
BROADCASTING ON PATHS AND CYCLES

REAZ HUQ AND PAWE L PRA LAT

Abstract. Consider the following broadcasting process run on a connected graph
G = (V,E). Suppose that k ≥ 2 agents start on vertices selected from V uniformly
and independently at random. One of the agents has a message that she wants to
communicate to the other agents. All agents perform independent random walks on G,
with the message being passed when an agent that knows the message meets an agent
that does not know the message. The broadcasting time ξ(G, k) is the time it takes to
spread the message to all agents. We provide tight bounds for ξ(Pn, k) and ξ(Cn, k)
that hold asymptotically almost surely for the whole range of the parameter k.

1. Introduction

In this paper, we investigate the problem of broadcasting messages between agents
that randomly move on a connected graph G = (V,E). The assumption is that k ≥ 2
agents start the process at random locations on the graph and then perform a random
walk along its vertices. One agent, selected in advance, initially possesses some infor-
mation. If at some point during the process two agents meet at some vertex or pass
each other at some edge and only one of them possesses the information, it is passed
along to the other agent. The broadcasting time ξ(G, k) is the time it takes to spread
the message to all agents. (Formal definition will be provided in Section 2.)

The performance of a random walk in a network is a fundamental process that has
found applications in many areas of computer science. Since this paper contains theo-
retical results, we will focus on prior results of related processes that were investigated
rigorously and in a theoretical context. As this is still a very broad topic, we only scratch
the surface and focus on multiple random walks performed simultaneously (which has
many applications in distributed computing, such as sampling). For more on other
directions, we direct the reader to one of the many books on Markov chains; see, for
example [18].

Suppose there are k ≥ 2 particles, each making a simple random walk on a graph
G. Even if the particles are oblivious of each other, it is important and non-trivial
to estimate the (vertex) cover time, an extensively studied graph parameter that is
defined as the expected time required for the process to visit every vertex of G. The
first paper [3] on this problem was concerned with the walk starting on the worst
case vertices and subsequent papers [10, 22] dealt specifically with starting positions
selected randomly from the stationary distribution. Questions become more interesting
(and difficult) once we allow particles to interact once they meet. We assume that
interaction occurs only when meeting at a vertex, and that the random walks made by
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the particles are otherwise independent. There are at least four interesting variants of
this process:

• Predator-Prey : estimate the expected time-to-extinction of the prey particles
under the assumption that k predator and ` prey particles walk independently;
predators eat prey particles upon meeting at a vertex.
• Coalescing particles : estimate the expected time to coalesce to a single particle

under the assumption that k particles walk independently and coalesce upon
meeting at a vertex.
• Annihilating particles : estimate the expected time-to-extinction of all particles

under the assumption that k = 2` particles walk independently and destroy
each other (pairwise) upon meeting at a vertex.
• Talkative particles : estimate the expected time to broadcast a message—this is

exactly the problem that we are concerned with in this paper.

All of these variants have been studied for random d-regular graphs Gn,d [6]. In
particular, if d ≥ 3 is a fixed constant and k ≤ nε for a sufficiently small constant
ε > 0, then asymptotically almost surely (see the next section for a definition and a
notation used)

ξ(Gn,d, k) ∼ 2Hk−1

k
· d− 1

d− 2
· n.

Moreover, in a recent paper the authors of this paper (along with three co-authors)
provided a complete characterization of ξ(Kn, k) for the whole range of the parameter k.
Interestingly, ξ(Kn, k) is well concentrated around 2n ln k/k for a wide range of possible
values of k, but the behaviour changes when k is very large, namely, when k is linear
in n [14]. These are the only theoretical results on the broadcasting time that we are
aware of. However, the frog model, a well-known and well-studied epidemic model, is
somewhat related to our problem [4]. There are a few differences between the two
models. For example, in the frog model the number of agents that start on a given
vertex is an independent Poisson random variable, some agents do not perform walks,
and agents have a given lifespan. Though variations of the frog model have been studied
(for example, in [23], where every agent performs a random walk), we have seen none
which are direct analogues of the process we study in this paper.

On the other hand, the variant of coalescing particles is very well-studied, mainly
because of its surprising connection to the voter model [2, 19]. The state of the process
at a given time t is described by a function µt : V (G) → O, where V (G) is the vertex
set of a graph G and O is a given set of possible opinions. Each vertex v ∈ V (G) “wakes
up” at rate 1. When it wakes up at a time t > 0, v chooses one of its neighbours w
uniformly at random and updates its value µt(v) to the opinion of w; all other opinions
remain the same. A classical duality result (see, for example, [2, 19]) directly relates
the state of the process at a given time to a system of coalescing random walks on G
moving backwards in time. As we already mentioned, there are many interesting results
on the coalescing time. Let us only mention a beautiful conjecture posed by Aldous
and Fill in the mid-nineties (Open problem 13, Chapter 14 of [2]). They conjectured
an upper bound for the mean coalescent time in terms of the mean hitting time of a
single random walk. The conjecture was proved in [20, 21].
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Let us now briefly discuss the following well-known and well-studied rumour spreading
protocols: Push and Push & Pull. Suppose that one vertex in a network is aware of
a piece of information, the “rumour”, and wants to spread it to all vertices. In each
round of the Push protocol, every informed vertex contacts a random neighbour and
sends the rumour to it (“pushes” the rumour). In Push & Pull, uninformed vertices can
also contact a random neighbour to get the rumour if the neighbour knows it (“pulls”
the rumour).

There is a long sequence of interesting and important papers studying the runtime of
Push on the complete graph. The first paper considering this protocol is [11] but more
precise bounds were provided in [24] and then in [9], in which it was shown that the
process can essentially be stochastically bounded (from both sides) by coupon collector-
type problems. A very recent paper [7] both determines the limiting distribution and
explains why it is a difficult problem: the runtime, scaled appropriately by (log2 n+lnn),
has no limiting distribution; instead, it exhibits double-oscillatory behaviour. Push has
been extensively studied on several other graph classes besides complete graphs.

The Push & Pull protocol has an equally long sequence of interesting papers studying
it. The synchronous version of the protocol (as described above) was introduced in [8]
and popularized in [16]. However, such synchronized models (that is, models in which
all vertices take action simultaneously at discrete time steps) are not plausible for many
applications, including real-world social networks. As a result, an asynchronous version
of the model with a continuous timeline was introduced in [5]. In this variant, each
vertex has its own independent clock that rings at the times of a rate 1 Poisson process
with the protocol specifying what a vertex has to do when its own clock rings. The
first theoretical relationships between the spread times in the two variants was provided
in [1].

In this paper, we focus on paths and cycles. We show that the behaviour of ξ(G, k)
is similar for both families of graphs and is approximately equal to n2/k (that is, up
to poly-log factors), provided that k ≤ n. (See Theorem 2.1 for the precise statement.)
The paper is structured as follows. In the next section, we formally define our problem,
introduce asymptotic notation, and state the main result. The whole of Section 3 is
devoted to proving the main result.

2. Formulation of the Problem and the Main Result

In this section, we formally define the process we aim to analyze (Subsection 2.1).
Though we define it for any connected graph, in this paper we focus on paths and cycles.
As our results are asymptotic in nature, we need to introduce the asymptotic notation
that is used throughout the entire paper (Subsection 2.2). Finally, we state the main
result that combines all ranges for the number of agents involved (Subsection 2.3).

2.1. Problem. Suppose that we are given a connected graph G = (V,E) on n = |V |
vertices, and let k ≥ 2 be any natural number. There are k agents, one of which
is green with the rest being white. The process starts at round t = 0 with agents
located randomly on vertices of G; that is, each agent starts at any vertex v ∈ V with
probability 1/n, independently of other agents and independently of her colour. Each
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agent synchronously performs an independent random walk, regardless of whether she
is green or white. In other words, an agent occupying vertex v ∈ V moves to any
neighbour of v with probability equal to 1/ deg(v). A white agent becomes green when
she meets a green agent at some round t ≥ 0. In particular, all agents that start at the
same vertex as the initial green agent become green at the very beginning. For most
graphs it does not make a substantial difference but, for example, for bipartite graphs
this definition has a flaw: if G is a bipartite graph with parts X, Y , a given white agent
and the green agent will not meet if they do not start on the same partition of the
graph. In order to solve this potential issue, we will allow a white agent to become
green if they move from u to v at the same round that a green agent moves from v to
u. Let ξ = ξ(G, k) be the time it takes for all agents to become green. (Note that ξ is
a random variable even when G is a deterministic graph.)

We say that the process is at phase ` (1 ≤ ` ≤ k) if there are ` green agents (and so
k − ` white agents). The first phase is usually phase 1, unless some white agents start
at the same vertex as the green agent but this is rare if k is small. Clearly, the process
always moves from a smaller phase to a larger phase. If k is small, then typically it takes
some number of rounds for the process to move to another phase though some phases
may be skipped. If k is large, then skipping phases is quite common. The process ends
at the end of round ξ, when we are about to move to phase k.

2.2. Asymptotic Notation. Our results are asymptotic in nature, that is, we will
assume that n→∞. Formally, we consider a sequence of graphs Gn = (Vn, En) (paths
and cycles on n vertices) and k = k(n) may be a function of n that tends to infinity
as n→∞. We are interested in events that hold asymptotically almost surely (a.a.s.),
that is, events that hold with probability tending to 1 as n→∞.

Given two functions f = f(n) and g = g(n), we will write f(n) = O(g(n)) if there
exists an absolute constant c ∈ R+ such that |f(n)| ≤ c|g(n)| for all n, f(n) = Ω(g(n))
if g(n) = O(f(n)), f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)), and we
write f(n) = o(g(n)) or f(n) � g(n) if limn→∞ f(n)/g(n) = 0. In addition, we write
f(n)� g(n) if g(n) = o(f(n)) and we write f(n) ∼ g(n) if f(n) = (1 + o(1))g(n), that
is, limn→∞ f(n)/g(n) = 1.

Finally, for any ` ∈ N we will use [`] to denote the set of ` smallest natural numbers,
that is, [`] := {1, 2, . . . , `}.

2.3. Main Result. Let us summarize the main results for paths and cycles in one
theorem. More detailed and stronger statements can be found in the next section.

Theorem 2.1. Let ω = ω(n) be any function that tends to infinity as n → ∞. Let
G = Pn (a path on n vertices) or G = Cn (a cycle on n vertices). Depending on the
parameter k = k(n), the following properties hold a.a.s.:

(a) If k ≤ ω, then

n2

ω3 lnω
≤ ξ(G, k) ≤ n2ω.
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(b) If ω < k ≤ ω lnn, then

n2

ωk2 ln k
≤ ξ(G, k) ≤ n2ω.

(c) If ω lnn < k ≤ n/ ln2 n, then

Ω

(
n2

k(ln k)(lnn)

)
= ξ(G, k) = O

(
n2 lnn

k

)
.

(d) If n/ ln2 n < k ≤ 50n lnn, then

Ω (n) = ξ(G, k) = O

(
n2 lnn

k

)
.

(e) If k = k(n) ≥ 50n lnn, then ξ(G, k) = Θ(n).

In any case, if k = nx+o(1) for some x ∈ [0, 1], then a.a.s.

ξ(G, k) =
n2+o(1)

k
= n2−x+o(1).

Parts (a) and (b) follow from Theorems 3.7 and 3.5. Parts (c) and (d) follow from
Theorems 3.10 and 3.9. Finally, part (e) follows from Theorem 3.4. The arguments
for paths Pn and cycles Cn are almost the same. Because of the boundary effect, the
argument for paths is usually slightly more challenging. In order to avoid reproving the-
orems for the two classes, we provide a coupling that shows that ξ(Pn, k) ≤ ξ(C2(n−1), k),
provided that k = o(n)—see Lemma 3.1. It is a simple but interesting and useful ob-
servation as it proves that to establish the asymptotic behaviour for both classes, one
only needs to prove upper bounds for cycles and lower bounds for paths. Having said
that, we have to admit that we more often than not make exceptions to this rule. For
example, the argument for large values of k (Section 3.4) is the same for both classes of
graphs so there is no need for coupling which does not apply to this range of values of
k anyway. The proofs for the corresponding upper bounds for small values of k (Sec-
tion 3.6) are substantially different for paths and cycles, so we decided to include both
arguments. (Of course, the result for paths is alternatively implied by the coupling.)
Finally, since part of the range of medium values of the parameter k (Section 3.7) is not
covered by the coupling, we decided to present an argument for paths that is simpler
and only mention straightforward adjustments to cycles.

3. Proofs

This whole section is devoted to proving Theorem 2.1. We investigate the process
running on Pn, the path on n vertices, and Cn, the cycle on n vertices. It will be
convenient to label vertices of Pn as follows: V (Pn) = [n] := {1, 2, . . . , n} and E(Pn) =
{i(i+ 1) : i ∈ [n− 1]}. Similarly, V (Cn) = [n] := {1, 2, . . . , n} and E(Cn) = {i(i+ 1) :
i ∈ [n− 1]} ∪ {1n}.

The proofs require unique approaches depending on the number of agents involved
(parameter k = k(n)). Thus, we will deal with each sub-range of k independently.
However, before we start, let us state some concentration inequalities that we will use
often, and introduce the coupling between the processes run on paths and cycles.
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3.1. Chernoff inequality. Throughout the paper, we will be using the following con-
centration inequality: let X ∈ Bin(n, p) be a random variable characterized as a bino-
mial distribution with parameters n and p. Then, a consequence of Chernoff’s bound
(see e.g. [15, Corollary 2.3]) is that

P(|X − E[X]| ≥ εE[X]) ≤ 2 exp

(
−ε

2E[X]

3

)
(1)

for 0 < ε < 3/2.

3.2. Hoeffding-Azuma inequality. Let X0, X1, . . . be an infinite sequence of random
variables that is a martingale; that is, for any a ∈ N we have E[Xa|Xa−1] = Xa−1.
Suppose that there exist constants ca > 0 such that |Xa − Xa−1| ≤ ca for each a ≤ t.
Then, the Hoeffding-Azuma inequality implies that for every b > 0,

P(∃i(0 ≤ i ≤ t) : |Xi −X0| ≥ b) ≤ 2 exp

(
− b2

2
∑t

a=1 c
2
a

)
. (2)

3.3. Coupling. We will show now that one may couple the processes run on paths
and cycles. This coupling will allow us to translate bounds obtained for one class to
another one. The argument applies provided that k = o(n), and the coupling can only
be established a.a.s. but it is enough as our main result holds a.a.s. anyway.

Lemma 3.1. Suppose that k = o(n). The processes on Pn and C2(n−1) can be coupled
such that a.a.s.

ξ(Pn, k) ≤ ξ(C2(n−1), k).

Proof. To simplify the notation, we are going to label the vertices of Pn and C2(n−1)
slightly differently than in the rest of the paper. Vertices of Pn are labelled as follows:
V (Pn) = {0, 1, . . . , n− 1}. On the other hand, vertices of C2(n−1) have labels from the
set V (C2(n−1)) = {−(n− 2),−(n− 3), . . . ,−1, 0, 1, . . . , (n− 2), (n− 1)}. The coupling
will identify vertices i and −i on C2(n−1) with a vertex i on Pn (i ∈ [n − 2]); vertex 0
and n − 1 on the cycle will be mapped to 0 and, respectively, n − 1 on the path—see
Figure 1. There is a slight complication with making sure the agents start the process
from a uniform distribution on the corresponding set of nodes. Because of that the
result holds only a.a.s. and we need an assumption that k = o(n).

Agents start independently and uniformly at random on C2(n−1), as they should.
Each agent, independently, becomes unusual with probability 1/n. Unusual agents put
their avatars on Pn at vertex 0 with probability 1/2, and on vertex n − 1 otherwise.
Usual (that is, not unusual) agents that start at vertex i on C2(n−1), place their avatars
on Pn at vertex |i|. It is easy to see that avatars are distributed uniformly at random
on Pn; in particular, the probability that a given agent puts her avatar at vertex 0 on
the path is equal to

1

n
· 1

2
+

(
1− 1

n

)
· 1

2(n− 1)
=

1

2n
+

1

2n
=

1

n
.

Since it is assumed that k = o(n), the expected number of unusual agents is equal
to k/n = o(1) and so a.a.s. there is no unusual agent by the first moment method.
If there is at least one unusual agent, then we simply stop the coupling and claim no
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n− 1

n− 2n− 321

0

−1 −2 −(n− 3) −(n− 2)

C2(n−1)

0 1 2 n− 3 n− 2 n− 1
Pn

Figure 1. Coupling between C2(n−1) and Pn. Agents walking on the
cycle and their avatars walking on the path are in red cycles.

bound for the two random variables. On the other hand, if there is no unusual agent,
then agent occupying vertex i on C2(n−1) has her avatar placed on vertex |i| on Pn

and we may continue. Agents start walking randomly on the cycle and their avatars
will follow them accordingly, that is, if an agent moves from vertex a to vertex b on
the cycle, her avatar moves from vertex |a| to vertex |b| on the path. It is clear that
avatars also perform independent random walks but on the path instead of the cycle.
The two corresponding random walks are coupled but the broadcasting processes are
performed independently on both graphs. By coupling, if two agents meet, then their
avatars also meet but the converse might not be true—avatars meeting on the path
might correspond to agents that occupy different vertices (again, see Figure 1). Hence,
when all agents become green, then all avatars must be green too. This establishes the
desired relationship between ξ(Pn, k) and ξ(C2(n−1), k), and the proof of the lemma is
finished. �

3.4. Large k. In this section, we show that a.a.s. ξ(Pn, k) = Θ(n), provided that k is
sufficiently large, that is, k ≥ 50n lnn. The coupling (Lemma 3.1) cannot be applied to
this range of parameter k but the proof works for cycles as well as paths. This proves
part (e) of Theorem 2.1.

Let us start with the following useful observation. Suppose that an agent starts at
vertex i ∈ [n]. For a given t ∈ N ∪ {0} and j ∈ [n], let Pt(i, j) be the probability that
the agent occupies vertex j at round t. Then the following holds.

Lemma 3.2. For any t ∈ N ∪ {0} and i, j ∈ [n], we have that

Pt(i, j) = Pt(j, i), (3)

provided that i /∈ {1, n} and j /∈ {1, n}. More importantly, we always have that

Pt(j, i)

2
≤ Pt(i, j) ≤ 2Pt(j, i). (4)

Proof. The lemma is an instant corollary of the fact that the associated simple random
walk is reversible, see [18, Section 1.6], and that the stationary distribution is near
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uniform. Indeed, since walking on a graph is reversible,

π(i)Pt(i, j) = π(j)Pt(j, i),

where π(x) is the stationary distribution. The conclusion follows from the fact that

π(x) =
deg(x)

2|E|
=

{
1

2(n−1) if x ∈ {1, n},
2

2(n−1) otherwise.

The proof of the lemma is finished. �

Adjustment to cycles: The lemma holds for cycles. In fact, property (3) holds for
all i and j (since π(x) is uniform on cycles) and so the weaker property (4) trivially
holds.

We will now show that there are plenty of agents on each vertex at any round of the
process, provided that it ends in at most n rounds.

Lemma 3.3. Consider the process on a path Pn with k = k(n) ≥ 50n lnn agents.
Then, a.a.s. the following holds: for any t ∈ [n] ∪ {0} and any j ∈ [n], the number of
agents occupying vertex j at round t is at least 12 lnn.

Proof. Fix any t ∈ [n]∪{0} and any j ∈ [n], and let us concentrate on a given agent A.
Let B(i) be the event that agent A starts at vertex i, and let C(j) be the event that
agent A occupies vertex j at time t. It follows that

P
(
C(j)

)
=
∑
i∈[n]

P
(
C(j) ∧B(i)

)
=
∑
i∈[n]

P
(
C(j) | B(i)

)
· P
(
B(i)

)
.

Since agent A starts on a vertex selected uniformly at random from V , P
(
B(i)

)
= 1/n.

After noticing that P
(
C(j) | B(i)

)
is exactly Pt(i, j), we get from Lemma 3.2 that

P
(
C(j)

)
=

1

n

∑
i∈[n]

Pt(i, j) ≥
1

2n

∑
i∈[n]

Pt(j, i) =
1

2n
,

as, trivially,
∑

i∈[n] Pt(j, i) = 1.
Since k ≥ 50n lnn agents select their starting points independently and perform inde-

pendent random walks afterwards, the number of agents occupying vertex j at round t
can be stochastically lower bounded by the random variable X ∼ Bin(50n lnn, 1/(2n)).
Note that E[X] = 25 lnn and so it follows from the Chernoff inequality (1) applied with
ε = 1/2 that

P
(
X ≤ 12 lnn

)
≤ P

(
|X − E[X]| ≥ 1

2
E[X]

)
≤ 2 exp

(
− 1

12
E[X]

)
= 2n−25/12 = o(n−2).

Since there are n+1 choices for t and n choices for j, the desired property fails for some
pair of t and n with probability at most n(n + 1) · o(n−2) = o(1) and so the desired
property holds a.a.s. and the proof is finished. �
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Adjustment to cycles: Since Lemma 3.2 holds also for cycles, the exact same proof
of the above lemma extends to cycles.

Now, we are ready to show both an upper and a lower bound for ξ(Pn, k) for k =
k(n) ≥ 50n lnn.

Theorem 3.4. For any k = k(n) ≥ 50n lnn, a.a.s. bn/2c ≤ ξ(Pn, k) ≤ n− 1.

Proof. By Lemma 3.3, since we aim for a result that holds a.a.s., we may assume that
for any round t ∈ [n] ∪ {0} and any vertex j ∈ [n], the number of agents occupying
vertex j at round t is at least 12 lnn. We will say that a vertex j is green if it is
occupied by green agents; otherwise, it is white, that is, it is occupied by white agents.
In particular, this means that in the very first round (t = 0) there is precisely one green
vertex.

Suppose that at the end of some round t ∈ [n − 2] ∪ {0}, some vertex j is green
whereas a neighbouring vertex i (i ∈ {j − 1, j + 1}) is white. Since there are at least
12 lnn green agents occupying j at the end of round t, the probability that i stays white
in round t+ 1 is at most

(1/2)12 lnn = exp
(
− 12(ln 2) lnn

)
≤ n−8 = o(n−1).

After applying this argument n− 1 times, we get that a.a.s. at round t ∈ [n− 1] ∪ {0}
vertices at distance at most t from the initial green vertex are green. In particular,
a.a.s. all vertices become green in at most n−1 rounds, and so the desired upper bound
holds. In fact, conditioning on the event that the initial green vertex is vertex j ∈ [n],
we get that a.a.s. ξ(Pn, k) = max{j − 1, n− j}. Since max{j − 1, n− j} ≥ bn/2c, the
desired lower bound holds too, and the proof is finished. �

Adjustment to cycles: The same argument works for cycles. Due to the symmetry,
a.a.s. ξ(Cn, k) = bn/2c.

3.5. Walking on Integers. Let us take a short break from our problem and briefly
discuss a closely related and classical problem: walking on integers. The simple random
walk on Z starts with X0 = 0 and in each round t ∈ N, Xt = Xt−1− 1 with probability
1/2; otherwise, Xt = Xt−1 + 1. Alternatively, the lazy simple random walk on Z starts
with X0 = 0 and in each round t ∈ N, Xt = Xt−1−1 with probability 1/4, Xt = Xt−1+1
with probability 1/4, and Xt = Xt−1 otherwise.

It is easy to see that the sequence X0, X1, . . . is a martingale. In particular, the
Hoeffding-Azuma inequality (2) can be applied to show that for small values of t, Xt

has to be relatively close to zero a.a.s. On the other hand, if t is large, then a.a.s.
Xt moves away from the origin. We will need this well-known observation to establish
some of our bounds. We provide the proof for completeness but for more details we
direct the reader to, for example, [18] or any other book on random walks.

Let us first concentrate on the simple random walk. Observe that Xt and t are of the
same parity, that is, t−Xt is even. Provided that t− a is even, there are

(
t

t−a
2

)
walks

of length t from 0 to a. Combining the two observations together we get that for any
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−t ≤ a ≤ t

P (Xt = a) =

{(
t

t−a
2

)
2−t if t− a is even,

0 otherwise.

It follows that for any −t ≤ a ≤ t, we have

P (Xt = a) ≤
(

t

dt/2e

)
2−t =

t!

dt/2e!bt/2c!
2−t ∼

√
2

πt
,

where the asymptotic bound follows from Stirling’s formula (t! ∼
√

2πt(t/e)t). Simi-
larly, for the lazy simple random walk, we get that for any −t ≤ a ≤ t

P (Xt = a) ≤
t∑

s=0

P
(
Bin(t, 1/2) = s

)
·
(

s

ds/2e

)
2−s.

(Variable s in the above formula controls the number of rounds the walk actually moves.)
Chernoff’s bound (1) applied with ε = 1/t1/3 implies that

P (Xt = a) ≤ o(1/t) +

t/2+t2/3∑
s=t/2−t2/3

P
(
Bin(t, 1/2) = s

)
·
(

s

ds/2e

)
2−s

≤ o(1/t) + (1 + o(1))

t/2+t2/3∑
s=t/2−t2/3

P
(
Bin(t, 1/2) = s

)
·
√

2

πs

≤ o(1/t) + (1 + o(1))

√
2

π(t/2)

t/2+t2/3∑
s=t/2−t2/3

P
(
Bin(t, 1/2) = s

)
∼
√

4

πt
.

Hence, regardless of whether we deal with lazy random walks or not, for t large enough
and any a ≥ 1 we have

P (|Xt| < a) ≤ 4a√
t
. (5)

We will also need the following result on the hitting time defined as follows:

τa = min{t ≥ 0 : Xt = a},
that is, τa is the first time the walk hits a. Using the reflection principle, one can show
that

P(τa > t) = P(−a < Xt ≤ a) ≤ 4a√
t
. (6)

(See Lemma 2.21 in [18] that applies to both lazy and non-lazy simple random walks.)

3.6. Small k. Let ω = ω(n) be any function that tends to infinity as n→∞. In this
section, we show that a.a.s. ξ(Pn, k) ≥ n2/(ωk2 ln k) and ξ(Cn, k) ≤ n2ω, provided that
k ≤ ω lnn. These two bounds, together with the coupling (Lemma 3.1), prove parts (a)
and (b) of Theorem 2.1.

We start by proving an upper bound for ξ(Cn, k). It is a strong bound for small values
of k but a weak one for large values of k. Recall that, in particular, ξ(Cn, k) = O(n)
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for k ≥ 50n lnn. However, since it holds for all values of k, we state it here in full
generality.

Theorem 3.5. Let ω = ω(n) be any function that tends to infinity as n→∞. For any
k = k(n) ≥ 2, a.a.s. ξ(Cn, k) ≤ n2ω.

Proof. We will couple our process with the random walk on integers we discussed above
in the most natural way. If an agent starts at vertex i ∈ [n] on the cycle, her avatar
starts at integer X0 = i on Z. If Xt increases, then the agent occupying vertex i < n
moves to i + 1 and she moves to 0 if she occupies vertex n. Similarly, if Xt decreases,
then the agent occupying vertex i > 1 moves to i−1 and she moves to n if she occupies
vertex 1.

Concentrate on the initial green agent and an arbitrary white agent that are at
distance d from each other. Our goal is to control random variable Yt, the “distance”
between the corresponding avatars walking on Z. We initiate the auxiliary process with
Y0 = d and for each t ∈ N, Yt = Yt−1 + 2 with probability 1/4, Yt = Yt−1 − 2 with
probability 1/4, and Yt = Yt−1 otherwise. (Hence, effectively, it is a lazy random walk.)
The distance between the two avatars is |Yt|.

Consider the first t = n2ω rounds. Our bound (5) applied with a = 2n + 1 implies
that a.a.s. |Yt| ≥ 2n+ 1. But this implies that the two agents met at some point (when
|Yt| = n or |Yt| = n + 1) and then met again (when |Yt| = 2n or |Yt| = 2n + 1), after
making in the meantime everyone else green. �

Adjustment to paths: This is the only situation when the argument for cycles cannot
be easily adjusted to deal with paths. We provide an independent, direct argument if
one does not want to use the coupling between the two families of graphs.

Theorem 3.6. Let ω = ω(n) be any function that tends to infinity as n→∞. For any
k = k(n) ≥ 2, a.a.s. ξ(Pn, k) ≤ n2ω.

Proof. We will estimate the number of rounds needed for the initial green agent to
travel to one of the endpoints of the path and then to walk to the other endpoint. We
will show that a.a.s. it happens in at most n2ω rounds. This will finish the proof as
it guarantees that all other agents have to meet her at some point and so all of them
eventually become green.

We will couple our process with the random walk on integers we discussed above in
the most natural way. If Xt increases and the agent occupies vertex i < n, she moves
to i + 1. Similarly, if Xt decreases and the agent occupies vertex i > 1, she moves to
i− 1. However, if she occupies one of the endpoints of the path (vertex 1 or vertex n),
her move is deterministic as she is forced to stay on the path, regardless of what the
random walk does.

Consider the first t = n2ω/2 rounds. Our bound (5) applied with a = n implies that
a.a.s. |Xt| ≥ n. This implies that the agent must bump into one of the endpoints (say,
vertex 1) during this time period (say, at time T ≤ t). Let us now concentrate on the
next t = n2ω/2 rounds following time T and let us restart the coupled random walk by
fixing XT = 1. Using (6) applied with a = n we conclude that a.a.s. the random walk
hits integer n during that period of time, and so the agent has to visit vertex n as well.
This concludes the proof. �
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Let us now turn our attention to a lower bound for ξ(Pn, k).

Theorem 3.7. Let ω = ω(n) be any function that tends to infinity as n→∞. For any
k = k(n) ≤ ω lnn, a.a.s. ξ(Pn, k) ≥ n2/(ω k2 ln k).

Proof. Note that with probability 1 − O(1/ω1/3) ∼ 1, the initial green agent starts
the process at distance at least n/ω1/3 = o(n) from both endpoints. Similarly, with
probability 1−O(1/(kω1/3)), a given white agent starts the process at distance at least
n/(kω1/3) = o(n/k) from the green agent. Hence, all white agents are at distance at
least n/(kω1/3) from the green agent with probability

(1−O(1/(kω1/3)))k−1 = 1−O(k/(kω1/3)) ∼ 1.

Since we aim for a conclusion that holds a.a.s., we may assume that this property is
satisfied at the end of round 0.

Trivially, at the end of the whole process (that is, when all agents become green),
at least one agent (either the one that was initially green or one of the white ones)
has to move at least n/(2kω1/3) away from her initial position; otherwise, no white
agent turns green. We will show that this is highly unlikely after only n2/(ω k2 ln k)
rounds. Applying the Hoeffding-Azuma inequality (2) with b = n/(2kω1/3), ca = 1, and
t = n2/(ω k2 ln k) implies that a given agent moves that far with probability at most

2 exp

(
−b

2

2t

)
= 2 exp

(
−ω

1/3

8
ln k

)
= o(1/k).

Hence, the probability that at least one agent moves far is O(k) · o(1/k) = o(1), and
the proof is finished. �

Adjustment to cycles: The argument is easily adjusted for cycles. In fact, it is
slightly simpler as one does not need to pay attention to the two endpoints of the path.

3.7. Medium k. Let ω = ω(n) be any function that tends to infinity as n → ∞. In
order to prove upper bounds in parts (c) and (d) of Theorem 2.1, we need to concentrate
on k = k(n)� lnn and k = k(n) < 50n lnn.

Let us start with the following definition. We partition the set of vertices of the path
Pn into b = b(n) := bk/(500 lnn)c blocks. (Note that b� 1 and b < n/10.) Each block
consists of either bn/bc ≥ b500n lnn/kc ≥ 10 or dn/be vertices.

We will first adjust the proof of Lemma 3.3 to show that there are plenty of agents
on each block at any round of the process, provided that it ends in at most n2 rounds.
The adjustment is easy and straightforward but we provide the proof for completeness.
Moreover, since Lemma 3.2 holds for both paths and cycles, the lemma below holds for
both families of graphs too.

Lemma 3.8. Consider the process on a path Pn with k agents such that lnn � k =
k(n) < 50n lnn. Then, a.a.s. the following holds: for any t ∈ [n2] ∪ {0} and any
j ∈ [b], the number of agents occupying block j at round t is at least 100 lnn and at
most 1800 lnn.
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Proof. The number of agents occupying block j at round t can be stochastically lower
bounded by random variable X ∼ Bin(k, (450n lnn/k)/(2n)); recall that each block has
length at least b500n lnn/kc ≥ (9/10)(500n lnn/k) = 450n lnn/k and, by Lemma 3.2,
each vertex is occupied by a given agent with probability at least 1/(2n). Note that
E[X] = 225 lnn and so it follows from the Chernoff inequality (1) applied with ε = 1/2
that

P
(
X ≤ 100 lnn

)
≤ P

(
|X − E[X]| ≥ 1

2
E[X]

)
≤ 2 exp

(
− 1

12
E[X]

)
≤ 2n−225/12+o(1) = o(n−3).

Since there are n2 + 1 choices for t and b = bk/(500 lnn)c < n/10 choices for j, the
desired property fails for some pair of t and j with probability at most

(n2 + 1)(n/10) · o(n−3) = o(1).

It follows that the desired lower bound for the number of agents holds a.a.s.
Similarly, the number of agents occupying block j at round t can be stochastically

upper bounded by random variable Y ∼ Bin(k, (600n lnn/k)(2/n)); recall that each
block has length at most dn/be ≤ d501n lnn/ke ≤ (11/10)(501n lnn/k) ≤ 600n lnn/k
and, by Lemma 3.2, each vertex is occupied by a given agent with probability at most
2/n. We get that E[Y ] = 1200 lnn and Y ≥ (3/2)E[Y ] = 1800 lnn with probability
o(n−3). The desired upper bound holds a.a.s. too and the proof is finished. �

Adjustment to cycles: As mentioned above, the above lemma holds for cycles and
the proof is exactly the same since Lemma 3.2 holds for both paths and cycles.

We are now ready to prove an upper bound. Note that the coupling (Lemma 3.1)
cannot be applied to the whole range of parameter k. Since the arguments used to deal
with cycles and paths are the same but some technicalities are slightly more involved
for paths, we decided to present an argument for paths instead of using the coupling.

Theorem 3.9. Let ω = ω(n) be any function that tends to infinity as n→∞. For any
k such that ω lnn ≤ k = k(n) < 50n lnn, a.a.s. ξ(Pn, k) = O(n2 lnn/k).

Proof. Since the argument is quite involved, let us first provide a high level overview of
the proof. First, we will show that the initial green agent quickly meets a white agent.
Then, we will track the distance between them and show that at some point they are far
apart from each other so that they are separated by at least one block. As a result, not
only are these two agents green but, in particular, all agents present on that internal
block are green. The final step is to show that the sequence of blocks consisting of only
green agents keeps expanding, eventually reaching both endpoints of the path.

Without loss of generality, we may assume that ω ≤ ln lnn. Suppose that the initial
green agent starts the process at vertex j ∈ [n]. Clearly, a.a.s. the initial green agent
is at distance at least n/ω1/5 from both endpoints of the path, that is, j > n/ω1/5 and
i < n − n/ω1/5. The probability that no white agent starts the process at distance at
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most d := ωn/k from the initial green agent is at most

(
1− d

n

)k−1

≤ exp

(
−ω(k − 1)

k

)
≤ exp(−ω/2) = o(1).

Since we aim for the statement that holds a.a.s., we may assume that initially the green
agent is at distance at least n/ω1/5 from both endpoints and one of the white agents
starts at distance at most d = ωn/k = o(n/ω1/5) from her.

Let us focus on the initial green agent and a white agent that is initially the closest to
her (if there are multiple white agents with this property, pick one of them arbitrarily).
Provided that they did not yet meet, our process can be coupled with the lazy simple
random walk on Z starting at X0 = dd/2e in such a way that the distance at round t
between the two agent is at most 2Xt. It follows from (6), applied with a = dd/2e and
t = ωd2 = ω3n2/k2 ≤ n2/k = o(n2 lnn/k), that a.a.s. they meet at some round T ≤ t.
On the other hand, the Hoeffding-Azuma inequality (2), applied with t = ωd2 and
b =
√
ωt = ωd = ω2n/k ≤ n/(3ω1/5), implies that a.a.s. both agents are at distance at

most n/(3ω1/5) from their initial positions when they meet and so both of them are still
at a distance of at least n/(2ω1/5) from both endpoints of the path. As before, since
we aim for the statement that holds a.a.s., we may assume that this property holds.

We continue the process for an additional t =
√
ω(n lnn/k)2 ≤ n2/ω3/2 rounds

measured from round T when they met. Similarly as before, provided that they did
not reach the end of the path, the process can be coupled with the lazy simple random
walk on Z starting at X0 = 0 in such a way that the distance at round t between the
two agent is at least 2Xt. It follows from (6), applied with a = dn/be = Θ(n lnn/k)
and t =

√
ω(n lnn/k)2, that a.a.s. some agent reaches the end of the path or the two

agents are at distance more than 2a at some point of that period of time. On the
other hand, after applying the Hoeffding-Azuma inequality (2), with t =

√
ω(n lnn/k)2

and b =
√
ωt = ω3/4(n lnn/k) ≤ n/ω1/4 = o(n/ω1/5), we get that a.a.s. neither agent

reaches the end of the path during that period of time. We conclude that a.a.s. the two
agents are at distance more than 2a at some point, that is, at some point they occupy
two different blocks of the path that are separated by at least one block. A trivial but
important property is that all agents occupying that internal block are green.

Suppose that at some point of the process, all agents occupying block i, 2 ≤ i ≤ b,
are green but some agent occupying block i − 1 is white. Note that each block has
length at most dn/be ≤ (11/10)(n/b) ≤ 600n lnn/k. Let t = (9600n lnn/k)2. Let
us concentrate on any agent occupying block i. It follows from equation (5), applied
with a =

√
t/8 = 1200n lnn/k and the above t, that with probability at least 1/2 the

agent either reaches the endpoint of the path (at some point during the following t
rounds) or is at distance at least a from the original place after t rounds. Hence, by
symmetry, with probability at least 1/4, this agent either at some point reaches the
endpoint of the path or occupies block j ≤ i − 1 after t rounds. In both scenarios all
agents occupying block i− 1 become green. By Lemma 3.8, there are at least 100 lnn
agents occupying block i. Hence the probability that no agent does the job is at most
(3/4)100 lnn = o(n−1). By symmetry, the same argument can be applied when all agents
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occupying block i, 1 ≤ i ≤ b − 1, are green but some agent occupying block i + 1 is
white.

Since there are b ≤ n blocks, by the union bound, we get that a.a.s. after any period
of t rounds, the number of blocks with all agents being green increases and so the
process is done after at most

o(n2 lnn/k) + t · b = o(n2 lnn/k) + (9600n lnn/k)2 · (k/(500 lnn))

= O(n2 lnn/k)

rounds and so the proof is finished. �

Adjustment to cycles: As mentioned earlier, the same argument works for cycles
and the proof is simpler as one does not need to pay attention to the two endpoints of
the path. The same comment applies to the next theorems below.

Let us now move to a lower bound.

Theorem 3.10. Let ω = ω(n) be any function that tends to infinity as n → ∞. For
any k such that ω lnn ≤ k = k(n) ≤ n/ ln2 n, a.a.s.

ξ(Pn, k) = Ω

(
n2

k(ln k)(lnn)

)
= Ω

(
n2

k ln2 n

)
.

Moreover, for any k such that n/ ln2 n < k = k(n) < 50n lnn, a.a.s.

ξ(Pn, k) > (1/2 + o(1))n.

Proof. Assume first that ω lnn ≤ k = k(n) ≤ n/ ln2 n. Recall that there are b = b(n) =
bk/(500 lnn)c blocks (because of our assumption that b � 1 and b � n/ ln3 n), each
of length (500 + o(1))n lnn/k. We assign to each block a label from [b]; the first block
contains vertex 1 and the last block contains vertex n. By symmetry, we may assume
that the initial green agent starts at block i0 ≥ b/2. We will say that a green agent is
leading if she occupies vertex j and no other green agent occupies vertex ` < j. Note
that leading agents may (and often do) change during the process, and there could be
more than one leading agent at a given round. We will concentrate on leading agents
and investigate times ti when a leading agent leaves block i + 1 and enters block i for
the first time. We will show that the following property holds a.a.s.: for all values of
i ∈ [i0 − 2],

ti − ti+1 ≥ T = T (n) :=
n2

384 k2 ln k
. (7)

Since k = k(n) ≤ n/(
√

lnnω), we get that T � 1 (this is the reason we had to introduce
an upper bound for k; in fact, we assumed that k ≤ n/ ln2 n as for larger values of k
we will be able to prove a stronger bound anyway). This will yield a lower bound for
ξ(Pn, k) as it proves that it takes at least (i0 − 1)T ≥ (b/2− 1)T = Ω(n2/(k ln k lnn))
steps for the leading agent to reach the first block. Reaching the first block is needed
as, by Lemma 3.8, a.a.s. there are agents in that block that by the definition of the
leader are still white.

Let us fix any i ∈ [i0 − 2] and investigate the situation at time ti+1 when a leading
agent enters block i + 1. It follows from Lemma 3.8 that there are at most 1800 lnn
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agents occupying block i+1. Since each block has length (500+o(1))n lnn/k, there must
be a gap between two agents occupying that block that is of length at least g := n/(4k).
Trivially, between time ti+1 and ti at least one agent has to move at least g/2 = n/(8k)
from her position at time ti+1; otherwise, no agent crosses the middle vertex of the gap
and so no green agent enters block i. The probability that at least one agent crosses
the gap during T rounds is, by Hoeffding-Azuma inequality (2) applied with b = g/2
and t = T , at most

k · 2 exp

(
−(g/2)2

2T

)
= 2k exp

(
− n2/(64k2)

2n2/(384k2 ln k)

)
= 2/k2.

Property (7) holds for a given i with probability 1 − o(1/k). Since i0 ≤ b ≤ k, by the
union bound, it holds a.a.s. for all i ∈ [i0 − 2]. The desired lower bound holds for this
range of k.

The argument for n/ ln2 n < k = k(n) < 50n lnn is straightforward. As before, by
symmetry we may assume that the initial green agent starts at block i0 ≥ b/2, that is,
she is at distance at least d = d(n) := n/2− (500 + o(1))n lnn/k ∼ n/2 from the first
block. By Lemma 3.8, we may assume that the first block is always occupied by some
agents. Trivially (and deterministically), it takes at least d(n) steps for a leading agent
to reach that block which yields the desired lower bound. The proof is finished. �

In fact, in order to get a slightly stronger lower bound, one may use the fact that
agents occupying blocks that are further away from the gap have to move more than
g/2. Agents that are far can be dealt with easily. Hence, the union bound can be taken
over Θ(lnn) agents occupying close blocks instead of k agents. This would improve the
bound by a multiplicative factor of Θ(ln k/ ln lnn). However, since such a lower bound
does not match the upper bound we proved above, we stayed with an easier proof of a
slightly weaker bound.

4. Closing the Gap and the Meet-Exchange Process

Many of the bounds in this paper are proved in a “local” fashion by proving concen-
tration bounds for the “moving parts”, whether these parts are trajectories of walks or
numbers of agents in blocks. Once these bounds are established, one essentially needs
to consider the worst case bound that holds with desired probability and treats the
process as deterministic. This is a classic and natural approach. However, for this
problem it will never be enough to establish tight bounds.

In order to obtain tight bounds, one needs to use a “global” approach. Such approach
was successfully applied in [17] and then in [13] to analyze similar models. It is possible
that it could be used again to get tight bounds for the broadcasting time for cycles and
paths (possibly grids too). We leave it as an open problem.

Finally, let us mention the Meet-Exchange process that was recently introduced and
studied in [12]. This process is closely related to our process but there are a few
differences. In Meet-Exchange, agents are placed independently on the vertices of a
graph according to the stationary distribution π instead of selecting starting points
uniformly at random. A message is left on one of the vertices and needs to be picked
up the agents before they start passing it to each other. Moreover, agents perform a
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lazy random walk to avoid a problem of agents never meeting if the graph is bipartite
(in the broadcasting time we avoid this issue by passing a message if agents go through
the same edge but in the opposite directions—see below for more details). Despite
these differences, it is quite possible that the bounds proved for the broadcasting time
can also be proved for the Meet-Exchange process. Indeed, the stationary distribution
is uniform on the cycle and almost uniform on the path. The message is picked by the
agents quickly. In [22] it was shown that it takes O((n/k)2 ln2 k) rounds in expectation
and so it is negligible unless k is very small. Addressing the fact that agents in the
Meet-Exchange perform a lazy random walk should also be possible but disregarding
passing a message by crossing agents seems to be the most challenging task. Having said
that, since the considered graphs are strongly recurrent, once agents meet they typically
do so a few times.With more work one should be able to overcome these technicalities.
We also leave it as an open problem.

We would like to thank anonymous reviewers for pointing these papers and the
“global” approach to us and for many other valuable comments that substantially im-
proved the quality of this paper.
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