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Abstract. Consider the following broadcasting process run on a connected graph
G = (V,E). Suppose that k ≥ 2 agents start on vertices selected from V uniformly
and independently at random. One of the agents has a message that she wants to
communicate to the other agents. All agents perform independent random walks on
G, with the message being passed when an agent that knows the message meets an
agent that does not know the message. The broadcasting time ξ(G, k) is the time it
takes to spread the message to all agents.

Our ultimate goal is to gain a better understanding of the broadcasting process
run on real-world networks of roads of large cities that might shed some light on
the behaviour of future autonomous and connected vehicles. Due to the complexity
of road networks, such phenomena have to be studied using simulation in practical
applications. In this paper, we study the process on the simplest scenario, i.e., the
family of complete graphs, as in this case the problem is analytically tractable. We
provide tight bounds for ξ(Kn, k) that hold asymptotically almost surely for the whole
range of the parameter k. These theoretical results reveal interesting relationships and,
at the same time, are also helpful to understand and explain the behaviour we observe
in more realistic networks.

1. Introduction and Motivation

In this paper, we investigate the problem of broadcasting messages between agents
that randomly move on a connected graph G = (V,E). The assumption is that k ≥ 2
agents start the process at random locations on the graph and then perform a random
walk along its vertices. One agent, selected in advance, initially possesses some infor-
mation. If two agents meet at some point during the process and only one of them
possesses the information, it is passed along to the other agent. The broadcasting time
ξ(G, k) is the time it takes to spread the message to all agents. (Formal definition will
be provided in Section 3.)

The motivation for this line of work stems from the need to better understand the
process of broadcasting messages between cars that are connected via Dedicated Short-
Range Communication (DSRC) devices. DSRC devices are a component of Vehicle-
to-Vehicle (V2V) communication infrastructure [18, 3]. The work conducted in [10]
is an example of a theoretical study of ad-hoc networks with moving agents. V2V
solutions can be combined with cellular networks (Vehicle-to-Infrastructure, V2I) to
form an efficient communication solution for a transportation system [8]. For scenarios
involving direct communication within a city, dedicated protocols, such as the Urban
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Vehicular BroadCAST (UV-CAST) protocol [24] have been developed. In UV-CAST
the authors use agent-based simulation of a real city to test the protocol’s efficiency.

In this paper, we focus solely on understanding how the density of vehicles in a net-
work affects the efficiency of broadcasting messages in the theoretical case of a complete
graph, as this is a scenario that can be investigated analytically. We provide a com-
plete characterization of ξ(Kn, k) for the whole range of the parameter k. Interestingly,
ξ(Kn, k) is well concentrated around 2n ln k/k for a wide range of possible values of
k, but the behaviour changes when k is very large, namely, when k is linear in n (see
Theorem 3.1 for details).

For more realistic scenarios involving real-world networks of roads, in [16] we have
developed a general simulation framework. An in-depth simulation-approach to the
broadcasting problem will be the subject of an accompanying paper [15]. Despite the
fact that real-world road networks have completely different structure than complete
graphs, simulations led us to the hypothesis that the broadcasting time in real scenario
is still proportional to n ln k/k, where n is the number of vertices in the graph (which
correspond to intersections) and k is the number of traveling agents (which correspond
to cars).

The paper is structured as follows. In the next section, Section 2, we discuss related
problems. We formally define our problem, introduce asymptotic notation, and state
the main result in Section 3. The whole of Section 4 is devoted to proving the main
result.

2. Related Problems

The performance of a random walk in a networks is a fundamental process that
has found applications in many areas of computer science. Since this paper contains
theoretical results, let us concentrate on rigorous, theoretical results of related processes.
As this is still a very broad topic, we only scratch the surface and focus on multiple
random walks performed simultaneously (which has many applications in distributed
computing, such as sampling) and processes run on complete graphs. For more on other
directions, we direct the reader to one of the many books on Markov chains; see, for
example [19].

Suppose there are k ≥ 2 particles, each making a simple random walk on a graph
G. Even if the particles are oblivious of each other, it is important and non-trivial to
estimate the (vertex) cover time, an extensively studied graph parameter that is defined
as the expected time required for the process to visit every vertex of G. Questions
become more interesting (and difficult) once we allow particles to interact once they
meet. We assume that interaction occurs only when meeting at a vertex, and that the
random walks made by the particles are otherwise independent. There are at least four
interesting variants of this process:

• Predator-Prey : estimate the expected time-to-extinction of the prey particles
under the assumption that k predator and ` prey particles walk independently;
predators eat prey particles upon meeting at a vertex.
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• Coalescing particles : estimate the expected time to coalesce to a single particle
under the assumption that k particles walk independently and coalesce upon
meeting at a vertex.
• Annihilating particles : estimate the expected time-to-extinction of all particles

under the assumption that k = 2` particles walk independently and destroy
each other (pairwise) upon meeting at a vertex.
• Talkative particles : estimate the expected time to broadcast a message—this is

exactly the problem that we are concerned with in this paper.

All of these variants have been studied for random d-regular graphs Gn,d [5]. In partic-
ular, if d ≥ 3 is a fixed constant and k ≤ nε for a sufficiently small constant ε > 0, then
asymptotically almost surely (see the next section for a definition and a notation used)

ξ(Gn,d, k) ∼ 2Hk−1

k
· d− 1

d− 2
· n.

Moreover, in a very recent paper, the first and the fourth author of this paper studied
paths and cycles [12]. These are the only theoretical results on broadcasting time that
we are aware of.

On the other hand, the variant of coalescing particles is very well-studied, mainly
because of its surprising connection to the voter model [2, 20]. The state of the process
at a given time t is described by a function µt : V (G) → O, where V (G) is the vertex
set of a graph G and O is a given set of possible opinions. Each vertex v ∈ V (G) “wakes
up” at rate 1 and when it happens at a time t > 0, v chooses one of its neighbours w
uniformly at random and updates its value µt(v) to the opinion of w; all other opinions
remain the same. A classical duality result (see, for example, [2, 20]) directly relates
the state of the process at a given time to a system of coalescing random walks on G
moving backwards in time. As we already mentioned, there are many interesting results
on the coalescing time. Let us only mention a beautiful conjecture posed by Aldous
and Fill in the mid-nineties (Open problem 13, Chapter 14 of [2]). They conjectured
an upper bound for the mean coalescent time in terms of the mean hitting time of a
single random walk. The conjecture was proved in [21, 22].

Let us now briefly discuss the following well-known and well-studied rumour spreading
protocols: Push and Push&Pull. Suppose that one vertex in a network is aware of a
piece of information, the “rumour”, and wants to spread it to all vertices. In each round
of the Push protocol, every informed vertex contacts a random neighbour and sends
the rumour to it (“pushes” the rumour). In Push&Pull, uninformed vertices can also
contact a random neighbour to get the rumour if the neighbour knows it (“pulls” the
rumour).

There is a long sequence of interesting and important papers studying the runtime of
Push on the complete graph. The first paper considering this protocol is [11] but more
precise bounds were provided in [23] and then in [9], in which it was shown that the
process can essentially be stochastically bounded (from both sides) by coupon collector
type problems. A very recent paper [6] answers some remaining questions; it both
determines the limiting distribution and explains why it is a difficult problem: the
runtime, scaled appropriately by (log2 n+ lnn), has no limiting distribution; instead, it
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exhibits a double-oscillatory behaviour. Push has been extensively studied on several
other graph classes besides complete graphs.

The Push&Pull protocol has an equally long sequence of interesting papers studying
it. The synchronous version of the protocol (as described above) was introduced in [7]
and popularized in [17]. However, such synchronized models (that is, models in which
all vertices take action simultaneously at discrete time steps) are not plausible for many
applications, including real-world social networks. As a result, an asynchronous version
of the model with a continuous timeline was introduced in [4]. In this variant, each
vertex has its own independent clock that rings at the times of a rate 1 Poisson process
with the protocol specifying what a vertex has to do when its own clock rings. The
first theoretical relationships between the spread times in the two variants was provided
in [1].

3. Formulation of the Problem and the Main Result

In this section, we formally define the process we aim to analyze (Subsection 3.1).
We define it for any connected graph but in this paper we focus on complete graphs.
As our results are asymptotic in nature, we need to introduce the asymptotic notation
that is used throughout the entire paper (Subsection 3.2). Finally, we state the main
result that combines all ranges for the number of agents involved (Subsection 3.3).

3.1. Problem. Suppose that we are given a connected graph G = (V,E) on n = |V |
vertices. Let k ≥ 2 be any natural number; k = k(n) may be a function of n that tends
to infinity as n→∞. There are k agents, one of which is green and the remaining ones
are white. The process starts at round t = 0 with agents located randomly on vertices
of G; that is, each agent starts at any vertex v ∈ V with probability 1/n, independently
of other agents and independently of her colour. Each agent synchronously performs
an independent random walk, regardless if she is green or white. In other words, an
agent occupying vertex v ∈ V moves to any neighbour of v with probability equal to
1/ deg(v). When green and white agents meet at some round t ≥ 0, the white agent
becomes green. In particular, all agents that start at the same vertex as the initial green
agent are green from the very beginning. Let ξ = ξ(G, k) be the time it takes for all
agents to become green. (Note that ξ is a random variable even if G is a deterministic
graph.)

We say that the process is at phase ` (1 ≤ ` ≤ k) if there are ` green agents (and so
k − ` white agents). The first phase is usually phase 1, unless some white agents start
at the same vertex as the green agent but this is rare if k is small. Clearly, the process
always moves from a smaller phase to a larger phase. If k is small, then typically it
takes a lot of rounds for the process to move to another phase but some phases may be
skipped. If k is large, then skipping phases is quite common. The process ends at the
end of round ξ, when we are about to move to phase k.

3.2. Asymptotic Notation. Our results are asymptotic in nature, that is, we will
assume that n → ∞. Formally, we consider a sequence of graphs Gn = (Vn, En)
(complete graphs on n vertices) and k = k(n) which may be a function of n that tends
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to infinity as n→∞. We are interested in events that hold asymptotically almost surely
(a.a.s.), that is, events that hold with probability tending to 1 as n→∞.

Given two functions f = f(n) and g = g(n), we will write f(n) = O(g(n)) if there
exists an absolute constant c ∈ R+ such that |f(n)| ≤ c|g(n)| for all n, f(n) = Ω(g(n))
if g(n) = O(f(n)), f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)), and we
write f(n) = o(g(n)) or f(n) � g(n) if limn→∞ f(n)/g(n) = 0. In addition, we write
f(n)� g(n) if g(n) = o(f(n)) and we write f(n) ∼ g(n) if f(n) = (1 + o(1))g(n), that
is, limn→∞ f(n)/g(n) = 1.

3.3. Main Result. Let us summarize the main results in one theorem. More detailed
statements can be found in the next section.

Theorem 3.1. Depending on the parameter k = k(n), the following properties hold:

(a) If k = O(1), then a.a.s.

n ln k

ωk
≤ ξ(Kn, k) ≤ ωn ln k

k
,

where ω = ω(n) is any function tending to infinity as n → ∞. Moreover,

E[ξ(Kn, k)] ∼ 2nHk−1/k, where Hk−1 =
∑k−1

`=1 `
−1 is the Harmonic number.

(b) If 1� k � n, then a.a.s.

ξ(Kn, k) ∼ 2n ln k

k
.

(c) If k ∼ cn for some c ∈ (0,∞), then a.a.s.

ξ(Kn, k) ∼
(

1

c
+

1

ln(1 + c)

)
lnn.

(d) If k ∼ cn for some c = c(n) such that 1� c = no(1), then a.a.s.

ξ(Kn, k) ∼ lnn

ln c
.

(e) If k = n1+x+o(1) for some x ∈ (1
i
, 1
i−1), i ∈ N \ {1, 2}, then a.a.s.

ξ(Kn, k) = i.

(f) If k = n1+x+o(1) for some x ∈ (1
2
,∞), then a.a.s.

ξ(Kn, k) = 2.

(g) If k = n1+1/i+o(1) for some i ∈ N \ {1}, then a.a.s.

ξ(Kn, k) =


i+ 1 if (k/n)i < (1− ε)n lnn for some ε > 0

i if (k/n)i > (1 + ε)n lnn for some ε > 0

i or i+ 1 otherwise.
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4. Proofs

This whole section is devoted to proving Theorem 3.1. We investigate the process
running on Kn, the complete graph on n vertices. Depending on the number of agents
involved (parameter k = k(n)), the proof requires different approaches. We will deal
with each subrange of k independently. However, before we start, let us state Chernoff’s
bound, a well-known concentration inequality that we will use often.

4.1. Concentration inequalities. Throughout the paper, we will be using the follow-
ing concentration inequality. Let X ∈ Bin(n, p) be a random variable with the binomial
distribution with parameters n and p. Then, a consequence of Chernoff’s bound (see
e.g. [14, Corollary 2.3]) is that

P(|X − EX| ≥ εEX) ≤ 2 exp

(
−ε

2EX
3

)
(1)

for 0 < ε < 3/2. Moreover, let us mention that the bound holds for the general
case in which X =

∑n
i=1Xi and Xi ∈ Bernoulli(pi) with (possibly) different pi (again,

e.g. see [14] for more details).

4.2. Chebyshev’s inequality. At one point, we will need to use the classic Cheby-
shev’s inequality. It can be applied in a more general scenario but here we only present
a specific case that suffices for our application. Let X be any random variable taking
values from the set of non-negative integers. Then, for any ε > 0,

P(|X − EX| ≥ εEX) ≤ VarX

(εEX)2
. (2)

In particular, if for some sequence of random variables (Xn)n∈N, VarXn = o((EXn)2),
then a.a.s. Xn ∼ EXn.

4.3. Concentration for Case (a) and a subrange of Case (b). We start with the
case of k being relatively small, that is, 2 ≤ k � (n/ log n)1/3.

Theorem 4.1. Let ω0 = ω0(n) be any function tending to infinity as n → ∞. Then
the following properties hold a.a.s.

• If k = O(1), then

n ln k

ω0k
≤ ξ(Kn, k) ≤ ω0n ln k

k
.

• If 1� k � (n/ lnn)1/3, then

ξ(Kn, k) =
2n ln k

k

(
1 +O

(
1

(ln k)1/3

))
∼ 2n ln k

k
.

Proof. Let ω = ω(n) be any function tending to infinity as n → ∞ (sufficiently slowly
so that some bounds claimed below hold and ω(n) ≤ ω0(n) for all n). Suppose that

k ≤ 1

ω

( n

lnn

)1/3
.
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Since we aim for upper bounds for ξ(Kn, k) that are at most

N := n
ω ln k

k
,

we may only consider N rounds of the process. Formally, we stop the process prema-
turely if the process is not finished by the end of round N , and in such cases no upper
bound is claimed. However, we will show that a.a.s. the process does terminate before
time N and so the desired bounds are established.

Note that the probability that the process starts with no white agents occupying the
same vertex as the initial green agent is equal to(

1− 1

n

)k−1

= exp

(
−k − 1

n
+O

(
k

n2

))
∼ 1,

since k = o((n/ lnn)1/3) = o(n). Hence, since we aim for a result that holds a.a.s., we
may assume that the process starts at phase 1.

In the original definition of the problem agents move simultaneously but it is more
convenient to split each round t into two sub-rounds. Let us first move green agents
and, once they land on the corresponding vertices, we move white agents. We say that
a given round is unusual if at least one of the following two events hold during the first
sub-round: U1(t)—two green agents meet, U2(t)—some green agent moves to a vertex
occupied by some white agent. (Note that when U2(t) happens the white agent does
not become green. Recall that agents synchronously perform their random walks so
this situation corresponds to agents passing each other without any colour changes.)
Let U(t) = U1(t) ∪ U2(t) be the corresponding event that round t is unusual. If a
round is not unusual, then we say that it is regular. We also say that a given round is
successful if we move from phase ` to phase ` + 1. Let S(t) be the event that round t
is successful. Similarly, round t is called lucky if we move from phase ` to phase ` + x
for some x ∈ N \ {1}, and L(t) is the corresponding event. (Let us stress the fact that
in the definition of S(t) and L(t) we do not condition that U(t) does not hold. It will
be important soon.)

Consider some round t (1 ≤ t ≤ N) during some phase ` (1 ≤ ` ≤ k − 1). The
probability that this round is unusual can be estimated as follows:

P(U1(t)) ≤
(
`

2

)
· 1

n− 1
= O(k2/n)

P(U2(t)) ≤ (k − `) · ` · 1

n− 1
= O(k2/n),

and so P(U(t)) = O(k2/n). Hence, the expected number of unusual rounds is equal to

N∑
t=1

P(U(t)) = O

(
N

k2

n

)
= O

(
n
ω ln k

k
· k

2

n

)
= O(ωk ln k).

It follows from Markov’s inequality that a.a.s. the number of unusual rounds is at most
u := ω2k ln k. We refer to this as property (P1).
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There will be some unusual rounds but much fewer than the total number of rounds.
Moreover, the possibility of an unusual round being successful or lucky is very low so
that a.a.s. we will not see any unusual rounds being successful or lucky. We refer to
this as property (P2). Indeed,

P(S(t) ∪ L(t) | U(t)) ≤ ` · (k − `) · 1

n− 1
= O(k2/n),

since there are ` · (k− `) pairs of green-white agents and for each pair, the white agent
lands on the green one with probability at most 1/(n− 1). It follows that the expected
number of unusual rounds that are successful or lucky is at most

N∑
t=1

P(U(t) ∩ (S(t) ∪ L(t))) =
N∑
t=1

P(U(t)) · P(S(t) ∪ L(t) | U(t))

= N ·O(k2/n) ·O(k2/n) = O

(
ωk3 ln k

n

)
= O

(
1

ω2

)
= o(1).

We get that a.a.s. there is no such round by Markov’s inequality. Similarly, a.a.s. there
are no lucky rounds (regardless whether unusual or regular); we use property (P3) to
refer to the property that

P(L(t)) ≤
(
k − `

2

)
·
(

`

n− 1

)2

= O(k4/n2),

and so the expected number of lucky rounds tends to zero as n→∞.

Let us now condition on the events we know happen a.a.s., properties (P1)–(P3).
We may couple the process with an auxiliary process where we simply ignore unusual
rounds—these rounds are not successful nor lucky by property (P2). By property (P1),
this auxiliary process has at most

N − u = n
ω ln k

k
− ω2k ln k ∼ N

rounds as k = o((n/ lnn)1/3). If we reach that many rounds, we will stop the process
prematurely. By property (P3), no round is lucky and so we need to move from phase
1 all the way to phase k without skipping any phases. Since all rounds are regular and
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not lucky, at each round during phase `, we move to round `+ 1 with probability

p` := P
(

Bin

(
k − `, `

n− 1

)
= 1

∣∣∣ Bin

(
k − `, `

n− 1

)
≤ 1

)
:=

P
(
Bin

(
k − `, `

n−1

)
= 1
)

P
(
Bin

(
k − `, `

n−1

)
= 1
)

+ P
(
Bin

(
k − `, `

n−1

)
= 0
)

=
(k − `) · `

n−1 ·
(
1− `

n−1

)`−1
(k − `) · `

n−1 ·
(
1− `

n−1

)`−1
+
(
1− `

n−1

)`
=

`(k − `)
n

(
1 +O(k2/n)

)
∼ `(k − `)

n
;

otherwise, we stay in phase `. It follows that the number of rounds it takes to move to
the next phase is equal to X`, the geometric random variable with expectation

1/p` =
n

(k − `)`
(1 +O(k2/n)) ∼ n

(k − `)`
.

Hence, the length of the auxiliary process is max{X,N − u}, where X =
∑k−1

`=1 X` is a
sum of independent random variables X` = Geom(p`). It follows that

E[X] =
k−1∑
`=1

1

p`
=

k−1∑
`=1

n

(k − `)`
(1 +O(k2/n))

= (1 +O(k2/n))
n

k

k−1∑
`=1

(
1

k − `
+

1

`

)
= (1 +O(k2/n))

2nHk−1

k
, (3)

where Hk−1 =
∑k−1

`=1 1/` is the Harmonic number. Since Hk−1 = ln k + O(1), we get
that

E[X] = (1 +O(1/ ln k))
2n ln k

k
.

The rest of the proof is straightforward and follows from the concentration inequal-
ities from [13]. These bounds are obtained by the classical method of estimating the
moment generating function (or probability generating function) and using the standard
inequality (an instance of Markov’s inequality).

It is proved in [13] that for any λ ≥ 1,

P(X ≥ λE[X]) ≤ exp
(
− p∗ · E[X] · (λ− 1− lnλ)

)
, (4)

where p∗ = min` p` = (k − 1)/n. If k = O(1), then one can take λ =
√
ω to get that

P(X ≥ λE[X]) ≤ exp
(
− Ω(

√
ω ln k)

)
= o(1),

and so a.a.s. the original process takes at most

u+ min{λE[X], N − u} ≤ ω2k ln k + (1 +O(1/ ln k))
2
√
ωn ln k

k
<
ωn ln k

k
= N
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rounds. On the other hand, if k � 1, then one can take λ = 1 + 1/(ln k)1/3 ∼ 1 to get
that

λ− 1− lnλ ≥
(

1 +
1

(ln k)1/3

)
− 1−

(
1

(ln k)1/3
− 1

3(ln k)2/3

)
=

1

3(ln k)2/3
,

since ln(1 + x) = x− x2/2 +O(x3) ≥ x− x2/3 for sufficiently small x. We get that

P(X ≥ λE[X]) ≤ exp
(
− Ω((ln k)(ln k)−2/3)

)
=
(
− Ω((ln k)1/3)

)
= o(1),

and so a.a.s. the original process takes at most

u+ max{X,N − u} ≤ ω2k ln k + (1 + 1/(ln k)1/3) E[X]

= (1 +O(1/(ln k)1/3))
2n ln k

k

rounds. The upper bounds hold.
The lower bounds follow from upper bounds for the lower tail for a sum of geometric

random variables. Indeed, it is proved in [13] that for any λ ≤ 1,

P(X ≤ λE[X]) ≤ exp
(
− p∗ · E[X] · (λ− 1− lnλ)

)
.

If k = O(1), then one can take λ = 1/ω to get that

P(X ≤ λE[X]) ≤ exp
(
− Ω((ln k)(− ln(1/ω)))

)
= o(1).

On the other hand, if k � 1, then one can take λ = 1− 1/(ln k)1/3 ∼ 1 to get the same
bound as before, namely, λ− 1− lnλ ≥ 1

3(ln k)2/3
, and so

P(X ≤ λE[X]) ≤ exp
(
− Ω((ln k)(ln k)−2/3)

)
=
(
− Ω((ln k)1/3)

)
= o(1).

This finishes the proof. �

4.4. Expectation for Case (a). Let us point out that we did not prove concentration
for ξ(Kn, k) in Case (a), that is when k = O(1), but the bounds we did prove that hold
a.a.s. are the best possible. Indeed, in order to illustrate this, we can consider the case
k = 2, though the same conclusion can be derived for any k = O(1). As explained in
the proof above, the length of the process can be modelled by the geometric random
variable X = Geom(1/n) with E[X] = n. Since for each a ∈ (1,∞) and b ∈ (0, 1) we
have

P(X > an) =

(
1− 1

n

)an

∼ e−a

P(X ≤ bn) = 1− P(X > bn) = 1−
(

1− 1

n

)bn

∼ 1− e−b,

no stronger bounds than the ones we proved in Theorem 4.1 hold a.a.s.

In order to finalize Case (a), let us compute the expected value of ξ(Kn, k) for a
constant k.
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Theorem 4.2. If k = O(1), then

E[ξ(Kn, k)] =
2nHk−1

k
+O(lnn) ∼ 2nHk−1

k
,

where Hk−1 =
∑k−1

`=1 1/` is the Harmonic number.

Proof. Suppose that at the beginning of some round t, there are ` green and k−` white
agents occupying m ≤ k−` vertices; in particular, the process is at phase `. Let us first
compute a` = a`(t), the probability that the process stays at phase `, that is, during
this round no white agent becomes green. We will use the notation and terminology
introduced in the proof of Theorem 4.1. Recall that U(t)c is the event that this round
is regular (not unusual), that is, during the initial sub-round no green agent moves to
a vertex occupied by some white agent and no green agents meet. The k − ` white
agents occupy m vertices and the green agents occupy ` vertices different than the ones
occupied by the white agents. By moving one green agent at a time, it is clear that

P (U(t)c) =
m+`−1∏
r=m

(
1− r

n− 1

)

= 1−
m+`−1∑
r=m

r

n− 1
+O

(
1

(n− 1)2

)
= 1− (2m+ `− 1)`

2n
+O

(
1

n2

)
.

Recall also that S(t) and L(t) are the events that this round is successful (that is, at the
end of this round we move to phase `+ 1) and, respectively, lucky (that is, we move to
phase `+ x for some x ∈ N \ {1}). Let b` = b`(t) := P(S(t)) and c` = c`(t) := P(L(t)).
Again, by moving one white agent at a time, we can easily compute the probability
that we do not move to the next phase as follows:

P
(

(S(t) ∪ L(t))c | U(t)c
)

=

(
1− `

n− 1

)k−`

= 1− `(k − `)
n

+O

(
1

n2

)
P
(

(S(t) ∪ L(t))c | U(t)
)

= 1−O
(

1

n

)
,

and so

a` = P
(

(S(t) ∪ L(t))c | U(t)c
)
P (U(t)c) + P

(
(S(t) ∪ L(t))c | U(t)

)
P (U(t))

=

(
1− `(k − `)

n
+O

(
1

n2

))(
1− (2m+ `− 1)`

2n
+O

(
1

n2

))
+

(
1−O

(
1

n

))(
(2m+ `− 1)`

2n
+O

(
1

n2

))
= 1− `(k − `)

n
+O

(
1

n2

)
.
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Similarly, in order to compute b` and c`, let us note that

P
(
S(t) | U(t)c

)
= (k − `) · `

n− 1
·
(

1− `

n− 1

)k−`−1

=
`(k − `)

n
+O

(
1

n2

)
P
(
S(t) | U(t)

)
= O

(
1

n

)
.

It follows that

b` = P
(
S(t) | U(t)c

)
P (U(t)c) + P

(
S(t) | U(t)

)
P (U(t))

=

(
`(k − `)

n
+O

(
1

n2

))(
1 +O

(
1

n

))
+O

(
1

n

)
·O
(

1

n

)
=

`(k − `)
n

+O

(
1

n2

)
,

and so

c` = 1− a` − b` = O

(
1

n2

)
.

To simplify the notation, let X = ξ(Kn, k) be the number of rounds of the process. In
order to get an upper bound for E[X], we couple the original process with an auxiliary
process in which we move from phase ` to phase `+ 1 with probability

b̂` = `(k − `)/n+O(1/n2),

and stay at phase ` otherwise. Let Y be the number of rounds of this auxiliary process.
The coupling ensures that X ≤ Y . More importantly, Y =

∑k−1
`=1 Y` is a sum of

independent random variables Y` = Geom(b̂`). Arguing as in the proof of Theorem 4.1
(see (3)), we get that

E[X] ≤ E[Y ] =
2nHk−1

k
+O(1),

and the upper bound follows. Moreover, by applying (4) we get that the contribution
to E[Y ] from rounds after, say, round t0 = t0(n) := 10n lnn is negligible, that is,∑
t≥t0

t · P(Y = t) = t0 · P(Y ≥ t0) +
∑

t≥t0+1

P(Y ≥ t)

≤ t0 · exp

(
−(k − 1)t0

n
(1 + o(1))

)
+
∑
t≥t0

exp

(
−(k − 1)t

n
(1 + o(1))

)
≤ (10n lnn) exp (−(10 + o(1)) lnn) +

∑
t≥t0

exp

(
− t
n

(1 + o(1))

)

≤ o(1) +
∑

s≥10 lnn

n(s+1)∑
t=ns

exp
(
− s(1 + o(1))

)
= o(1) +O(n) ·

∑
s≥10 lnn

exp
(
− s(1 + o(1))

)
= o(1). (5)
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In order to get a lower bound for E[X], we couple the original process with another
auxiliary process. We stop this new auxiliary process prematurely at round t if that
round is lucky (that is, event L(t) holds). Let R(t) be the event that we stopped
prematurely by round t; that is, R(t) =

⋃t
i=1 L(i). Let Z be the number of rounds of

this new auxiliary process. This time, the coupling ensures that X ≥ Z. We get that

E[Z] =
∑
t≥1

t · P(Z = t)

=
∑
t≥1

t ·
(
P(R(t)) + P(R(t)c) · P(Z = t | R(t)c)

)

≥
10n lnn∑
t=1

t · P(R(t)c) · P(Z = t | R(t)c).

Note that for any t ≤ 10n lnn,

P(R(t)c) =
(
1−O(1/n2)

)t
= 1 +O(t/n2) = 1 +O(lnn/n).

Moreover, after conditioning on not finishing prematurely, we are back to the first
auxiliary process, that is, P(Z = t | R(t)c) = P(Y = t). It follows that

E[Z] ≥
(

1 +O(lnn/n)
) 10n lnn∑

t=1

t · P(Y = t)

=
(

1 +O(lnn/n)
)(∑

t≥1

t · P(Y = t) + o(1)

)
,

by (5). We get that

E[Z] ≥
(

1 +O(lnn/n)
)

(E[Y ] + o(1)) =
2nHk−1

k
+O(lnn) ∼ 2nHk−1

k
,

and the proof is complete. �

4.5. Concentration for the remaining subrange of Case (b). Let us now move
to the case when k is relatively large, that is, k ≥ n1/3/ lnn but k = o(n). (Note that
Theorem 4.1 requires that k = o((n/ lnn)1/3) so the two theorems together cover the
case k = o(n), Case (b).)

Theorem 4.3. Let ω0 = ω0(n) ≤ ln lnn be any function tending to infinity as n→∞.
Suppose that k = k(n) is such that

n1/3

lnn
≤ k ≤ n

ω0

.

Then the following property holds a.a.s.

ξ(Kn, k) =
2n ln k

k

(
1 +O

(
1

ω0

))
∼ 2n ln k

k
.

Before we prove this theorem, let us start with the following useful observation.
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Lemma 4.4. Let ω0 = ω0(n) be any function tending to infinity as n → ∞. Let
s = s(n) be such that lnn ≤ s ≤ n/ω0, and let r = r(n) = 3s/ lnω0 = o(s). Fix any s
agents (regardless whether they are green or white) and fix any t ∈ N. The probability
that the selected agents occupy at most s− r vertices in round t is at most 1/n2.

In particular, it follows immediately by the union bound that the following property
holds a.a.s. during the time interval consisting of n consecutive rounds: the number of
vertices occupied by the selected agents is more than

s−O(r) = s(1 +O(1/ lnω0)) ∼ s.

(Note that, trivially, it is at most s. Moreover, different agents could be selected in each
round and the number of them can vary, as long as they are selected before they actually
make a move.)

Proof. The probability that the selected agents land on at most s−r vertices is at most(
n

s− r

)(
s− r
n− 1

)s

≤
(

en

s− r

)s−r (
s− r
n

)s

(1 +O(1/n))s

≤ es−r+O(s/n)

(
n

s− r

)−r
≤ es

(n
s

)−r
≤ exp (s− r lnω0) = exp(−2s) ≤ n−2,

as claimed. �

Let us now come back to the main task, namely, bounding the length of the process.
Due to the symmetry (that will be discussed in the proof below), we will concentrate
on reaching phase ` = k/2. Before we move to a formal argument, in order to build
some intuition let us present a heuristic argument. Based on our experience so far, we
expect that the number of rounds that are needed to move from phase ` = `1 to phase
` = `2 ≤ k/2, with `1 � `2, should be close to

`2−1∑
`=`1

n

(k − `)`
=

n

k

`2−1∑
`=`1

(
1

k − `
+

1

`

)
=
n

k

(
O

(
`2 − `1
k

)
+H`2−1 −H`1−1

)
=

n

k

(
O(1) + ln(`2)− ln(`1)

)
∼ n ln(`2/`1)

k
.

On the other hand, the total number of rounds is asymptotic to 2n ln k/k = Θ(n lnn/k),
since k ≥ n1/3/ lnn. Hence, if `2/`1 = no(1), then the length of the part of the process
between phase `1 and `2 is expected to be negligible. It should be stressed that this is
not a formal argument, just a heuristic that suggests that such rounds are going to be
negligible. Formal arguments will be provided below.

For simplicity, we will distinguish five stages of the process. Stage i (i ∈ {1, 2, . . . , 5})
ends when the number of green agents is at least ti for some carefully chosen values of
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ti, namely,

t1 = lnn

t2 = min
{

ln4 n,
n

k lnn

}
t3 = min

{
n

k lnn
,
k

2

}
t4 = min

{
n ln2 n

k
,
k

2

}
t5 = k/2.

Some of them (Stages 1, 2, and 4) will be difficult to control and so we will only manage
to estimate the time they last up to a multiplicative constant. Fortunately, they will
be negligible anyway. The other ones (Stage 3 and 5) are crucial and well-behaved.

Since we would like to provide one proof that covers the whole range of k, for some
specific values of k some stages actually do not happen. It might be confusing at first
so let us start with a brief discussion for each range of k. Stage 1 always happens and
during this stage we reach ` = t1 = lnn.

• n1/3/ lnn ≤ k ≤
√

2n/ lnn: We reach ` = t2 = ln4 n at the end of Stage 2 and
then finish with ` = t3 = k/2 at the end of Stage 3.

•
√

2n/ lnn < k ≤
√

2n ln2 n: We reach ` = t2 = ln4 n at the end of Stage 2,
` = t3 = n/(k lnn) at the end of Stage 3, and then finish with ` = t4 = k/2 at
the end of Stage 4.

•
√

2n ln2 n < k ≤ n/ ln5 n: We reach ` = t2 = ln4 n at the end of Stage 2,
` = t3 = n/(k lnn) at the end of Stage 3, ` = t4 = n ln2 n/k at the end of
Stage 4, and then finish with ` = t5 = k/2 at the end of Stage 5.
• n/ ln5 n < k ≤ n/ ln2 n: We reach ` = t2 = n/(k lnn) at the end of Stage 2,

there is no Stage 3, we reach ` = t4 = n ln2 n/k at the end of Stage 4, and then
finish with ` = t5 = k/2 at the end of Stage 5.
• n/ ln2 n < k ≤ n/ω0: There is no Stage 2 nor Stage 3, we reach ` = t4 = n ln2 n/k

at the end of Stage 4, and then finish with ` = t5 = k/2 at the end of Stage 5.

Finally, we are ready to move to the proof.

Proof of Theorem 4.3. Similarly to the proof of Theorem 4.1, since k = o(n), we may
assume that the process starts at phase 1. As promised, we will distinguish a few stages
of the process.

Stage 1: This stage covers rounds until the number of green agents is at least t1 := lnn,
that is, when we reach phase t1. Since ln t1 = ln lnn = o(lnn), the length of the process
during this stage is expected to be negligible. As a result, in order to get a lower bound
for ξ(Kn, k) we simply ignore this stage, start the process with t1 green agents, and
couple such auxiliary process with the original one. If the auxiliary process is long so
is the original one.

In order to get an upper bound, we may terminate the process prematurely if it is
not over by the end of round N := 3n ln k/k. As in the proof of Theorem 4.1, we split
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each round into two sub-rounds and let green agents move first. We observe that if
the number of green agents stays below t1, then green agents meet during the first N
rounds with probability at most

N ·
(
t1
2

)
· 1

n− 1
≤ Nt21

n
=

3t21 ln k

k
≤ 3 ln4 n

n1/3
= o(1).

Since our process has to be finished after N rounds (either naturally or prematurely),
we may assume that no green agents meet during this stage of the process. On the
other hand, since k is large (recall that k ≥ n1/3/ lnn), when green agents move during
the initial sub-round, they might move to a vertex occupied by some white agent (see
event U2(t) defined in the proof of Theorem 4.1). If this happens, then it slightly slows
the process down but we will show that it does so negligibly.

Consider any round during phase ` ≤ t1; there are k − ` ∼ k white agents and
` ≤ t1 = lnn = o(k) green agents. By Lemma 4.4, we may assume that white agents
always occupy (k−`)(1+o(1)) ∼ k vertices. Once they move, there are (k−`)(1+o(1))
white agents that do not overlap with any green agent. If any of them moves to a
vertex occupied by a green agent, this phase ends. It follows that the probability that
the process stays at phase ` is at most

q` :=

(
1− `

n− 1

)(k−`)(1+o(1))

≤ exp

(
−(1 + o(1))

`(k − `)
n

)
.

Note that e−x ≤ 1 − 3x/5 < 1 − x/2, provided that x ∈ [0, 1]. Hence, if `(k − `) ≤ n,
then

q` ≤ 1− (1 + o(1))
3`(k − `)

5n
≤ 1− `(k − `)

2n
.

If t1(k − t1) ≤ n, then trivially `(k − t1) ≤ t1(k − t1) ≤ n and so the above bound
for q` is always satisfied. In this case, we finish phase ` (and move to phase ` + x for
some x ∈ N) with probability at least p` ≥ `(k − `)/(2n). Arguing as in the proof of
Theorem 4.1 we get that a.a.s. this stage takes at most

(1 + o(1))

t1−1∑
`=1

1

p`
≤ (1 + o(1))

2n

k

t1−1∑
`=1

(
1

k − `
+

1

`

)
∼ 2n

k

(
t1−1∑
`=1

1

`
+O(t1/k)

)

∼ 2n

k

t1−1∑
`=1

1

`
∼ 2n ln t1

k
=

2n ln lnn

k

= O

(
N

ln lnn

lnn

)
= O(N/ω0) = o(N)

rounds. Suppose then that t1(k − t1) > n, that is, k is almost linear; in particular,
k ≥ n/ lnn. The argument above implies that a.a.s. we quickly reach phase `0 for
which `0(k − `0) ≥ n. We will show now that we must reach the end of this phase in
at most 4 lnn additional rounds which is also negligible in comparison to N . Indeed, if
`(k − `) ≥ n, then

q` ≤ (1 + o(1))e−1 ≤ 1/2.
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It follows that during each round at least one white agent becomes green with proba-
bility at least p` ≥ 1/2. Hence, the expected number of white agents that turned green
during 4 lnn rounds can be stochastically bounded from below by the random variable
X ∈ Bin(4 lnn, 1/2). Since E[X] = 2 lnn, using Chernoff’s bound (1) with ε = 1/2 we
get that a.a.s. X ≥ t1 = lnn. It follows that a.a.s. this phase will finish in at most
4 lnn = O(N/ω0) = o(N) additional rounds.

Stages ≥ 2: For the remaining stages, we will continue using Lemma 4.4, which allows
us to assume that during phase ` ≥ t1 = lnn the number of vertices occupied by green
agents is always more than `(1−3/ lnω0) ∼ ` (and, of course, at most `). It follows that
any white agent becomes green with probability at least `(1− 3/ lnω0)/(n− 1) ∼ `/n
but at most `/(n − 1) ∼ `/n. It follows that the number of white agents that become
green in one round is equal to

Y` ∈ Bin

(
k − `, (1 + o(1))

`

n

)
with E[Y`] ∼ (k − `)`/n. Formally, in order to get an upper bound for ξ(Kn, k), we
need to couple the process using a sequence of random variables Ȳ` whereas for a lower
bound we need to use Ŷ`, where

Ȳ` ∈ Bin

(
k − `, `

n− 1

(
1− 3

lnω0

))
, Ŷ` ∈ Bin

(
k − `, `

n− 1

)
.

However, in order to simplify the proof, we will use Y` instead of repeating the argument
for both Ȳ` and Ŷ`.

The definition of random variables Y` does not change but it will still be convenient
to distinguish some stages of the process depending on how large the expected value
of Y` is. These stages will be treated differently. First, in order to make room for a
technical argument, we need to reach ` = ln4 n in Stage 2. The length of this stage
is not predictable but, since ln((ln4 n)/(lnn)) = 3 ln lnn = o(lnn), we will show that
it is negligible anyway. During Stage 3, the expected value of Y` is small, namely
at most 1/ lnn, so skipping phases is not common. The length of this stage can be
well estimated. Once the expectation reaches 1/ lnn but is less than ln2 n, skipping
phases may occur but the process is more challenging to analyze. Fortunately, since
ln((ln2 n)/(1/ lnn)) = 3 ln lnn = o(lnn), the length of this stage (Stage 4) will turn
out to be negligible and so there is no need for a detailed analysis. Once we reach the
expectation at least ln2 n, we reach Stage 5 when skipping phases becomes predictable
and so the length of this stage is predictable too.

Finally, as we already mentioned, we stop the argument when more than k/2 agents
become green. In the following argument, the only tool that we use is Chernoff’s bound,
which only depends on the expected value of the binomial random variable Y`. Hence,
due to the symmetry of the expected value of the binomial random variable Y`, the
second part of the process takes asymptotically the same amount of time. Indeed, if
there are ` green agents, the number of white agents that become green is Y` ∈ Bin(k−
`, (1+o(1))`/n) with E[Y`] ∼ (k−`)`/n. On the other hand, if there are ` white agents,
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the number of white agents that become green is Yk−` ∈ Bin(`, (1+o(1))(k−`)/n) with
E[Yk−`] ∼ (k − `)`/n, as before.

Stage 2: This stage lasts until the number of green agents is at least

t2 := min
{

ln4 n,
n

k lnn

}
.

As already mentioned, if k > n/(ln2 n), then t2 ≤ lnn = t1 and so it is possible that
this stage actually does not happen. Moreover, the length of this stage is negligible.
We treat it independently since the number of green agents is still too small for the
argument used in the next stage to be applied.

Note that `(k − `) ≤ `k ≤ t2k ≤ n/ lnn ≤ n. Arguing as in Stage 1, in each round
we move to another phase with probability p` > `(k − `)/(2n) and so a.a.s. this stage
finishes in at most (2 + o(1))n ln t2/k ≤ (8 + o(1))n ln lnn/k = O(N ln lnn/ lnn) =
O(N/ω0) = o(N) rounds.

Stage 3: This stage lasts until the number of green agents is at least

t3 := min

{
n

k lnn
,
k

2

}
.

As already mentioned, if k > n/ ln5 n, then t3 = t2 = n/(k lnn) and so it is possible
that this stage does not happen. If it does occur, then its length is asymptotically what
we expect.

Suppose that at some point of the process there are ` ≥ ln4 n green agents. We will
consider a chunk of

r :=
n

(k − `)`
· ln3 n

rounds but we stop the process prematurely if the number of green agents exceeds
`+ 2 ln3 n. Clearly, during this part of the process the number of green agents is equal
to `+O(ln3 n) ∼ `. As a result, since

`(k − `) ≤ `k ≤ (t3 + 2 ln3 n)k ≤ (1 + o(1))n/ lnn = o(n),

the following properties hold during this part of the process:

P(Y` = 1) ∼ (k − `) · `
n
·
(

1− `

n

)k−`−1

∼ (k − `)`
n

=: w1

P(Y` ≥ u) ≤
(
k − `
u

)
·
(
`

n

)u

≤
(
e(k − `)`

nu

)u

≤
(

2ekt3
nu

)u

≤
(

2e

u lnn

)u

=: wu,

for any 2 ≤ u ≤ lnn. In particular,

P(Y` ≥ lnn) ≤
(

2e

ln2 n

)lnn

≤ (lnn)− lnn = exp(−(ln lnn)(lnn)) ≤ 1/n.

Since we are only concerned with N = O(n ln k/k) = o(n) rounds, we may assume that
Y` never exceeds lnn.
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The number of times we move from phase ` to ` + 1 can be modelled by random
variable X1 ∼ Bin(r, w1) with

E[X1] = rw1 ∼ ln3 n.

For a given u ∈ {2, 3}, the number of times we move from phase ` to ` + i, for some
i ≥ u, can be upper bounded by a random variable Xu ∼ Bin(r, wu) with

E[Xu] = rwu = O(wu−1
1 ln3 n) = O(ln4−u n) = o(ln3 n).

Hence, it follows from Chernoff’s bounds that with probability at least 1− 1/n, X1 ∼
ln3 n, X2 = O(ln2 n), and X3 = O(lnn). It follows that with probability at least 1−1/n,
the number of agents that become green during these r rounds is asymptotic to

X1 +O(X2) +O((lnn) ·X3) ∼ ln3 n+O(ln2 n) +O((lnn) · (lnn)) ∼ ln3 n.

We conclude that we do not finish this chunk of rounds prematurely with probability
at least 1−1/n. Since there are o(n) chunks of rounds (in fact, there are even only o(n)
rounds), a.a.s. we never finish prematurely. Moreover, note that it takes on average

r

(1 + o(1)) ln3 n
∼ n

(k − `)`
≥ n

kt3
≥ lnn

rounds to move from phase ` to `+ 1 so, indeed, the length of this stage is asymptotic
to what one expects, namely, it is equal to (1 + o(1))

∑t3
`=t2

n/((k − `)`).

Stage 4: This stage lasts until the number of green agents is at least

t4 := min

{
n ln2 n

k
,
k

2

}
.

As already mentioned, if k ≤
√

2n/ lnn, then the process ends before we reach this
stage. In any case, the length of this stage is negligible.

At the beginning of this stage, when `(k − `) ≤ n, we argue as in Stage 1 that the
process moves to another phase with probability p` > `(k−`)/(2n). On the other hand,
when `(k − `) > n, the expected number of agents that become green in one round is
a binomial random variable Y` with E[Y`] ∼ `(k − `)/n > 1. It follows from Chernoff’s
bounds (applied with ε = 1/3) that Y` ≥ (2/3)E[Y`] > `(k − `)/(2n) with probability
at least 1 − exp(−1/27) > 1/30. We get that the expected number of rounds in this
Stage is at most

t4∑
`=t3

30

`(k − `)/(2n)
= 60

t4∑
`=t3

n

`(k − `)
∼ 60n ln(t4/t3)

k
= O

(
n ln lnn

k

)
= O

(
N

ln lnn

lnn

)
= O(N/ω0) = o(N).

It is straightforward to see that a.a.s. it is o(N), as promised.

Stage 5: This stage lasts until the number of green agents reaches t5 := k/2. As

mentioned earlier, if k ≤
√

2n ln2 n, then the process ends before we reach this stage.
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On the other hand, if this stage occurs, then its length is predictable. Since

E[Y`] ∼
`(k − `)

n
≥ `k

2n
≥ t4k

2n
=

ln2 n

2
,

it follows from Chernoff’s bound (applied with, say, ε = ln−1/3 n = o(1)) that

Y` ∼ E[Y`] ∼
`(k − `)

n

with probability at least 1 − exp(−Θ(ln4/3 n)) ≥ 1 − 1/n. Hence, a.a.s. Y` ∼ E[Y`]
during the whole stage. Suppose then that this is the case and it remains to compute
the length of this stage. It is important to point out that Y` = Θ(`k/n) = o(`) as then

`+Y`−1∑
i=`

n

i(k − i)
∼

`+Y`−1∑
i=`

n

`(k − `)
= Y`

n

`(k − `)
∼ 1.

It follows that the length of this stage is asymptotic to what one expects, namely, it is
equal to (1 + o(1))

∑t5
`=t4

n/((k − `)`).

Putting everything together we get that the total number of rounds until k/2 agents
become green is a.a.s.

o(N) + (1 + o(1))

t3∑
`=t2

n

(k − `)`
+ (1 + o(1))

t5∑
`=t4

n

(k − `)`

= o(N) + (1 + o(1))

k/2∑
`=1

n

(k − `)`

= o(N) + (1 + o(1))
n ln(k/2)

k
∼ n ln k

k
.

By symmetry, as explained above, going from there to the end of the process, phase k,
it takes asymptotically the same amount of time, thus concluding the proof. �

4.6. Concentration for Case (c) and a subrange of Case (d). Let us now move
to the situation where k = k(n) is at least linear in n but at most n ln2 n. As before,
we will distinguish a few stages. Stage 2 and Stage 4 last for a non-negligible amount
of time whereas Stage 1 and Stage 3 finish quickly and are negligible.

Theorem 4.5. Let ε > 0 be an arbitrarily small constant. Suppose that k = cn, where
c = c(n) is such that ε ≤ c ≤ ln2 n. Then the following property holds a.a.s.

ξ(Kn, k) =

(
1 +O

(
1√

ln ln lnn

))(
1

ln(1 + c)
+

1

c

)
lnn ∼

(
1

ln(1 + c)
+

1

c

)
lnn.

Note that if c = Θ(1), then a.a.s. ξ(Kn, k) = Θ(lnn) and both terms are of the
same order. On the other hand, if c = c(n) → ∞, then the second term is negligible
compared to the first term and so a.a.s. ξ(Kn, k) ∼ lnn/ ln c = o(lnn).
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Proof. Our goal is to show that a.a.s. it takes Θ(lnn/ ln(1 + c)) = Ω(N) rounds to
finish the process, where N := lnn/ ln lnn. So stages that take o(N) rounds to finish
are negligible.

Stage 1: This stage covers every round until the number of green agents is at least
t1 := lnn, that is, when we reach phase t1. Arguing as in Theorem 4.3, one can show
that this stage a.a.s. takes O(ln lnn) = O(N · (ln lnn)2/ lnn) = o(N) rounds and so is
negligible. In fact, if (for example) c ≥ 1.1 lnn, then a.a.s. at least lnn agents start at
the same vertex as the initial green agent and so this stage does not actually happen
(that is, the required bound holds at round 0). We omit the details.

Stage 2: This stage covers every round before the number of green agents is at least
t2 := n/ ln lnn. Consider the beginning of some round at phase `, where t1 ≤ ` < t2.
As usual, we first move green agents and then white ones. Applying Lemma 4.4 (with
ω0 = ω0(n) = ln lnn) we may assume that when white agents make their move there
are `(1+O(1/ ln ln lnn)) ∼ ` vertices occupied by green agents. As a result, the number
of white agents that become green during this round can be modelled by the random
variable X ∈ Bin(k − `, (1 +O(1/ ln ln lnn))`/n) with the expectation equal to

(k−`)
(

1 +O

(
1

ln ln lnn

))
`

n
=
k`

n

(
1 +O

(
1

ln ln lnn

))
= c`

(
1 +O

(
1

ln ln lnn

))
.

It follows from Chernoff bound (1) (applied with ε = 1/ ln ln lnn) that

X = c`(1 +O(1/ ln ln lnn))

with probability at least

1− 2 exp
(
Ω
(
ε2E[X]

))
= 1− 2 exp

(
Ω

(
lnn

(ln ln lnn)2

))
≥ 1− 1

ln2 n
.

If this property holds, then we say that a given round is good. During each good round,
the number of green agents increases from ` to

`+ c`(1 +O(1/ ln ln lnn)) = `(1 + c)(1 +O(1/ ln ln lnn)).

We will show that a.a.s. this stage takes T rounds such that T− ≤ T ≤ T+, where

T± =
(
log1+c n

)(
1± 1√

ln ln lnn

)
=

lnn

ln(1 + c)

(
1± 1√

ln ln lnn

)
∼ lnn

ln(1 + c)
.

Since the expected number of rounds that are not good is at most T+/ ln2 n = o(1),
a.a.s. all rounds are good. But this implies that a.a.s. at the end of round T− the



22 R. HUQ, B. KAMIŃSKI, A. MASHATAN, P. PRA LAT, AND P. SZUFEL

number of green agents is equal to

(lnn)

(
(1 + c)

(
1 +O

(
1

ln ln lnn

)))T−

= (1 + c)T− exp

(
ln lnn+O

(
T−

ln ln lnn

))
= n1−1/

√
ln ln lnn exp

(
O

(
lnn

ln ln lnn

))
= n exp

(
− lnn√

ln ln lnn
+O

(
lnn

ln ln lnn

))
= n exp

(
− lnn√

ln ln lnn
(1 + o(1))

)
<

n

ln lnn
= t2.

So, indeed, this stage is not finished in less than T− rounds a.a.s. Similar calculations
show that

(lnn)

(
(1 + c)

(
1 +O

(
1

ln ln lnn

)))T+

= n exp

(
lnn√

ln ln lnn
(1 + o(1))

)
> n > t2,

and so a.a.s. this stage finishes in less than T+ rounds.

Stage 3: This stage covers every round before the number of green agents is at least
t3 := k − n/ lnn. It will be easier to monitor the number of white agents. At the
beginning of this stage, the number of white agents is at most k− t2 ≤ k ≤ n ln2 n, and
at the end of this stage it should be at most n/ lnn. Applying Lemma 4.4 for agents
that are green at the beginning of this stage (that is, with s = s(n) = t2 = n/ ln lnn
and ω0 = ω0(n) = ln lnn) we may assume that each time white agents move there
are at least s(1 + O(1/ ln ln lnn)) ∼ s vertices occupied by green agents. This will be
enough to show that the length of this stage is negligible. In other words, this part of
the process is short even if the only way to become green is to meet an agent that is
already green at the beginning of this stage.

Suppose that at the beginning of some round, there are w white agents, where w >
n/ lnn. The number of white agents that become green at the end of this round can be
stochastically lower bounded by random variable X ∈ Bin(w, (1 + o(1))/ ln lnn) with

E[X] ∼ w

ln lnn
>

n

(lnn)(ln lnn)
.

It follows from Chernoff’s bound (1) that X > (2/3)E[X] > w/(2 ln lnn) with proba-
bility at least 1 − 2 exp(−Ω(E[X])) ≥ 1 − 1/n. We will show that this phase will end
in less than T = 6(ln lnn)2 = O(N(ln lnn)3/ lnn) = o(N) rounds and so its length is
negligible. Indeed, a.a.s. during these (at most) T rounds, the number of white agents
decreases each time by a multiplicative factor of at least 1 − 1/(2 ln lnn). It follows
that the number of white agents after t ≤ T rounds is at most

(k − t2)
(

1− 1

2 ln lnn

)t

≤ (n ln2 n) exp

(
− t

2 ln lnn

)
.
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Since (n ln2 n) exp(−T/(2 ln lnn)) = (n ln2 n) exp(−3 ln lnn) = n/ lnn, a.a.s. this phase
has to finish in at most T = o(N) rounds.

Stage 4: We will continue the process till the very end. During this last stage, the
number of green agents is equal to

k −O(n/ lnn) = k(1−O(1/ lnn)) = cn(1−O(1/ lnn)) ∼ cn.

Our first task is to estimate the number of vertices occupied by them. It is a straight-
forward application of Chernoff’s bound to get that a.a.s. no vertex will be occupied
by, say, O(ln2 n) agents during any round of that stage. Let us now concentrate on
any vertex v. At the beginning of some round at phase `, there are `v = O(ln2 n)
green agents occupying vertex v. Let Ev be the event that no green agents moves to v.
Clearly,

P(Ev) =

(
1− 1

n− 1

)`−`v
=

(
1− 1

n− 1

)cn(1+O(1/ lnn))−O(ln2 n)

=

(
1− 1

n− 1

)cn(1+O(1/ lnn))

= exp
(
− c(1 +O(1/ lnn))

)
.

We will independently consider two cases. For small c (Case 1), this stage has
significant length and so we need to treat it carefully. If c is large (Case 2), then
its length is negligible and so some rough bound can be applied.

Case 1: c ≤
√

lnn. Let X =
∑

v I(Ev) be the number of vertices not occupied by any
green agent (I(Ev) is the indicator random variable for event Ev). It follows that

E[X] = n exp(−c(1 +O(1/ lnn))) ∼ ne−c = n1−o(1).

Unfortunately, the events Ev, Ew associated with vertices v, w are not independent
and so Chernoff’s bound cannot be applied. However, they are almost independent
and so it is straightforward to apply the second moment method to show the desired
concentration. Indeed, for any pair of vertices v, w,

Cov(I(Ev), I(Ew)) = P(Ev ∩ Ew)− P(Ev)P(Ew)

=

(
1− 2

n− 1

)`−`v−`w (
1− 1

n− 1

)`v (
1− 1

n− 1

)`w

−
(

1− 1

n− 1

)`−`v (
1− 1

n− 1

)`−`w

= exp

(
−2`− `v − `w

n− 1
+O(`/n2)

)
− exp

(
−2`− `v − `w

n− 1
+O(`/n2)

)
= exp

(
−2`− `v − `w

n− 1

)(
(1 +O(`/n2))− (1 +O(`/n2))

)
= O(`/n2) e−2c.
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We get that

Var[X] = O(n2) ·O(`/n2) e−2c = O(`/n2)(E[X])2

= O
(√

lnn/n
)

(E[X])2 = o((E[X])2).

It follows from Chebyshev’s inequality (2) (applied with, say, ε = n−1/3) that with
probability at least 1−1/ ln2 n, the number of vertices not occupied by any green agent
is equal to n exp(−c(1 +O(1/ lnn))). We may then assume that this is the case during
this stage of the process. It follows that each time a white agent moves, she stays white
with probability exp(−c(1 +O(1/ lnn))).

Let

T± =
lnn

c

(
1± 2 ln lnn

lnn

)
∼ lnn

c
.

The probability that an agent that is white at the beginning of this stage stays white
during T+ rounds is equal to

exp

(
−c
(

1 +O

(
1

lnn

)))T+

= exp (− lnn− 2 ln lnn+O(1)) = Θ

(
1

n ln2 n

)
.

We get that the expected number of white agents at time T+ is o(1) and so a.a.s. we are
done in at most T+ rounds. On the other hand, the expected number of white agents
at time T− is

n

lnn
exp

(
−c
(

1 +O

(
1

lnn

)))T−

=
n

lnn
·Θ
(

ln2 n

n

)
= Θ(lnn)→∞.

Chernoff’s bound implies that a.a.s. this stage takes at least T− rounds, and the claimed
bound holds.

Case 2:
√

lnn := c0 < c ≤ ln2 n. Arguing as before, we may assume that each time a
white agent moves, she stays white with probability at most exp(−c0(1+O(1/ lnn))) =

exp(−
√

lnn+ O(1/
√

lnn)). The probability that there is at least one white agent left

after T =
√

lnn = o(lnn/ ln lnn) rounds can be upper bounded as follows:

n

lnn
exp(−

√
lnn+O(1/

√
lnn))T =

n

lnn
·O
(

1

n

)
= o(1).

We get that a.a.s. the length of this stage is negligible and the claimed bound holds. �

4.7. Concentration for the remaining subrange of Case (d) and Cases (e)-(g).
The situation when k > n ln2 n is relatively easy to investigate. We will first deal with
the case when k = no(1). Since the proof is very similar (but much easier) to the one of
Theorem 4.5 we provide only a sketch. After that it will be straightforward to finalize
the remaining cases, Cases (e)-(g).

Theorem 4.6. Suppose that k = cn, where c = c(n) is such that ln2 n ≤ c = no(1).
Then the following property holds a.a.s.

ξ(Kn, k) =

(
1 +O

(
1√

ln ln lnn

))
lnn

ln c
+O(1) ∼ lnn

ln c
.
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Sketch of the proof. It follows immediately from Chernoff’s bound that (1 + o(1))c
agents become green in round 0. Suppose that at the beginning of some round there are
` green agents, (1 + o(1)) ln2 n ≤ (1 + o(1))c ≤ ` ≤ n/ ln lnn. By Lemma 4.4, we may
assume that once they move, `(1+O(1/ ln ln lnn)) vertices are occupied by at least one
green agent. Now, it is time for white agents to move. Arguing as in the proof of Theo-
rem 4.5, we may assume that at the end of this round, there are `c(1 +O(1/ ln ln lnn))

green agents. After (1 +O(1/
√

ln ln lnn)) lnn/ ln c rounds, the number of green agents
is at least n/ ln lnn.

The process will be over in at most two more rounds a.a.s. Indeed, by Lemma 4.4,
we may assume that once green agents move there will be at least (1 + o(1))n/ ln lnn
vertices occupied by at least one green agent. By Chernoff’s bound, after white agents
move there will be at least (1 + o(1))cn/ ln lnn green agents a.a.s. Moreover, after
applying Chernoff’s bound one more time, we get that a.a.s. no vertex is occupied by
more than, say, 2c agents.

Let us consider any vertex v. The probability that no green agent arrives at this
vertex is equal to(

1− 1

n− 1

)(1+o(1))cn/ ln lnn−O(c)

≤ exp
(
−(1 + o(1))

c

ln lnn

)
≤ exp

(
−(1 + o(1))

ln2 n

ln lnn

)
= o

(
1

n

)
.

Hence, by the union bound, a.a.s. all vertices are occupied by at least one green agent
and so the process is over once white agents move. The claimed bound holds and the
proof is finished. �

Let us point out that in the previous theorem, it is assumed that c = no(1) and so
ln c = o(lnn). As a result, ξ(Kn, k) → ∞ as n → ∞. If k = n1+x+o(1) for some x > 0
(Cases (e)–(g)), then ξ(Kn, k) does not tend to infinity anymore.

Suppose first that 1/i < x < 1/(i − 1) for some i ∈ N \ {1, 2} (Case (e)). The
following properties hold a.a.s. The number of green agents at the end of round 0 is
equal to (1 + o(1))c, and then each round it keeps growing by a multiplicative factor of
(1 + o(1))c. It reaches

(1 + o(1))ci = nix+o(1) = n1+i(x−1/i)+o(1) � n lnn

at the end of round i−1. Arguing as before, at the beginning of round i all vertices are
occupied by at least one green and the process is over. It follows that a.a.s. ξ(Kn, k) = i.

Suppose now that x > 1/2 (Case (f)). Regardless of how large x is, once (1 + o(1))c
green agents move from vertex v at the beginning of round 1, a.a.s. (1 + o(1))c white
agents will move to v. Clearly, they will stay white at the end of round 1 since no
green agent occupies v at that point (deterministically). A.a.s. the process will end at
round 2, and so ξ(Kn, k) = 2.

Finally, suppose that x = 1/i for some i ∈ N \ {1} (Case (g)). A.a.s. at the end
of round i − 1, there are (1 + o(1))ci = (1 + o(1))(k/n)i green agents. Our goal is to
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investigate random variable X, the number of vertices not occupied by any green agent
at the beginning of round i. If ci = (k/n)i < (1− ε)n lnn, then

E[X] = n

(
1− 1

n− 1

)(1+o(1))ci−O(c)

= n exp

(
−(1 + o(1))ci

n

)
≥ n exp (−(1 + o(1))(1− ε) lnn) = nε+o(1) →∞,

as n → ∞. It is straightforward to see that a.a.s. X > 0 and so a.a.s. the process
needs one more round to finish. It follows that a.a.s. ξ(Kn, k) = i + 1. On the other
hand, if ci = (k/n)i > (1 + ε)n lnn, then E[X] ≤ n−ε+o(1) → 0, as n → ∞. It follows
that a.a.s. X = 0 and so ξ(Kn, k) = i. One can obtain more precise results for the
critical value when ci = (k/n)i ∼ n lnn but we do not do so and only claim that a.a.s.
ξ(Kn, k) ∈ {i, i+ 1}.
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