node-to-node relationship, and other relevant information about the graph, its sub-
graphs, and nodes. If these objectives are achieved, an embedding is a meaningful, understandable, compressed
representations of a network that can be used for other machine learning tools such as node classification,
community detection, or link prediction.

In this paper, we do a series of extensive experiments with selected graph embedding algorithms, both on
real-world networks as well as artificially generated ones. Based on those experiments we formulate the following
general conclusions. First, we confirm the main problem of node embeddings that is rather well-known to
practitioners but less documented in the literature. There exist many algorithms available to choose from which
use different techniques and have various parameters that may be tuned, the dimension being one of them. One
needs to ensure that embeddings describe the properties of the underlying graphs well but, as our experiments
confirm, it highly depends on properties of the network at hand and the given application in mind. As a result,
selecting the best embedding is a challenging task and very often requires domain experts. Since investigating
embeddings in a supervised manner is computationally expensive, there is a need for an unsupervised tool that
is able to select a handful of promising embeddings for future (supervised) investigation. A general framework,
introduced recently in the literature and easily available on GitHub repository, provides one of the very first tools
for an unsupervised graph embedding comparison by assigning the “divergence score” to embeddings with a goal
of distinguishing good from bad ones. We show that the divergence score strongly correlates with the quality
of embeddings by investigating three main applications of node embeddings: node classification, community
detection, and link prediction.

1 Introduction

Networks (often called graphs in mathematical literature, especially in combinatorics) are commonly used represen-
tations that are able to capture relational information within data such as friendships in social media, hyperlinks
between web pages, or common interests between users. In some cases, the data is naturally represented as a
network—consider, for example, a power grid network or a network of airline flight connections between airports.
However, increasingly there is a need to capture contextual relations beyond the obvious ones, for example, one
might want to model predecessor words in the text. Graphs allow us to specify a structure and a context of the
problem and that structure should be included in the representation used in dedicated ML algorithms.

The goal of many machine learning applications is to make predictions or discover new patterns using graph-
structured data as feature information. For example, one might want to better understand the role of a particular
researcher within a collaboration network, similarity between users interacting on Amazon or Yelp, classify proteins
in a biological interaction network, or recommend new users or products to users of some social media. As a result,
the study of networks has emerged in diverse disciplines as a means of analyzing these complex relational data.
Capturing aspects of a complex system as a graph can bring physical insights and predictive power [1, 2, 3].

Network Geometry is a rapidly developing approach in Network Science [4] which further abstracts the system
by modelling the nodes of the network as points in a geometric space. There are many successful examples of
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this approach that include latent space models [5], and connections between geometry and network clustering and
community structure [6, 7]. Very often, these geometric representations naturally correspond to physical space,
such as when modelling wireless networks or when networks are embedded in some geographic space [8, 9]. See [10]
for more details about applying spatial graphs to model complex networks.

Regardless of whether there is any natural interpretation or not, in order to extract useful structural information
from graphs, one might want to try to embed them in a geometric space by assigning coordinates to each node
such that nearby nodes are more likely to share an edge than those far from each other. In particular, in the
case of link prediction, a good embedding should have the property that most of the network’s edges can be
predicted from the coordinates of the nodes. On the other hand, in the case of node classification, one might
want to include information about the global position of a node in the graph or the structure of the node’s local
graph neighbourhood. Other applications might require different properties to be preserved. As a result, there are
many embedding algorithms (based on techniques from linear algebra, random walks, or deep learning) and the
list constantly grows. Moreover, many of these algorithms have various parameters that can be carefully tuned to
generate embeddings in some multidimensional spaces, possibly in different dimensions. Hence, unfortunately, in
the absence of a general-purpose representation for graphs, graph embedding very often requires domain experts to
craft features or to use specialized feature selection algorithms.

Though graph embeddings continue to gain importance and popularity, there exist other tools and techniques to
handle relational data directly. However, it is often more efficient to create an embedding that can be seen as a form
of feature engineering in which each node is mapped to a feature vector. This approach has a number of advantages.
For example, if additional node features are available, then they can simply be merged with the embedded node
representations to form a richer representation of the data. Moreover, there are many scalable machine learning
tools available to handle datasets represented as feature vectors. The many applications of graph embedding include
link prediction (finding missing edges, e.g. identifying which researchers are likely to write a paper together, or which
book should be recommended to a given reader), node classification (e.g. predicting the unknown label for some
nodes given known labels for other nodes), clustering (e.g. finding groups of users with common interest). Embedding
in low dimension is also useful for visualization (in 2 or 3 dimensions) and data compression. Several applications of
graph embeddings to real world problems are described in [11], including computer vision, recommender systems,
and natural language processing (NLP), to name a few. Another comprehensive review of important applications
of embeddings can be found in [12], including those in visualization, community detection, node classification, and
link prediction tasks. While most of the applications are inherently transductive, inductive approaches have also
been proposed recently. For example, in GraphSAGE [13] node feature data can be used to generate embeddings
for previously unseen nodes. The idea behind embeddings can also be linked to propositionalization techniques
developed in the Inductive Logic Programming (ILP) field, see e.g. [14]. The major difference between these two
approaches is that propositionalization typically encodes data in symbolic space while embeddings work in numeric
space. The consequence is that embeddings, typically at the cost of lower interpretability, have lower sparsity of the
representation. As a result, they are more space efficient and so can be easily used as a source features for modern
machine learning algorithms such as deep neural networks. Thus, arguably, embeddings are considered to be more
promising in terms of predictive performance, efficiency and scalability [14]. Having said that, as discussed earlier,
one may easily enrich the embeddings by including some domain-specific, high-level relations constructed using ILP
which cannot be easily discovered by other means. This, in turn, might improve the quality of algorithms that use
embeddings.

Let us now highlight the main contribution of this paper. Embeddings prove to be useful in various scenarios
but, in order for algorithms designed for a specific application to perform well, it is crucial to feed them with an
appropriate, high-quality, embedding. Indeed, the well-known concept in data science / machine learning—“garbage
in, garbage out” (GIGO)—says that flawed or nonsense input data produces nonsense output. Selecting the best
embedding can be done in a supervised way by careful examination of all potential candidates. Unfortunately,
there are more than 100 embedding algorithms having their own parameters that can be tuned, the dimension
being only one of them. Moreover, most of these algorithms are randomized and stability is rather low—the
quality of resulting embeddings varies even when the set of parameters is fixed. Unfortunately, this creates a huge
computational challenge. Here are the main questions we try to answer in this research project. Is there a way
to evaluate a large family of embeddings in an unsupervised way? If this is possible, even if the evaluation is not
perfect, then it would be a useful tool that would allow the analyst to pre-select a few embeddings for future,
supervised, and more careful investigation. But, it raises the followup question: Is it safe to trust this pre-selection
process? Are we sure that no good quality embedding is lost? For many other unsupervised machine learning tasks
such as clustering, dimensionality reduction, or graph community detection, unsupervised quality measures have
been proposed in the literature (e.g. silhouette measure for evaluation of results of cluster analysis [15]). We argue
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that such approach may also be useful for evaluation of graph embeddings.
In order to answer these questions, we perform a detailed study of a number of popular graph embedding algo-

rithms: node2vec, VERSE, LINE, Deep Walk, HOPE, and SDNE (see Section 2). We evaluate embeddings
using a general framework that assigns the “divergence score” to each embedding which, in an unsupervised learning
fashion, distinguishes good from bad embeddings (see Section 3). According to our knowledge, this framework is
the very first attempt of unsupervised evaluation of graph embeddings but, since they gain importance quickly,
it is expected to see more approaches in the near future. We start with experiments on real-world networks (see
Section 4) but in order to understand how basic statistics affect the “divergence score” of embeddings we also
perform a series of tests on synthetic graphs generated by the ABCD model, similar to the well-known and widely
used LFR (see Section 5). In particular, the summary of our experiments and conclusions for practitioners can be
found in Sub-section 5.8. In short, if one needs to pick one embedding algorithm before running the experiments,
then node2vec is the best choice as it performed best in our tests. Having said that, there is no single winner in
all tests.

Finally, let us mention that evaluating embedding algorithms is a subjective task. Our experiments are based
on the “divergence score” that proved to be a useful tool in a number of applied projects we were personally
involved with but clearly we are biased. Since it is the first measure introduced in the literature, it is important to
answer the second question raised earlier: Can we trust the framework? In order to convince readers without prior
experience with the framework, we finish the paper with a few experiments to show that there is a strong correlation
between the “divergence score” and the quality of the selected machine learning tools that use embeddings as an
input: classification, community detection, and link prediction (see Section 6). We hope that after reading the
paper the conclusion will be apparent: it is best to generate a relatively large family of embeddings (possibly using
various algorithms and suitably tuned parameters) and then use the benchmarking framework to pre-select a few
candidates. Then, one should make an informed decision, taking into account a trade-off between the quality of the
embedding and its dimension that affects the speed and memory requirement. Using the framework is especially
recommended in unsupervised learning contexts, for example, anomaly or community detection.

The results presented in this paper are closely related to our earlier work presented in [16, 17] where we introduced
the “divergence score”. Our earlier papers focused on motivations behind the design of the proposed measure,
its mathematical derivation, and performance considerations of its computation. In this paper, we extend the
previously published results in two ways. First, we apply the “divergence score” to draw empirical conclusions
about properties of embeddings generated by selected popular algorithms. We check how stable the results are by
varying both hyperparameters of embedding algorithms as well as the structure and size of the embedded graphs.
Second, we compare the recommendations obtained based on the “divergence score” against their performance in a
number of classical graph mining applications (such as node classification, community detection, and link prediction)
to confirm that, indeed, it is a useful tool allowing to rank embeddings.

2 Node Embedding Algorithms

There are over 100 algorithms proposed in the literature for node embeddings which are based on various approaches
such as random walks, linear algebra and deep learning [18]. Moreover, many of these algorithms have various
parameters that can be carefully tuned to generate embeddings in some multidimensional spaces, possibly in different
dimensions. For our experiments, we selected 6 popular algorithms that span different families. All but one of them
(VERSE1) are taken from the OpenNE framework2.

The first two algorithms, Deep Walk [19] and node2vec [20], are based on random walks performed on
the graph. This approach was successfully used in Natural Language Processing (NLP); for example the
Word2Vec algorithm [21] is based on the assumption that “words are known by the company they keep”. For a
given word, embedding is achieved by looking at words appearing close to each other as defined by context windows
(groups of consecutive words). For graphs, the nodes play the role of words and “sentences” are constructed via
random walks. The exact procedure how one performs such random walks differs for the two algorithms we selected.

In the Deep Walk algorithm, the family of walks is sampled by performing random walks on graph G, typically
between 32 and 64 per node, and for some fixed length. The walks are then used as sentences. For each node vi, the
algorithm tries to find an embedding ei of vi that maximizes the approximated likelihood of observing the nodes in
its context windows obtained from generated walks, assuming independence of observations. We set all parameters
to their default values, namely, number of walks: 10, walk length: 80, workers: 8, window size: 10.

1https://github.com/xgfs/verse/
2https://github.com/thunlp/OpenNE
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In node2vec, biased random walks are defined via two main parameters. The return parameter (p) controls the
likelihood of immediately revisiting a node in the random walk. Setting it to a high value ensures that we are less
likely to sample an already-visited node in the following two steps. The in-out parameter (q) allows the search to
differentiate between inward and outward nodes so we can smoothly interpolate between breadth-first-search (BFS)
and depth-first search (DFS) exploration. We set all parameters to their default values, namely, number of walks:
10, walk length: 80, workers: 8, window size: 10, p: 1, q: 1.

There are several deep learning methods successfully used for embedding nodes in a graph. One of those,
Structural Deep Network Embedding (SDNE) [22], is an autoencoder, a type of artificial neural network
that is a commonly used deep learning model for representing complex objects such as images. The goal is to
represent objects of interest in lower dimension in such a way that the original object can be reconstructed as best
as possible from its low dimensional vector representation. Autoencoders are trained to minimize reconstruction
errors (such as squared errors), often referred to as the loss function. SDNE aims at preserving both the first and
the second order proximity: first order proximity is derived directly from weights of the edges while the second
order indicates similarity between nodes’ neighbourhoods. We changed the number of neurons at each encoder layer
from its default value of 1000 to 128, as it was consistently producing very poor results. The remaining parameters
were set to their default values, namely, alpha: 1e-6, beta: 5, Nu1 (l1-loss of weights in autoencoder): 1e-5, Nu2
(l2-loss of weights in autoencoder): 1e-4, batch size: 200, learning rate: 0.01.

Several embedding algorithms are based on linear algebra. The High Order Proximity preserved Embedding
algorithm (HOPE) [23] is aimed at embedding nodes in directed graphs, but can also be used for undirected graphs.
For every node vi, we define two embeddings, es,i and et,i, the source and, respectively, the target embedding. Let
Es and Et be the corresponding matrices of the source and the target embeddings. The loss function for HOPE,
for a given proximity matrix S, is defined as follows:

Φ(Es,Et) = ||S−ET
s Et||F ,

where || · ||F is the Frobenius norm that is a natural and straightforward extension of the Euclidean norm to
matrices. There are several choices for the proximity measure matrix S such as Katz similarity, common neighbours,
or Adamic-Adar. We used the default proximity measure, common neighbours.

The next algorithm, Large-scale Information Network Embedding (LINE) [24], is an efficient method
for node embedding which explicitly defines two functions to encode the first and the second order proximity. In
order to capture the first order proximity, the joint probability distribution is defined for a pair of nodes based on
their embeddings. The method is similar for the second order proximity. In this case, each node vi is assigned with
a source and a target embedding vectors, es,i and et,i, and the conditional probability distribution is considered for
a target of a random edge sampled from the set of edges having one endpoint in vi. We set all parameters to their
default values, namely, batch size: 1000, epoch: 10, negative ratio: 5, order: 3, label file: no labels used, CLF ratio:
0.5, auto save: true.

Finally, VERtex Similarity Embeddings (VERSE) [25] is a simple, versatile, and memory-efficient method
that derives graph embeddings explicitly calibrated to preserve the distributions of a selected node-to-node similarity
measure. It is a general framework that learns any similarity measures among nodes via training a simple, yet
expressive, single-layer neural network. This includes popular similarity measures such as personalized PageRank,
SimRank, and adjacency similarity. We used the default proximity measure, personalized PageRank. We also set
all remaining parameters to their default values, namely, alpha: 0.85, learning rate: 0.0025, threads: 4, nsamples: 3.

3 An Unsupervised Framework for Comparing Graph Embeddings

Evaluating graph embedding algorithms is a challenging task. This subjective process depends on a specific appli-
cation of the embedding at hand, and typically requires ad-hoc experiments and tests performed by the domain
experts. However, in the recent papers [16, 17], the “divergence score” was proposed that can be assigned to out-
comes of the embedding algorithms to help distinguish good ones from bad ones. This general framework provides
a tool for an unsupervised graph embedding comparison and is available at the GitHub repository3. To the best of
our knowledge, it is the first tool of this nature.

In order to justify why we use the framework in our experiments and to build an intuition, let us try to answer
the following related question: What do we expect from a good embedding? One natural and desired property is
to require that based on a good embedding one should be able to predict most of the network’s edges from the
coordinates of the nodes in the embedded space. One typically expects that if two nodes are far away from each

3https://github.com/KrainskiL/CGE.jl
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other, then the chance they are adjacent in the graph is smaller compared to another pair of nodes that are close
to each other. But, of course, in any real-world network there are some sporadic long edges and some nodes that
are close to each other are not adjacent. Due to this fact, in the framework we use an embedding algorithm is not
considered good when it only pays attention to local properties such as the existence of particular edges (microscopic
point of view) but rather the expectation is that it is able to capture some global properties such as the number of
edges induced by some relatively large subsets of nodes (macroscopic point of view). So, how one may evaluate if
the global structure is consistent with our expectations and intuition without considering individual pairs of nodes?

The approach that is proposed works as follows. First, some dense parts of the graph need to be identified by
a good graph clustering algorithm. By default, the framework uses the Ensemble Clustering algorithm for
Graphs (ECG4) which is based on the classical Louvain algorithm and the concept of consensus clustering [26].
This algorithm is known to have good stability but the choice of graph clustering algorithm is flexible and it was
empirically verified that it does not affect the outcome of the process as long as the set of nodes is partitioned into
clusters such that there are substantially more edges captured within clusters than between them. The clusters
that are found provide the desired macroscopic point of view of the graph. Note that for this task only information
about the graph G is used; in particular, the embedding is not used at all. We then consider the graph from a
different point of view. Using the Geometric Chung-Lu (GCL) model, based on the degree distribution of the
graph and the embedding, we compute the expected number of edges within each cluster found earlier, as well as
between them. The embedding is scored by computing a divergence score between these expected number of edges
and the actual number of edges present in the graph. To measure dissimilarity between the two corresponding
probability distributions, the well-known and widely used Jensen–Shannon divergence measure was used. It can be
viewed as a smoothed version of the Kullback-Leibler divergence. Let us also mention that GCL is defined for any
dimension and so the framework is able to compare embeddings in different dimensions based exclusively on their
predictive power, ignoring their complexities. See Appendix 9.1 and [16, 17] for more details.

In order to see the framework “in action”, we perform a small experiment with the well-known College Football
real-world network with known community structures. This graph represents the schedule of United States football
games between Division IA colleges during the regular season in Fall 2000 [27]. The data consists of 115 teams
(nodes) and 613 games (edges). The teams are divided into conferences containing 8–12 teams each. In general,
games are more frequent between members of the same conference than between members of different conferences,
with teams playing an average of about seven intra-conference games and four inter-conference games in the 2000
season. There are a few exceptions to this rule, as detailed in [28]: one of the conferences is really a group of
independent teams, one conference is really broken into two groups, and 3 other teams play mainly against teams
from other conferences. We refer to those as outlying nodes, which we represent with a distinctive triangular shape.

In order to illustrate the application of the framework, we ran various embedding algorithms in different dimen-
sions and sets of parameters on the Football dataset. In Figure 1, we show the best and worst scoring embeddings
based on the divergence score. The colours of nodes correspond to the conferences, and the triangular shaped nodes
correspond to outlying nodes as observed earlier. The communities are very clear in the left plot while in the right
plot, only a few communities are clearly grouped together.

Figure 1: The College Football Graph: we show the best (left) and the worst (right) scoring embedding.

To visualize the embeddings in high dimensions we needed to perform dimension reduction that seeks to produce
a low dimensional representation of high dimensional data that preserves relevant structure. We used the Uniform

4https://github.com/ftheberge/graph-partition-and-measures
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Manifold Approximation and Projection (UMAP5) [29], a novel manifold learning technique for dimension
reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic
topology. It provides a practical scalable algorithm that applies to real world datasets.

Finally, let us make a comment that not all embeddings proposed in the literature try to capture an information
about edges. Some algorithms indeed try to preserve edges whereas others care about some different structural
properties; for example, they might try to map together nodes with similar functions or role within the network.
Having said that, many important applications a data scientist needs to deal with in everyday work require preserving
(global) edge densities and the framework favours embeddings that do a good job from that perspective. We come
back to this discussion in Section 6 and justify using the framework more.

4 Experiments on Real-World Graphs

Let us start with evaluating the performance of the selected graph embedding algorithms run on a few real-world
networks. For our experiments, we selected four networks. Before we briefly describe these datasets, let us present
a few of their statistics.

Property Mouse Brain Airports Email-EU Github
Nodes 1029 464 986 37700
Edges 1700 7595 16017 288996

Density 0.00321 0.07071 0.03298 0.0041
Maximum degree 153 175 342 9458
Minimum degree 1 1 1 1
Average degree 3.304 32.737 32.489 15.331
Assortativity -0.215 -0.055 -0.025 -0.075

Number of triangles 0 100358 104395 523782
Global clustering coefficient 0 0.476 0.266 0.012

Maximum k-core 5 50 34 34
Number of components 20 2 1 1

Diameter 12 7 7 11
Average path length 4.913 2.455 2.588 3.246

Table 1: Some statistics of the four networks we experimented with.

Mouse Brain Graph6

This graph represents the mouse brain. Nodes represent regions of the brain and edges represent neuronal fiber
tracts that connect one node to another. One interesting feature of this graph (which, in fact, was the main reason to
select this graph for our experiments) is that it contains no triangles, something that is very rare in general. Indeed,
many social networks (and to a lesser degree other networks) exhibit relatively large clustering coefficient which
can be described as the overall probability for the network to have adjacent nodes interconnected, thus revealing
the existence of tightly connected communities (or clusters, subgroups, cliques). This network has the clustering
coefficient equal to zero and so it will allow us to understand the effect of this graph parameter on the quality of
the embedding algorithms.

Airports Graph7

This graph contains information about flights between airports based on a record of more than 3.5 million US
Domestic Flights from 1990 to 2009. It has been taken from OpenFlights website which have a huge database
of different travelling mediums across the globe. The nodes are represented by the 3-letter airport codes; the
latitude and the longitude as well as the state and the city are also available. The edges are directed with weights
representing the total volume of passengers between the two airports.

5https://github.com/lmcinnes/umap
6http://networkrepository.com/bn-mouse-kasthuri-graph-v4.php
7https://github.com/ftheberge/GraphMiningNotebooks/tree/master/Datasets/Airports
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GitHub Graph8

This graph is a large social network of GitHub developers which was collected from the public API in June 2019.
Nodes correspond to developers who have starred at least 10 repositories and edges represent mutual follower
relationships between them. The node features are extracted based on the location, repositories starred, employer
and e-mail address. In particular, the set of nodes was partitioned into web developers and machine learning
developers, feature derived from the job title of each user. As a result, this network is suitable for experiments
on binary node classification—one might want to predict whether the GitHub user is a web or a machine learning
developer. We ignore this partition in our experiments and work with the entire graph.

Email-EU Graph9

The network was generated using email data from a large European research institution. Emails are anonymized
and there is an edge between u and v if person u sent person v at least one email. The dataset does not contain
incoming messages from or outgoing messages to the rest of the world. More importantly, it contains “ground-truth”
community memberships of the nodes indicating which of 42 departments at the research institute individuals belong
to. As a result, this dataset is suitable for experiments aiming to detect communities but we ignore this external
knowledge in our experiments.

4.1 Specification of the Experiments and Results

Let us present the general approach that we use to test each of the four networks we selected to experiment with.
For a given embedding algorithm A and a given dimension d ∈ {4, 8, 16, 32, 64, 128}, we independently run the
algorithm 30 times. This is done to not only measure how good the algorithms are but also their stability. Recall
that 4 out of 6 algorithms we test are randomized. In order to do that, we compute the average divergence score
aA,d and the standard deviation sA,d.

The results are presented in Figures 2–5 in the form of a heat-map: for each algorithm A (y axis) and each
dimension d (x axis), the corresponding square is presented in light colour if the divergence score aA,d is small (that
is, the embedding scores well according to the benchmark framework), and dark colours are used if the divergence
score is large (that is, the embedding does not score well). The same approach is used to visualize the behaviour of
the standard deviation sA,d.
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Figure 2: Mouse Brain Graph: Average and Standard Deviation of the Divergence Score (Heat Map)

The results are generally improving when the dimension increases, with the exception of the VERSE algorithm
that, surprisingly, seems to perform better in lower dimensions. Dimensions 4 and 8 are too small to capture the
“shape” of the networks that is manifested via relatively large divergence scores obtained for such embeddings.
In all four networks, node2vec consistently generated embeddings that scored the best with VERSE (in lower
dimensions) taking the second place. HOPE end SDNE did not perform very well which might suggest that such

8https://github.com/benedekrozemberczki/MUSAE
9https://snap.stanford.edu/data/email-Eu-core-temporal.html
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Figure 3: Airports Graph: Average and Standard Deviation of the Divergence Score (Heat Map)
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Figure 4: GitHub Graph: Average and Standard Deviation of the Divergence Score (Heat Map)

algorithms do not aim to preserve global densities (property that the benchmarking framework tries to evaluate)
but some other aspects of the network. The score of the DeepWalk algorithm varies a lot from network to network;
it is very bad for the Airport Graph but performs well on the Email-EU Graph. With regards to stability, SDNE
seems to be the least stable of the algorithms we tested and node2vec wins one more time—it seems to be not
only consistently good but also quite stable.

5 Experiments on Synthetic Graphs

As commonly done in the literature as well as in the applied world, we analyze how the selected embedding algorithms
perform on artificially constructed networks with communities (see, for example, [28]). By doing this we may flexibly
change the characteristics of the network (such as its size, the number of clusters, the degree distribution, etc.)
and assess the impact of these changes on the results. A popular example of such network generator is the LFR
benchmark proposed by Lancichinetti, Fortunato, and Radicchi [30] that produces synthetic graphs resembling real
world graphs. For our experiments, we use an alternative random graph model, namely, the Artificial Benchmark
for Community Detection (ABCD10) graph [31]. In both benchmarks, the size of each community is drawn from
a power-law distribution, as is the degree of each node. As a result, both benchmarks produce graphs with similar

10https://github.com/bkamins/ABCDGraphGenerator.jl
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Figure 5: Email-EU Graph: Average and Standard Deviation of the Divergence Score (Heat Map)

properties. The main reason for using ABCD instead of LFR is that the mixing parameter µ, the main parameter
of the LFR model guiding the strength of the communities, has a non-obvious interpretation and so can lead to
unnaturally-defined networks. Another reason is that ABCD is faster than LFR and can be easily parallelized [32]
(ABCDe11). Moreover, due to its simplicity, it is possible to analyze it theoretically [33]. Such results, despite the
fact that often asymptotic in nature, may shed some light on the behaviour of embedding algorithms on real-world
networks. See Appendix 9.2 for more details.

5.1 Parameters of the Model

The ABCD model has a number of parameters that can be independently tuned and so it is suitable for testing
which properties of real networks affect the quality of embedding algorithms. In order to do that, we fix all
parameters but one and then investigate how sensitive the algorithms are with respect to the selected parameter.
Of course, it might be the case that the quality of a given algorithm depends on some specific combination of
parameters but such more subtle correlations are more challenging to detect and so it is left for a future research.
Here are the parameters we want to investigate as well as their default values.

• Size of the network: n is the number of nodes in the graph. The default value is n = 10,000.

• Degree distribution: γ is the (negative) exponent of the power-law degree distribution. The default value
is γ = 2.5. The default degree sequence is generated in advance and used for all experiments that use the
default settings of n = 10,000, and ∆ ≈ n1/(γ−1) (the maximum degree). It is generated with γ = 2.5, δ = 5
(the minimum degree) and ∆ = 464 ≈ n1/(γ−1) = n2/3. Of course, if n or ∆ changes, then the degree sequence
has to be re-generated but it is then used for all experiments with that choice of parameters n and ∆.

• Maximum degree: ∆ is the maximum degree in the graph. The default value is ∆ ≈ n1/(γ−1) which
corresponds to the so-called natural cut-off. This specific value ensures that the expected number of nodes
of degree at least ∆ is close to 1.

• Level of noise: ξ is the mixing parameter that controls the fraction of edges between communities. Essen-
tially, this parameter may be viewed as the amount of noise in the graph. In one extreme case, if ξ = 0, then
all the edges are within communities. On the other hand, if ξ = 1, then communities are not present in the
graph and edges are simply wired randomly, regardless of the assignment of nodes into communities. The
default value for our experiments is ξ = 0.2.

• Community sizes: β is the (negative) exponent of the distribution of community sizes. In order to test
other parameters in a rather easy set-up, instead of generating the sequence of community sizes randomly, by
default we simply consider 5 large communities with the following distribution: 30%, 25%, 20%, 15%, 10%.

11https://github.com/tolcz/ABCDeGraphGenerator.jl
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More importantly, this choice reduces the contribution to the variance from the ABCD model and, as a
result, the experiments concentrate on the stability of the embedding algorithms used instead of the random
graph model. We discuss it more in Subsection 5.7.

There are a few other parameters of the ABCD model that we do not investigate as they should not substantially
affect the behaviour of the embedding algorithms. As mentioned above, the minimum degree is set to be δ = 5,
the minimum and the maximum community sizes are set to be 50 and 1000, respectively. The configuration model
was used to generate underlying graphs with the global variant of the model. For more details about the ABCD
model we direct the reader to [31].

The synthetic networks used in our experiments are relatively small (n = 10,000). The reason for this is that
we test a large grid of parameters and for a given set of parameters, a large number of experiments need to be
performed due to two sources of randomness, the first one associated with random graphs ABCD and the other
associated with randomized embedding algorithms (see below for more details). As a result, the experiments took
approximately 20,000 vCPU-hours and larger graphs would be impossible to investigate with such precision (see
the last section for more details). In order to make sure generated graphs are large enough to capture the behaviour
of both synthetic networks and associated embeddings well, we performed a few selected experiments on larger
networks and the outcome was consistent with earlier findings. We direct the interested reader to the GitHub
repository with all results (see the last section). Let us also stress the fact that the bottleneck is with generating
thousands of embeddings, not with evaluating them by the framework which is scalable [17].

Before we move on to the more detailed experiments investigating each parameter of the model independently,
let us repeat the experiment we did for the four selected real-world networks in the previous section on a single
instance of the ABCD graph. This graph was generated with all parameters of the model set to their default
values except the one controlling the community sizes that was fixed to β = 1.5. The results of this experiment are
presented in Figure 6.
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Figure 6: ABCD: Average and Standard Deviation of the Divergence Score (Heat Map)

The conclusion is similar to what we observed in experiments with real graphs in the previous section. However,
embeddings in lower dimensions (4 and 8) seem to be even more challenging than before and VERSE is not
performing as good as before with DeepWalk taking its second place.

5.2 Specification of the Experiments

In this section, we present a general approach that is used to test the five parameters mentioned above. Some
specific modifications, if necessary, are explained below. In order to test how a given parameter of the ABCD
model affects the divergence score, we pick ` values of this parameter to test (typically, ` = 10) and assign default
values to the remaining parameters.

Note that there are two sources of randomness involved in the process, one coming from the graph generation
process and the second one coming from the embedding algorithm (indeed, 4 out of 6 algorithms we selected for
testing are randomized algorithms). In order to investigate which source of randomness affects the divergence score
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more, in each experiment we generate 10` ABCD graphs. For a given value of the tested parameter x, we generated
a family of 10 graphs Fx, independently sampled by the model but with the same set of parameters.

For a given algorithm A, a given dimension d ∈ {32, 64, 128}, and a given parameter x, we independently run
the algorithm on the 10 graphs from Fx, 10 times for each graph. We compute the average divergence score aA,d(x)
and the standard deviation sA,d(x) (over 100 experiments; 10 graphs, 10 embeddings per graph). In order to see
how the quality of embeddings change for a given graph, for each G ∈ Fx, we additionally compute the average
score aA,d(x,G), and the standard deviation sA,d(x,G) (over 10 experiments; 10 embeddings of G).

For each experiment, the variance is decomposed into two components related to the two sources of randomness
based on the classical ANOVA method (a statistical test generalizing the t-test). The total sum of squared
residuals SST can be viewed as the sum of graph-specific sum of squares SSG and embedding-specific sum of
squares SSE . In the tables below, we report SST as well as the ratio rE based on the two decomposition elements,
namely, rE = SSE

SST
. Clearly, 0 ≤ rE ≤ 1. Values of rE close to zero indicate that the noise coming from the graph

generation is significantly larger than the noise related to the embeddings. On the other hand, values close to 0.5
imply that both sources of randomness contribute roughly equally to the variance. Let us also note that two of our
embedding algorithms (namely, LINE and HOPE) are deterministic and so eE = 0 for these algorithms.

Finally, note that SST can be alternatively decomposed into ` pieces corresponding to the ` values of the
parameter x tested. A natural question is then to see if all pieces equally contribute to SST or maybe only a few of
them contribute in a non-negligible way. To answer this questions we computed the average correlation between the
corresponding ratio rE and parameter x. We got very small correlations, namely, 0.0009 (n), −0.0065 (γ), −0.0017
(∆), 0.0245 (β), −0.0040 (ξ).

The results of our experiments are presented in the following form.

Plot 1. For each embedding algorithm A, we plot 3 functions aA,d(x) for the selected dimensions d ∈ {32, 64, 128} as
a function of the tested parameter x. We additionally display confidence bands: aA,d(x)± sA,d(x).

Plot 2. For each dimension d ∈ {32, 64, 128}, we plot 6 functions aA,d(x) for all embedding algorithms A as a function
of the tested parameter x. We additionally display confidence bands: aA,d(x)± sA,d(x).

Plot 3. For each embedding algorithm A, we plot average sA,d(x,G) (over 10 graphs) for the 3 selected dimensions
d ∈ {32, 64, 128} as a function of the tested parameter x.

Plot 4. For each dimension d ∈ {32, 64, 128}, we plot average sA,d(x,G) (over 10 graphs) for all 6 embedding algo-
rithms A as a function of the tested parameter x.

Plot 5. For each embedding algorithm A, we generate one plot as follows. For all values of the tested parameter x,
all dimensions d, and all graphs G ∈ Fx (300 points), plot (aA,d(x,G), sA,d(x,G)). This way we test whether
graphs with large divergence scores produce more variable results.

Now, we are ready to discuss results of the experiments. For convenience and easier comparison, all plots are
shown together on Figures 15–19 in the Appendix.

5.3 Size of the Network (n)

In this experiment, we study how sensitive the evaluated embedding algorithms are with respect to n, the size of
the network. We consider ` = 10 different values of the corresponding parameter: n ∈ {1000, 2000, . . . , 10000}.
The remaining parameters are set to their default values. (Note that, in particular, the exponent of the power-law
degree distribution is set to γ = 2.5 and the maximum degree is set to ∆ = n1/(γ−1) = n2/3. However, since the
degree distribution is a function of n, it has to be re-generated for each tested value of n.) The plots are presented
on Figure 15, the decomposition of the variance can be found in Table 2 and the speed of the embedding algorithms
is reported in Table 3.

The divergence score is rather stable as n increases, that is, it does not drastically change with the size of the
network (Plots 1 and 2 on Figure 15). This is, of course, a desired property which indicates that the embeddings
capture the “big picture” of the network, focusing on its structure and topology. node2vec and VERSE (in low
dimension) perform best whereas SDNE appears to be the worst one. Let us observe that DeepWalk and LINE
(HOPE to some degree too) improve their quality after increasing the dimension whereas large dimension (128),
somewhat surprisingly, hurts the remaining algorithms. Stability of the embedding algorithms is also indicated by
relatively small standard deviations with the exception of SDNE which performs not so well from that perspective
(Plots 3 and 4). Finally, DeepWalk, node2vec, and VERSE exhibit a positive correlation between the average
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Table 2: Size of the Network (n) — Decomposition of the Variance: rE / SST (in 10−5)
Algorithm

Dim node2vec DeepWalk LINE HOPE SDNE VERSE
32 0.24/0.08 0.35/3.34 0/127.03 0/80.72 0.36/122.95 0.27/0.86
64 0.25/0.07 0.30/1.53 0/89.77 0/85.83 0.36/126.1 0.36/2.44
128 0.50/0.13 0.24/0.89 0/75.89 0/86.47 0.28/135.37 0.34/7.94

Table 3: Size of the Network (n) — the Average Running Time (in Seconds)
Algorithm

Dim node2vec DeepWalk LINE HOPE SDNE VERSE
32 81 86 89 15 9 53
64 84 97 91 16 10 67
128 92 126 94 18 10 98

divergence score and the corresponding standard deviation (Plot 5). Again, somewhat surprisingly, SDNE does
not behave as expected and shows no correlation between the average divergence score and its standard deviation.

The decomposition of the variance shows that the contribution from the two sources of randomness is comparable.
In terms of speed, SDNE and HOPE are the fastest, followed by VERSE. There is also a slight increase of the
running time with respect to the dimension; with the most visible difference for VERSE and DeepWalk.

5.4 Degree Distribution (γ)

In this experiment, we investigate the behaviour of embedding algorithms for different degree distributions. We
consider ` = 10 different values of the corresponding parameter: γ ∈ {2.1, 2.2, . . . , 3.0}. The remaining parameters
are set to their default values. (However, despite the fact that the maximum degree is set to ∆ ≈ n1/(γ−1), it
is a function of γ which changes in this experiment; in particular, ∆ decreases when γ increases.) The plots are
presented on Figure 16, the decomposition of the variance can be found in Table 4 and the speed of the embedding
algorithms is reported in Table 5.

Table 4: Degree Distribution (γ) — Decomposition of the Variance: rE / SST (in 10−5)
Algorithm

Dim node2vec DeepWalk LINE HOPE SDNE VERSE
32 0.45/0.05 0.49/1.42 0/54.44 0/12.97 0.63/38.66 0.44/0.03
64 0.27/0.02 0.37/0.59 0/42.64 0/19.04 0.61/38.54 0.82/0.32
128 0.31/0.02 0.14/0.25 0/26.31 0/24.75 0.51/44.09 0.75/3.00

Table 5: Degree Distribution (γ) — the Average Running Time (in Seconds)
Algorithm

Dim node2vec DeepWalk LINE HOPE SDNE VERSE
32 175 206 90 58 15 102
64 180 236 92 63 16 126
128 202 316 97 70 16 195

Let us first note that the global density of the graph as well as the maximum degree ∆ decrease as γ increases.
Hence, it seems natural to expect that the divergence score should be getting worse (that is, increasing) for large
values of γ, as sparser random graphs are less “predictable” and so more challenging to embed (for example, there
might be some unusually sparse or dense regions that occur by pure randomness). However, this behaviour is
present only for SDNE and HOPE; in particular, the quality of DeepWalk visibly improves for large values of
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γ (Plots 1 and 2 in Figure 16). This might mean that DeepWalk has a problem with embedding nodes of large
degree. As before, node2vec and VERSE (in low dimension) perform best whereas SDNE appears to be the
worst one. We also consistently see the peculiar property that some algorithms (such as VERSE and SDNE)
perform worse in higher dimension. SDNE continues to be unstable with large values of the standard deviation
(Plots 3 and 4) and with no correlation between the average value and the standard deviation (Plot 5).

The decomposition of the variance remains comparable. SDNE continues to be the fastest, HOPE slows down
in comparison to the earlier experiment with the graph sizes, and LINE speeds up; however, the order of the
algorithms remains the same. The dimension continues to slow down the algorithms but no visible change can be
detected; from the complexity point of view, the results are consistent with the ones we discussed in the previous
section.

5.5 Maximum Degree (∆)

In this experiment we investigate the maximum degree ∆ = nx by considering ` = 10 different values of parameter
x ∈ {0.25, 0.30, . . . , 0.70}. The remaining parameters are set to their default values. The plots are presented on
Figure 17, the decomposition of the variance can be found in Table 6 and the speed of the embedding algorithms
is reported in Table 7.

Table 6: Maximum Degree (∆) — Decomposition of the Variance: rE / SST (in 10−5)
Algorithm

Dim node2vec DeepWalk LINE HOPE SDNE VERSE
32 0.37/0.06 0.45/1.19 0/79.35 0/36.05 0.40/57.55 0.34/0.05
64 0.36/0.04 0.26/0.72 0/45.52 0/39.32 0.38/60.20 0.56/0.22
128 0.31/0.04 0.08/0.49 0/45.61 0/38.3 0.35/61.74 0.75/6.75

Table 7: Maximum Degree (∆) — the Average Running Time (in Seconds)
Algorithm

Dim node2vec DeepWalk LINE HOPE SDNE VERSE
32 176 209 90 58 14 97
64 181 236 92 62 15 125
128 199 312 98 71 15 207

Let us first note that the global density of the graph slightly increases as ∆ increases. Hence, from that
perspective, we experience a similar behaviour as with the decreasing of γ from our previous experiment. Hence,
it seems natural to expect that the divergence score should behave similarly to that of the previous experiment,
with the degree distribution that is modelled by the parameter γ (that is, increasing functions should be now
decreasing and vice versa). This behaviour is certainly present for DeepWalk; as observed before, the quality of
DeepWalk visibly drops (especially in low dimension) when large degree nodes are present suggesting that they
create a problem for this particular embedding algorithm. Other algorithms do not show similar duality between
the two experiments. It implies (perhaps not surprisingly) that the qualities of these algorithms cannot be simply
deduced based on the density of the graph or the maximum degree. It seems that the quality depends in some non-
trivial way on the degree distribution (Plots 1 and 2 in Figure 17). Global comparison of the algorithms (ranking,
decomposition of the variance, and speed) remains the same as in the previous subsection.

5.6 Level of Noise (ξ)

In this experiment we investigate the level of noise by considering ` = 10 different values of the corresponding
parameter: ξ ∈ {0.1, 0.2, . . . , 1.0}. The remaining parameters are set to their default values. The plots are presented
on Figure 18, the decomposition of the variance can be found in Table 8 and the speed of the embedding algorithms
is reported in Table 9.

The level of noise present in the graph is an important aspect of the embedding algorithms which is confirmed by
this experiment. For low level of noise (modelled by small value of parameter ξ), communities are easy to identify
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Table 8: Level of Noise (ξ) — Decomposition of the Variance: rE / SST (in 10−5)
Algorithm

Dim node2vec DeepWalk LINE HOPE SDNE VERSE
32 0.56/2.61 0.38/4.33 0/60.81 0/48.72 0.25/56.86 0.47/5.24
64 0.76/3.90 0.50/5.55 0/38.59 0/42.16 0.20/62.67 0.48/3.23
128 0.65/6.12 0.59/6.84 0/31.43 0/35.12 0.22/59.83 0.41/4.57

Table 9: Level of Noise (ξ) — the Average Running Time (in Seconds)
Algorithm

Dim node2vec DeepWalk LINE HOPE SDNE VERSE
32 175 211 88 59 15 97
64 178 241 93 63 16 135
128 204 303 99 68 16 191

and to extract from the graph and so it should be relatively easy to embed the graph preserving the community
structure. As a result, one would expect all algorithms to score well and have small divergence score for such values
of ξ. On the other hand, for values of ξ close to one, the graph is very close to the random graph with a given
degree distribution and no communities. For such graphs, no matter how nodes are embedded in space, the densities
between “communities” and within them are going to be very close to the corresponding expected values in the
null-model. Hence, such graphs should score well again but the interpretation is different: all algorithms perform
predictably bad, given this impossible task of preserving community structure. On the other hand, graphs with
values of ξ between zero and one are challenging to properly embed and so one would expect that the divergence
score generates “inverted-v shape” as a function of ξ. node2vec and VERSE exhibit such shape and, again, these
two algorithms win again (VERSE gets worse for ξ ∈ {0.6, 0.7, 0.8}). Oddly, SDNE, HOPE and LINE perform
badly for very low level of noise (Plots 1 and 2 in Figure 18). This could possibly be explained by too local nature of
such algorithms. Local algorithms, in the presence of low level of noise, embed nodes based on the knowledge coming
exclusively from their corresponding communities. As a result, communities are embedded almost independently
and so such algorithms do a poor job of separating the communities. The behaviour of DeepWalk is even more
challenging to explain.

It is worth pointing out that one striking difference between Plots 2 in Figure 18 and the corresponding plots for
the other parameters tested is that there is no visible difference between the three dimensions that we evaluated.
This indicates that the dimension affects the divergence score by a great deal. The dimension still affects the
performance of the algorithms but its influence is much weaker than the parameter ξ tested in this experiment. Let
us also note that there is a strong correlation between the average score and the standard deviation (Plot 5) but
SDNE continues to be the most unstable (Plots 3 and 4).

The decomposition of the variance remains comparable to the earlier experiments. SDNE continues to be the
fastest and DeepWalk was the slowest. The dimension continues to slow down the algorithms but no visible
change can be detected. Let us also mention that during this experiment we were forced to switch to more powerful
machines as HOPE with dimension 128 ran out of memory which indicates that large level of noise is not only
challenging from the quality of the embeddings point of view but also from the computational one.

5.7 Community Sizes (β)

In this experiment we investigate the distribution of community sizes by considering ` = 10 different values of the
corresponding parameter: β ∈ {1.1, 1.2, . . . , 2.0}. The remaining parameters are set to their default values. The
plots are presented on Figure 19, the decomposition of the variance can be found in Table 11 and the speed of the
embedding algorithms is reported in Table 12.

Note that the number of communities increases (and so the average community size decreases) when β increases—
see Table 10. Since a graph with large number of small communities is difficult to embed, one would expect that the
divergence score should get worse for large values of β. All algorithms we tested confirm this intuition. DeepWalk,
node2vec, and VERSE perform better in smaller dimension which suggests that it should be the choice for graphs
with a large number of communities. The divergence score for the remaining three algorithms is not affected by
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Table 10: Distribution of Communities as a Function of Parameter β
β

Statistics 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
No. communities 34 38 39 42 48 44 56 60 65 64
Min community size 50 50 50 50 50 50 50 50 50 50
Max community size 983 977 979 968 977 997 978 939 972 988
Mean community size 292.4 259.1 252.5 233.1 204.9 227.3 176.4 165.6 152.2 154.6

Table 11: Community Sizes (β) — Decomposition of the Variance: rE / SST (in 10−5)
Algorithm

Dim node2vec DeepWalk LINE HOPE SDNE VERSE
32 0.01/18.82 0.02/29.45 0/1397.83 0/1262.72 0.04/1427.12 0.02/1046.42
64 0.14/12.37 0.01/125.11 0/1330.70 0/1280.63 0.04/1412.63 0.02/1392.63
128 0.06/131.39 0.002/184.07 0/1235.29 0/1301.64 0.04/1460.59 0.01/1257.91

Table 12: Community Sizes (β) — the Average Running Time (in Seconds)
Algorithm

Dim node2vec DeepWalk LINE HOPE SDNE VERSE
32 169 217 87 60 14 99
64 182 239 91 62 15 134
128 206 297 102 68 16 188

the choice of the dimension. VERSE, which used to perform well before, gets worse, DeepWalk improves, but
node2vec is still winning (Plots 1 and 2 in Figure 19). SDNE continues to be unstable but still is the fastest with
LINE and HOPE being roughly 5 times slower; DeepWalk is the slowest. As expected, the dimension continues
to slow the algorithms down.

The most drastic difference is for the decomposition of the variance. In all earlier experiments, we used to report
large values of the parameter rE . This time, rE is by an order of magnitude smaller. As mentioned earlier when
we introduced this ratio, this indicates that the main contribution to the variance comes from the randomness of
the graph generation process, not from the randomized embedding algorithms. This is expected as the distribution
of the community sizes is the most fragile parameter of the ABCD model (in fact, any model, including LFR).
Indeed, with non-negligible probability the number of components might be substantially different for two graphs
with the same set of parameters but independently generated. That was the main reason why we fixed the number
of communities to 5 communities instead of generating one sequence of communities with, say, β = 1.5 and keeping
it for all experiments. This way we balanced the two sources of randomness, from the graph generation process and
from embedding algorithms themselves.

5.8 Summary of Experimental Results

In this section, we tested the 5 most important parameters of the ABCD model with the hope to better understand
the influence of basic statistics of real-world networks on the quality of embedding algorithms measured by the
divergence score. In general, the distribution of community sizes, controlled by the parameter β in the ABCD
model, has the single largest impact on the results. Hence, we decided to fix 5 community sizes throughout, except
when testing β itself; in that experiment, there are many more communities and we observe that the divergence
score increases with β. The impact is not as clear and strong when the size of the network (n) or the degree
distribution (γ and ∆) changes.

node2vec was constantly winning in all the experiments we performed. VERSE was good but not in the
presence of many small communities or large level of noise, and only in low dimension. These observations are also
observed in the experiments with real graphs we presented earlier. SDNE seems to be the most unpredictable
algorithm but it may be the case because it aims to capture different aspects of the graph such as the role of
particular nodes within network instead of preserving densities between communities.

The conclusion is that node2vec algorithm seems to be a good first choice to try in general but, depending
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on the graph that needs to be embedded, other algorithms give similarly good results. Moreover, node2vec has a
number of parameters itself which potentially might produce even better outcomes. We investigate this aspect in
the next set of experiments. In general, there is no clear winner (specific algorithm with a specific set of parameters)
that works best and so there is a need to be able to guide our choice of the algorithm and its parameters by a
trustworthy and unsupervised benchmark framework.

Execution time of all algorithms is sensitive with respect to the dimension. However, the increase of the
computing time is significantly larger for node2vec, DeepWalk and VERSE than for LINE, HOPE and SDNE.
node2vec and DeepWalk are the most computationally intensive, however, they support parallel execution and
their run-time can be controlled by available CPU cores. SDNE is constantly the fastest from all tested algorithms;
roughly 20 times faster than DeepWalk.

5.9 node2vec

In these final experiments on the synthetic graphs, we focus on node2vec, the embedding algorithm that seems
to perform best for both real-world networks we experimented with as well as synthetic graphs generated by the
ABCD model. The goal is to investigate how the behaviour of node2vec changes for various parameters of this
algorithm.

Recall that the return parameter p controls the likelihood of 2-hop redundancy in the corresponding random
walk. Large values of this parameter decrease the probability that already-visited node is sampled in the following
two steps. On the other hand, small values of the in-out parameter q encourages DFS-like exploration whereas
large values can be used to emulate BFS-like exploration. In our first experiment, we independently generated 5
ABCD graphs using the default set of parameters, family F . For a given dimension d ∈ {4, 8, 16, 32, 64, 128}, a
given set of parameters (p, q) of node2vec, we independently run the algorithm on 5 graphs from F , 5 times for
each graph. We computed the average divergence score anode2vec,d(p, q) and the standard deviation snode2vec,d(p, q)
(over 25 experiments; 5 graphs, 5 embeddings per graph). The results are presented in Figure 7 in the following
form.

Plot 6. We plot 5 functions anode2vec,d(p, q) for the selected dimensions d ∈ {8, 16, 32, 64, 128} with the return param-
eter fixed to p = 1 as a function of the parameter q ∈ {1, 3, 5, 7, 9, 1/3, 1/5, 1/7, 1/9}. We additionally display
confidence bands: anode2vec,d(p, q)± snode2vec,d(p, q).

Plot 7. We plot 5 functions anode2vec,d(p, q) for the selected dimensions d ∈ {8, 16, 32, 64, 128} with the in-out param-
eter fixed to q = 1 as a function of the parameter p ∈ {1, 3, 5, 7, 9, 1/3, 1/5, 1/7, 1/9}. We additionally display
confidence bands: anode2vec,d(p, q)± snode2vec,d(p, q).
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Figure 7: node2vec: the influence of the return parameter p and the in-out parameter q (plots 6 and 7).

In the second experiment, we investigate the influence of the second set of parameters: the number of walks
which has the default value of k = 10, and the walk length that is set to w = 80 by default. The results are presented
in Figure 8 in the following form.
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Plot 8. We plot 5 functions anode2vec,d(k,w) for the selected dimensions d ∈ {8, 16, 32, 64, 128} with the number of
walks fixed to k = 10 as a function of the walk length w ∈ {40, 80, 160}. We additionally display confidence
bands: anode2vec,d(k,w)± snode2vec,d(k,w).

Plot 9. We plot 5 functions anode2vec,d(k,w) for the selected dimensions d ∈ {8, 16, 32, 64, 128} with the walk length
fixed to w = 80 as a function of the number of walks k ∈ {5, 10, 20}. We additionally display confidence
bands: anode2vec,d(k,w)± snode2vec,d(k,w).
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Figure 8: node2vec: the influence of the number of walks k and the walk length w (plots 8 and 9).

The results of the experiments are consistently very good. We see a slight improvement of the divergence score
when the ratio between q and p increases. On the other hand, the number of walks and the walk length seem to be
even more stable without a visible improvements. One surprising thing to notice is that dimension 8 gave the best
result, better than dimension 128. The remaining dimensions behave as expected: the divergence score improves
as the dimension increases.

Finally, let us stress that these results are performed only on the ABCD model with a given set of default
parameters defined at the beginning of this section (in particular, in the presence of a relatively low level of noise)
but the fact that the result are stable and very good is another reason to use node2vec as a default embedding
algorithm.

6 . . .But Can One Trust the Framework?

In all experiments we performed in this paper we measured the quality of embedding algorithms by computing the
divergence score returned by the benchmarking framework. The divergence score measures to which degree the
following natural and desired properties are satisfied. Embeddings that score well extract enough information from
the graph that allows one to reconstruct the number of edges between communities as well as within them. In
particular, pairs of nodes that are close in the embedded space often tend to be adjacent and vice versa—there are
some sporadic long edges but they are not so common. (See Section 3 for a longer discussion.)

However, despite the fact that the definition of the divergence score seems to be natural, the following important
questions arise: Should one trust the divergence store in making decisions whether or not to use a given outcome
of the embedding algorithm? What if the framework favours embeddings that perform poorly when feed as an
input for some machine learning algorithm? In order to answer this question, we highlight a few of the most
common applications of graph embedding algorithms and show that the performance of the corresponding tools
highly depend on the divergence score. Of course, the list is not intended to be complete and there are many other
important potential applications one might want to explore. In order to measure the quality of embeddings with
respect to the three selected applications, we use some ad-hoc but rather standard supervised methods.

6.1 Nodes Classification

Node classification is an example of a semi-supervised learning algorithm where labels are only available for a small
fraction of nodes and the goal is to label the remaining set of nodes based on this small initial seed set. This is a
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situation often observed in, for example, social networks in which labels might indicate a user’s interests, beliefs,
or demographic characteristics. There could be many reasons for labels not to be available for a large fraction of
nodes, for example, a user’s demographic information might not be available to protect their privacy. Our task is
then to infer missing labels based on the small set of labeled nodes and the structure of the graph.

Since embedding algorithms can be viewed as the process of extracting features of the nodes from the structure
of the graph, one may reduce the problem to a classical machine learning predictive modelling classification problem
for the set of vectors. There are many algorithms, such as logistic regression, k-nearest neighbours, decision trees,
XGBoost, support vector machine, etc., for any potential scenario that one might be interested in, including binary,
multi-class, and multi-label classifications.

For our experiment, we used the synthetic ABCD graph with n = 10,000 and all parameters set to their default
values (in particular, the configuration model with the global variant was used) except parameter β that was set to
β = 1.5. The reason for deviating from the default 5 communities is to introduce more challenging scenario for the
classifier with a larger number of communities (42 communities were generated by the random model). Indeed, the
community of each node of this graph is its ground-truth community provided by the ABCD model and the goal
of the classifier is to predict them.

The set of nodes was randomly partitioned into a training set (with 75% of the nodes) and a test set (with
the remaining 25%). For each embedding algorithm A and each dimension d ∈ {4, 8, 16, 32, 64, 128}, we used the
labels from the training set and their embeddings to train the Gradient Boosted Trees (XGBoost) model. This
model was used as it is integrated with a number of packages making it easy to use, and the model itself has some
additional nice features which distinguish it from other gradient boosting algorithms. Having said that, let us stress
that our goal in this experiment is not to classify nodes as best as possible but rather to detect a possible correlation
between the quality of a classifier and the divergence score of embeddings used. Similar conclusions can be derived
by using other models which might or might not give better results. Following the same argument, XGBoost was
used with default hyper-parameters values and no tuning was done as part of the experiment. We applied the model
on the embeddings of the nodes from the test set to predict the labels of the corresponding nodes. Based on the
ground-truth, we then computed the overall accuracy (the fraction of predictions our model got right).

For a given algorithm A and a given dimension d, we repeated the above procedure 10 times, independently
and randomly splitting the set of nodes into training and test sets. The average accuracy depends on the choice
of A and d. More importantly, there seems to be a strong correlation between the accuracy and the quality of the
embedding based on the framework, the divergence score—see Figure 9 (left). Indeed, the correlation coefficient is
equal to −0.52, which shows that there is a significant correlation between the two metrics but the relation seems
to be non-linear. In particular, embeddings with low divergence score achieve high accuracy whereas embeddings
with high divergence exhibit varying accuracy. In other words, large divergence score does not imply that the
performance of node classification algorithm is going to be poor but low divergence score seems to guarantee the
success. We also noticed that, in general, the dimension cannot be too small (4 or 8) but the average accuracy
quickly stabilizes and there is no need to use embeddings in very large dimensions—see Figure 9 (right).
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Figure 9: Nodes classification: relation between the accuracy and the divergence score (left) and the dimension
of the embedding (right).
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6.2 Community Detection

There are various techniques and algorithms for detecting communities in networks. Node embeddings provide an
alternative tool for clustering related nodes, or they may be used to tune and to improve the graph tools with
providing additional, complementary information. Indeed, since each node is associated with a real-valued vector
embedded in d-dimensional space, one may alternatively ignore the initial graph and apply some generic clustering
algorithm to the set of associated vectors. Clustering points seems to be a much easier task and is a well-studied
area of research with many scalable algorithms, such as k-means or DBSCAN, that are easily available for use.

For our experiment, we used the synthetic ABCD graph with n = 10,000 and all parameters set to their
default values. For a given algorithm A and a given dimension d ∈ {4, 8, 16, 32, 64, 128}, we independently run 10
times k-means algorithm with the correct number of clusters (namely, k = 5). As we discussed in the previous
experiment, our goal is to investigate if there is a correlation between the divergence score and the quality of the
embedding and we do not aim to detect communities as best as possible. Hence, we use the “vanilla” k-means
algorithm instead of some more advanced tools such as, for example, DB-scan. In order to compare the results
with the ground-truth community structure generated by the ABCD model, we compute the average Adjusted
Mutual Information (AMI) score, a widely used measure based on information theory. As before, there is a
correlation between the average AMI score and the average divergence score—see Figure 10 (left). The correlation
between the two measures is equal to −0.64. There seems to be one outlier with a very low AMI score, HOPE; the
correlation without this algorithm is −0.73. The quality of LINE increases with the dimension whereas SDNE
does the opposite—see Figure 10 (right). The remaining four algorithms are invariant from that perspective.
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Figure 10: Community Detection: relation between the AMI score and the divergence score (left) and the
dimension of the embedding (right).

6.3 Link Prediction

Node embeddings can be successfully used to predict missing links or to predict links that are likely to be formed
in the future. Indeed, networks are often constructed from the observed interactions between nodes, which may
be incomplete or inaccurate. In particular, the situation of missing links is typical in the analysis of biological
networks in which verifying the existence of links between nodes requires experiments that are expensive and might
not be accurate. Moreover, a task that is closely related to link prediction is the main ingredient of recommendation
systems. The goal might be to predict missing friendship links in social networks or to recommend new friends.
Another task might be to predict new links between users and possible products that they may like.

Once nodes are embedded in d-dimensional space, one may use the distance between the corresponding vectors
to make the prediction. Nodes that are close to each other in the embedded space but are not adjacent might get
connected in the near future as they seem to be similar to each other. On the other hand, since networks that we
typically mine are dynamic, one might be interested in predicting which links will become inactive; for example,
which users on Instagram a given user might want to unfollow in the near future. A natural guess would be to pick
nodes that are far in the embedded space as it indicates that the nodes are dissimilar.

As before, for our experiment we used the synthetic ABCD graph G with n = 10,000 and all parameters set to
their default values. This time, we randomly select 10% of the edges of G, set E, and remove them, thus forming
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a new graph G′ = G \ E. Then we take another random sample of non-adjacent pairs of nodes in G, set E′. Both
classes have the same number of pairs of nodes so that the test set created in such a way is balanced. Our goal is
to train a model that uses the embedding of graph G′ to detect which pairs of nodes in E ∪ E′ are adjacent in G.

For a given algorithm A and a given dimension d ∈ {4, 8, 16, 32, 64, 128}, we find the embedding of graph G′. A
natural strategy would be to consider all pairs of adjacent nodes in G′ (the positive class) as well as a random subset
of pairs of non-adjacent nodes (the negative class) and use some standard tools such as the logistic regression model
on such training set. Such tools combine embeddings of two nodes into a feature vector to be used for prediction.
The output is an estimation of the probability for the positive class in the training data set. However, in the spirit
of the two earlier experiments, we keep it simple and compute the L2-distance between pairs of the selected edges
and non-edges from E ∪ E′. Based on this, we compute the class membership score using the following simple
formula: for each uv ∈ E ∪ E′,

p(uv) = 1− d(u, v)

dmax

where d(uv) is the L2-distance between nodes u and v, and dmax = maxuv∈E∪E′ d(uv) is maximum distance in
the entire set. In particular, as desired, nodes that are close to each other are predicted to be adjacent with high
probability and nodes that are far away from each other are most likely non-adjacent. In order to measure the
quality of this simple model, we use the Area Under the ROC Curve (AUC) that provides a measure of
separability as it tells us how capable the model is of distinguishing between the two classes. Indeed, AUC is
bounded from above by 1 and can be interpreted as probability that a random positive observation has a higher
predicted probability than a random negative observation.

We repeat the above procedure 10 times for each algorithm A and dimension d, each time independently selecting
10% of edges of G to form graph G′. We compute the average AUC score as well as the average divergence score.
As in the previous experiments, there is a strong correlation between the AUC score and the divergence score:
the correlation coefficient is equal to −0.72. Indeed, Figure 11 (left) shows that the relation is not linear but there
is a clear trend, as expected and as desired. Surprisingly, some of the embedding algorithms achieve lower AUC
scores in higher dimensions but the difference is significant only for VERSE—see Figure 11 (right). However, note
that our simple classifier rely exclusively on distances while embeddings in higher dimensions may capture other
features that might be used by more sophisticated classifiers. In any case, these results confirm that more useful
information is kept by embeddings that score well using the benchmarking framework.

To further support this conclusion, we investigated two embeddings that scored well by the framework (node2vec,
d = 4 and node2vec, d = 128) and two that were ranked as the worst ones (HOPE, d = 4 and SDNE, d = 128)—
see Table 13. For each of them, we plot a distribution of lengths independently for E and E′—see Figures 12 and 13.
Good embeddings keep adjacent nodes close to each other whereas bad embeddings actually do the opposite.
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Figure 11: Link Prediction: relation between the AUC score and the divergence score.

7 Summary: . . .Yes! One Can Trust the Framework!

Node embedding is an important tool to extract useful information from graphs. There are many excellent algorithms
proposed in the literature but the quality of their outcomes depends on the structure of the network that one aims to
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Figure 12: Two of the worst embeddings according to the divergence score—HOPE, d = 4 and SDNE, d = 128.
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Figure 13: Two of the best embeddings according to the divergence score—node2vec, d = 4 and node2vec,
d = 128.

Table 13: Performance metrics for distance-based link prediction.
Embedding AUC Accuracy Divergence
node2vec d = 4 0.82 0.79 2.46 x 10−5

node2vec d = 128 0.81 0.74 1.92 x 10−5

HOPE d = 4 0.31 0.37 3.55 x 10−5

SDNE d = 128 0.29 0.35 4.56 x 10−5

process. As a group of researchers and practitioners that often use embedding algorithms, in this project we aimed
to investigate various algorithms (using different techniques to build them) to be able to make a better and more
informed choices which ones to use. The conclusion we converged to is to use node2vec as a default choice—this
algorithm constantly works good for both real world networks as well as synthetically generated ones. Having said
that, the other algorithms were often at least comparable if not slightly better, but the competitors change from
experiment to experiment. Moreover, each algorithm (including node2vec) has a number of parameters one can
tune, the dimension being only one of them.

In light of this unclear best choice of the algorithm and its parameters, we recommend to use the benchmarking
framework to make that decision in an unsupervised way, without manually inspecting the quality of the generated
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embeddings. In order to support this recommendation, we performed a number of experiments in which we apply
some classical tools to important machine learning tasks and measured if there is a correlation between the divergence
score returned by the benchmarking framework and the quality of the tool that uses embeddings to guide the process.
A strong correlation between the two measures supports the recommended approach.

Having said that, there are some natural followup questions that can be asked and experiments to be performed.
Let us mention about two of them. We measured how the divergence score depends on some simple statistics of the
graph such as the level of noise or degree distribution. In order to achieve it, we experimented with the ABCD graph
in which we fixed all but one parameters and vary the one that is not fixed. To get a more detailed understanding
of the effect on the divergence score, it would be interesting to see how a combination of two parameters affect the
quality of the embeddings. Second experiment that we would like to suggest is related to the applications of node
embeddings. In this paper we tested three natural applications (nodes classification, community detection, and link
prediction). Another important application is to detecting anomalies. It would be interesting to see how the quality
of various anomaly detection algorithms depends on the divergence score.
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[31] B. Kamiński, P. Pra lat, and F. Théberge, Artificial Benchmark for Community Detection (ABCD) — Fast
Random Graph Model with Community Structure. Network Science. 9(2) (2021), 153-178.

23
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9 Appendix

9.1 Definition of the Divergence Score

In this section we provide a mathematical definition of the divergence score. It is a shortened version of definition
given in [16].

Given a graph G = (V,E), its degree distribution w on V , and an embedding E : V → Rk of its vertices in
k-dimensional space, we perform the five steps detailed below to obtain ∆E(G), a divergence score for the embedding.

Step 1: Run some clustering algorithm such as the Ensemble Clustering for Graphs (ECG) on G to obtain a
partition C of the vertex set V into ` communities C1, . . . , C`.

Step 2: For each i ∈ [`], let ci be the proportion of edges of G with both endpoints in Ci. Similarly, for each
1 ≤ i < j ≤ `, let ci,j be the proportion of edges of G with one endpoint in Ci and the other one in Cj . Let

c̄ = (c1,2, . . . , c1,`, c2,3, . . . , c2,`, . . . , c`−1,`) and ĉ = (c1, . . . , c`) (1)

be two vectors with a total of
(
`
2

)
+ ` =

(
`+1
2

)
entries which together sum to one. These graph vectors characterize

the partition C from the perspective of the graph G.

Step 3: For a given parameter α ∈ R+ and the same vertex partition C, we consider G(w, E , α), the Geometric
Chung-Lu model. For each 1 ≤ i < j ≤ `, we compute bi,j , the expected proportion of edges of G(w, E , α) with
one endpoint in Ci and the other one in Cj . Similarly, for each i ∈ [`], let bi be the expected proportion of edges
within Ci. That gives us another two vectors

b̄E(α) = (b1,2, . . . , b1,`, b2,3, . . . , b2,`, . . . , b`−1,`) and b̂E(α) = (b1, . . . , b`) (2)

with a total of
(
`+1
2

)
entries which together sum to one. These model vectors characterize the partition C from the

perspective of the embedding E .

Step 4: Compute the Jensen–Shannon divergence between the two pairs of vectors, that is, between c̄ and b̄E(α),

and between ĉ and b̂E(α), in order to measure how well the model G(w, E , α) fits the graph G. Let ∆α be a weighted
average of the two distances.

Step 5: Select α̂ = argminα ∆α, and define the divergence score for embedding E on G as: ∆E(G) = ∆α̂.

9.2 ABCD Random Graph Model with Community Structure

In this section, we briefly discuss the ABCD models. It is a short description taken from [32]; details can be found
in [31] or in [33]. As in LFR, for a given number of nodes n, we start by generating a power law distribution both
for the degrees and community sizes. Those are governed by the power law exponent parameters (γ, β). We also
provide additional information to the model, again as it is done in LFR, namely, the average and the maximum
degree, and the range for the community sizes. The user may alternatively provide a specific degree distribution
and/or community sizes.

For each community, we generate a random community subgraph on the nodes from a given community using
either the configuration model which preserves the exact degree distribution, or the Chung-Lu model which
preserves the expected degree distribution. On top of it, we independently generate a background random graph
on all the nodes. Everything is tuned properly so that the degree distribution of the union of all graphs follows
the desired degree distribution (only in expectation in the case of the Chung-Lu variant). The mixing parameter
ξ guides the proportion of edges which are generated via the background graph. In particular, in the two extreme
cases, when ξ = 1 the graph has no community structure while if ξ = 0, then we get disjoint communities. In order
to generate simple graphs, we may have to do some re-sampling or edge re-wiring, which are described in [31].

During this process, larger communities will additionally get some more internal edges due to the background
graph. As argued in [31], this “global” variant of the model is more natural and so we recommend it. However, in
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Figure 14: Two examples of ABCD graphs with low level of noise (ξ = 0.2, left) and higher level of noise (ξ = 0.4,
right).

order to provide a variant where the expected proportion of internal edges is exactly the same for every community
(as it is done in LFR), we also provide a “local” variant of ABCD in which the mixing parameter ξ is automatically
adjusted for every community.

Two examples of ABCD graphs on n = 100 nodes are presented in Figure 14. Degree distribution was generated
with power law exponent γ = 2.5 with minimum and maximum values 5 and 15, respectively. Community sizes
were generated with power law exponent β = 1.5 with minimum and maximum values 30 and 50, respectively;
communities are shown in different colours. The global variant and the configuration model was used to generate
the graphs. The left plot has the mixing parameter set ξ = 0.2 while the “noisier” graph on the right plot has the
parameter fixed to ξ = 0.4.

9.3 Visualizations of the Experiments

In this section we present the following visualizations of experiments:

1. Figure 15 shows a comparison of embedding algorithms as a function of graph size n.

2. Figure 16 shows a comparison of embedding algorithms as a function of degree distribution parameter γ.

3. Figure 17 shows a comparison of embedding algorithms as a function of the maximum degree ∆.

4. Figure 18 shows a comparison of embedding algorithms as a function of the level of noise ξ.

5. Figure 19 shows a comparison of embedding algorithms as a function of community sizes distribution parameter
β.
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Plots 3 and 4: average sA,d(n,G) (over 10 graphs)
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Figure 15: Size of the Network (n)
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Plots 3 and 4: average sA,d(γ,G) (over 10 graphs)
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Plot 5: correlation between aA,d(γ,G) and sA,d(γ,G)

Figure 16: Degree Distribution (γ)
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Plots 1 and 2: aA,d(∆)± sA,d(∆)
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Plots 3 and 4: average sA,d(∆, G) (over 10 graphs)
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Plot 5: correlation between aA,d(∆, G) and sA,d(∆, G)

Figure 17: Maximum Degree (∆)
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Plots 1 and 2: aA,d(ξ)± sA,d(ξ)
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Plots 3 and 4: average sA,d(ξ,G) (over 10 graphs)
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Plot 5: correlation between aA,d(ξ,G) and sA,d(ξ,G)

Figure 18: Level of Noise (ξ)
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Plots 1 and 2: aA,d(β)± sA,d(β)
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Plots 3 and 4: average sA,d(β,G) (over 10 graphs)
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Plot 5: correlation between aA,d(β,G) and sA,d(β,G)

Figure 19: Community Sizes (β)
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