
Artificial Benchmark for Community Detection (ABCD)

— Fast Random Graph Model with Community Structure

Bogumi l Kamiński∗ Pawe l Pra lat† François Théberge‡

August 23, 2020

Abstract

Most of the current complex networks that are of interest to practitioners possess a certain community
structure that plays an important role in understanding the properties of these networks. For instance,
a closely connected social communities exhibit faster rate of transmission of information in comparison
to loosely connected communities. Moreover, many machine learning algorithms and tools that are
developed for complex networks try to take advantage of the existence of communities to improve their
performance or speed. As a result, there are many competing algorithms for detecting communities in
large networks.

Unfortunately, these algorithms are often quite sensitive and so they cannot be fine-tuned for a given,
but a constantly changing, real-world network at hand. It is therefore important to test these algorithms
for various scenarios that can only be done using synthetic graphs that have built-in community structure,
power-law degree distribution, and other typical properties observed in complex networks.

The standard and extensively used method for generating artificial networks is the LFR graph gen-
erator. Unfortunately, this model has some scalability limitations and it is challenging to analyze it
theoretically. Finally, the mixing parameter µ, the main parameter of the model guiding the strength of
the communities, has a non-obvious interpretation and so can lead to unnaturally-defined networks.

In this paper, we provide an alternative random graph model with community structure and power-law
distribution for both degrees and community sizes, the Artificial Benchmark for Community Detection
(ABCD graph). The model generates graphs with similar properties as the LFR one, and its main
parameter ξ can be tuned to mimic its counterpart in the LFR model, the mixing parameter µ. We
show that the new model solves the three issues identified above and more. In particular, we test the
speed of our algorithm and do a number of experiments comparing basic properties of both ABCD and
LFR. The conclusion is that these models produce graphs with comparable properties but ABCD is
fast, simple, and can be easily tuned to allow the user to make a smooth transition between the two
extremes: pure (independent) communities and random graph with no community structure.

1 Introduction

An important property of complex networks is their community structure, that is, the organization of vertices
in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices
of different clusters [29, 14]. In social networks, communities may represent groups by interest (practical
applications include collaborative tagging), in citation networks they correspond to related papers, similarly
in the web communities are formed by pages on related topics, etc. Being able to identify communities in a
network helps to exploit it more effectively. For example, clusters in citation graphs may help to find similar
scientific papers, discovering users with similar interests is important for targeted advertisement, clustering
can also be used for network compression and visualization. Finally, many machine learning algorithms and
tools use clustering as an unsupervised pre-processing step and then try to take advantage of the community
structure to improve their performance or speed.

∗Decision Analysis and Support Unit, SGH Warsaw School of Economics, Warsaw, Poland; e-mail:
bogumil.kaminski@sgh.waw.pl

†Department of Mathematics, Ryerson University, Toronto, ON, Canada; e-mail: pralat@ryerson.ca
‡Tutte Institute for Mathematics and Computing, Ottawa, ON, Canada; e-mail: theberge@ieee.org

1

The goal of community detection algorithms is to partition the vertex set of a graph into subsets of
vertices called communities such that there are more edges present within communities in comparison to the
global density of the graph. The key ingredient for many clustering algorithms is modularity. Modularity
for graphs was introduced by Newman and Girvan [25] and it is based on the comparison between the actual
density of edges inside a community and the density one would expect to have if the vertices of the graph
were attached at random regardless of community structure, while respecting the vertices’ degree on average.
There are many variants allowing, in particular, overlapping or hierarchical communities. Moreover, it is
also possible to generalize modularity for hypergraphs [19].

Unfortunately, detecting communities in networks is a challenging problem. Many algorithms and meth-
ods have been developed over the last few years—see, for example, [11] for a recent review. It is important
to point out that these algorithms are often quite sensitive and so they cannot be fine-tuned for a given
family of networks we want these algorithms to work on. Some algorithms perform well on networks with
strong communities but perform poorly on graphs with weak communities. The degree distribution and
other properties of networks may also drastically affect the performance of these algorithms in terms of
accuracy or computational complexity. Because of that it is important to test these algorithms for various
scenarios that can only be done using synthetic graphs that have built-in community structure, power-law
degree distribution, and other typical properties observed in complex networks.

In order to compare algorithms, one can use some quality measure, for example, the above mentioned
modularity [25]. Indeed, modularity is not only a global criterion to define communities and a way to
measure the presence of community structure in a network but, at the same time, it is often used as a quality
function of community detection algorithms. However, it is not a fair benchmark, especially for comparing
algorithms (such as Louvain and Ensemble Clustering) that find communities by trying to optimize the very
same modularity function! In order to evaluate algorithms in a fair and rigorous way, one should compare
algorithm solutions to a synthetic network with an engineered ground truth.

The standard and extensively used method for generating artificial networks is the LFR (Lancichinetti,
Fortunato, Radicchi) graph generator [22, 21]. This algorithm generates benchmark networks (that is, artifi-
cial networks that resemble real-world networks) with communities. The main advantage of this benchmark
over other methods is that it allows for the heterogeneity in the distributions of both vertex degrees and of
community sizes. As a result, in the past decade, the LFR benchmark has become a standard benchmark
for experimental studies, both for disjoint and for overlapping communities [12]. Some other benchmarks,
including BTER and ReCoN—another well-known models, are discussed in the next section.

In order to generate a random graph following a given, previously computed, degree sequence, the LFR
benchmark uses the fixed degree sequence model (also known as edge switching Markov chain algorithm)
to obtain the desired community structure once the stationary distribution is reached. Unfortunately, the
convergence process can be slow and so this model has some scalability limitations. Despite the need for
experiments on large networks, the standard LFR implementation1 can only be used to generate medium
size networks (for example, Figure 3 shows that the graph on 500,000 nodes already takes several minutes
to be generated). Moreover, due to its complexity and the fact that many fast implementations stop the
switching before the stationary distribution is reached, it is challenging to analyze the model theoretically.
Finally, the mixing parameter µ, the main parameter of the model guiding the strength of the communities,
has a non-obvious interpretation and so can lead to unnaturally-defined networks. We discuss these issues
at length in the next section.

In this paper, we provide an alternative random graph model with community structure and power-law
distribution for both degrees and community sizes, the Artificial Benchmark for Community Detection
(ABCD graph). We show that the new model solves the three issues identified above. In particular, we
test the speed of our algorithm and do a number of experiments comparing basic properties of both ABCD
and LFR. The conclusion is that these models produce graphs with comparable properties but ABCD is
fast, simple, and can be easily tuned between the two extremes: random graph with no community structure
and independent communities. The Julia package providing an API for generation of ABCD graphs can be
accessed at GitHub repository2. The repository also provides instructions how to set up R and Python to
use the package directly from these environments. (For reference purposes, if requested, we can also provide

1https://github.com/eXascaleInfolab/LFR-Benchmark UndirWeightOvp/
2https://github.com/bkamins/ABCDGraphGenerator.jl/

2

a Python implementation of ABCD.) Moreover, a command line interface to the library is provided that
allows users to generate ABCD graphs without using an API. Finally, let us mention that we currently work
on parallel implementation of the model, ABCDe (enhanced implementation) that should be available at
GitHub repository soon.

The paper is structured as follows. In the next section, Section 2, we justify the need for a new benchmark
network model. Section 3 provides a detailed description of the model. In order to compare ABCD and
LFR, one needs to tune the two mixing parameters to make the corresponding graphs comparable. We
explain this process in Section 4. Section 5 presents experiments for comparison of the two models (both
the speed and basic properties). Brief conclusion and directions for future work are presented in Section 6.
Finally, pseudo-codes of our ABCD generator are presented in the Appendix.

2 Motivation

In the introduction, we already highlighted a few issues with the existing LFR benchmark. In this section, we
provide more detailed justification for the need of a new benchmark model. This is not to say that we dislike
the LFR model and propose an alternative that is substantially different. In fact, our ABCD model may be
easily tuned such that its properties mimic the one of LFR but is faster than its competitor (Subsection 2.1).
Hence, it seems that ABCD is a natural alternative for practitioners that already use and like the LFR
benchmark. On the other hand, ABCD is easier to analyze theoretically (Subsection 2.2); research in that
direction might be beneficial for a better understanding of networks with community structure and algorithms
that are performed on them. ABCD has, arguably, more natural main parameter which prevents the user
from generating graphs with ‘anti-communities’ (Subsection 2.3). Finally, we challenge the ‘local’ property
in the LFR model that is insisted to be satisfied by communities and propose a ‘global’ counterpart that is,
arguably, more natural (Subsection 2.4).

2.1 Problem with Scalability

In the big data era, there are many massive networks that need to be mined and analyzed. Since such networks
cannot be handled in the memory of a single computer, new clustering methods have been introduced for
advanced models of computation [8, 38]. These algorithms use hierarchical input representations which
implies that the experiments performed on small or medium size benchmark graphs cannot be used to
predict the performance on much larger instances [12]. Unfortunately, many graph clustering benchmark
generators currently available are not able to generate the graphs of necessary size [3, 8].

Let us briefly discuss the reason for the leading benchmark not to be scalable. Switching edges in LFR
can be viewed as a transition in an irreducible, symmetric, and aperiodic Markov chain. As a result, it
converges to the uniform (stationary) distribution. More importantly, if the maximum degree is not too
large compared to the number of edges, then it converges in polynomial time [16]. However, despite the fact
that these bounds on the mixing time are of theoretical importance, they are not practical even for small
graphs. The convergence process is inherently slow and so the model has clear scalability limitations that
are known to both academics and practitioners. The fastest published variant of the model that is able to
generate large graphs is the external memory algorithm proposed by Hamann et. al. [17].

In order to generate huge graphs, practitioners typically use computationally inexpensive random graph
models such as R-MAT [9] or the generator of Funke et. al. [13]. These models might create communities.
In fact, it is known that many random graph models naturally create community structure, especially the
ones that are geometric in nature [27]. However, they are not suitable for benchmarking purposes as there
is no ground truth community structure to compare against. Hence, it is difficult to use them to evaluate
clustering algorithms.

Another alternative, based on the scalable Block Two-Level Erdős-Rényi (BTER) graph generator [30],
was recently proposed by Slota et. al. [31]. The original model takes into account the desired degree dis-
tribution and per-degree clustering coefficient. Since it does not explicitely aim to create communities, its
edge-generation process is more direct, simpler, and as a result faster than LFR’s. Indeed, the scalability of
BTER is impressive. The model aims to preserve a given degree distribution (similarly to LFR and ABCD
that generate graphs with a given power-law degree distribution) and a given clustering coefficient per degree.

3

The latter objective is different than the one in LFR and ABCD; in these two models the internal degree
of community members can vary a lot. Hence, BTER generates graphs that are quite different from LFR
or ABCD. The authors of [31] try to twist the original model to create a graph that resembles the LFR
benchmark. However, due to inherent properties of BTER, they were unable to generate graphs that per-
fectly match the desired community structure. On the other hand, similarly as it is done in BTER, ABCD
independently generates graphs induced by communities and the global graph but it generates ‘LFR-like’
graphs. That is the main reason why both BTER and ABCD can be generated fast.

Finally, let us mention about the ReCoN (Replication of Complex Networks) model that was recently
proposed in [32]. This interesting model is very different than other benchmarks, including the ones we focus
on in this paper. It uses a small reference graph to seed the process of generating large graph. Its main idea
behind construction of the large output graph is similar to the LFR algorithm, and the performance of its
implementation using NetworKit is comparable to the corresponding NetworKit implementation of LFR.

The proposed ABCD model is fast. The experiments we performed imply that ABCD is 40 to 100
times faster than the reference C++ implementation of LFR, and over 10 times faster than the NetworKit
implementation (see Subsection 5.2 for more details). In particular, a graph on 10 million vertices with
an average vertex degree of 25 can be generated on a standard desktop computer in several minutes (see
Table 1 for example timing reports; the LFR algorithm implementation we used would take several hours
to generate graphs of similar size). In this paper we concentrate on single threaded ABCD and LFR
implementations in order to focus on the theoretical concepts behind ABCD. However, as an outlook for
further work it is possible to design a distributed out-of-core implementation of ABCD to generate huge
graphs having billions of vertices, similarly like it is done in [17] for LFR. Indeed, for example, generation
of edges within communities can be performed using perfectly parallel approach, as each community is
processed independently (see Section 3 for details).

2.2 Many Variants and Lack of Theoretical Foundations

The most computationally expensive part of the LFR benchmark is edge switching. In each step of this
part of the algorithm, two edges are chosen uniformly at random and two of the endpoints are swapped
if it removes the loop or parallel edge without introducing new ones. As already mentioned, the process
converges to the stationary distribution but it does not converge fast enough for large graphs to be produced.
Experimental results on the occurrence of certain motifs in networks [23], the average and maximum path
length and link load [15] suggest that Θ(m) swaps are enough to get close to the desired distribution, where
m is the number of edges in the graph. (See also [28] for further theoretical arguments and experiments.)
The constant hidden in the asymptotic notation varies from experiment to experiment and is between 2
and 100. There are also some other heuristic arguments that justify more simplifications of the original
algorithm.

There are at least two negative implications of this situation. First of all, there are many variants of
this benchmark model and various implementations further modify some steps, either as an attempt to
simplify the algorithm or to gain on speed. As a result, one can only create “LFR-type” graphs and graphs
generated by different implementations can have different properties. In fact, even the original formulation
of the model leaves some ingredients not rigorously defined. This is certainly not desired for benchmark
graphs that should provide a rigorous and fair comparison. Moreover, it creates challenges with reproducing
experiments, something that is expected, if not required, when reporting scientific results.

The lack of a simple and clear description of the algorithm has another negative aspect. Despite the fact
that the initial work on Erdős-Rényi model did not aim to realistically model real-world networks, the number
of papers on random graphs and their applications to model complex networks is currently exploding. Indeed,
in the period after 1999, due to the fact that data sets of real-world networks became abundantly available,
their structure has attracted enormous attention in mathematics as well as various applied domains. For
example, one of the first articles of Albert and Barabási [2] in the field is cited more than 35,000 times.
There are many papers investigating models of complex networks starting with a natural generalization of
the Erdős-Rényi model to a random graph with a given expected degree distribution [10] to more challenging
models such as random hyperbolic graphs [20] or spatial preferential attachment graphs [1]. These results
are not only interesting from theoretical point of view; they help us better understand the properties and
the dynamics of these models by investigating local mechanisms that shape global statistics of the produced

4

network. Despite this fact, there are very few results on theoretical properties of the LFR graphs. It is
unfortunate, as more research on models with community structure might shed light on how communities
are formed and help us design better and faster clustering algorithms.

As described in Section 3, the proposed ABCD model can be seen as a union of independent random
graphs. As a result, its asymptotic behaviour can be studied with the existing tools in random graph theory.
Moreover, ABCD model is natural, relatively easy and straightforward to implement that limits a problem
with reproducibility. Nevertheless, for those that look for “out-of-the-box” tool, we made it available as
GitHub repository with a reference implementation.

2.3 Communities are Unnaturally-defined for Large Mixing Parameters

One of the parameters of the LFR benchmark is the mixing parameter µ ∈ [0, 1] which controls the desired
“community tightness”. The goal is to keep the fraction of inter-community edges to be approximately µ.
In one of the two extremes, when µ = 0, all edges are within communities. On the other hand, when µ = 1,
LFR generates pure “anti-communities” with no edge present in any of the communities. We believe that
this is undesired and leads to unnaturally-defined communities. The threshold value of µ that produces pure
random graphs that are community agnostic is “hidden” somewhere in the interval [0, 1]. It is possible to
compute this threshold value (see Section 3.4 where we actually do it) but the formula is quite involved
and not widely known. Indeed, many different values are reported in the literature (for example, µ = 0.7 is
mentioned in [31]) and so many experiments are performed on unnaturally-defined networks and might lead
to false conclusions. The influence of the parameter µ on the LFR graph is presented in Figure 1 (top).

In contrast, the parameter ξ ∈ [0, 1] in the ABCD model (counterpart of µ in LFR introduced in Section
3) has a natural and important interpretation. As in LFR, if ξ = 0, then all edges are generated exclusively
within communities. More importantly, ξ = 1 yields pure random graph in which communities do not affect
the process of generating edges. Values of ξ ∈ (0, 1) produce graphs with additional signal coming from
communities; the smaller the parameter, the more pronounced the communities are. One can easily move
between ξ and µ (again, see Section 3.4 for more details) but there is no risk to create unnaturally-defined
benchmark networks with “anti-communities”. The influence of the parameter ξ on the ABCD graph is
presented in Figure 1 (bottom).

Finally, let us mention that here we only claim that large values µ generate LFR graphs in which
communities locally induce sparser graphs in comparison to global density, something that is not expected
to happen in networks with community structure. Of course, there are many other properties that might be
desired and, indeed, generating realistic networks is one of the major issues in most of the existing methods.
In order to validate whether the model produces a realistic network, one needs to compare various properties
measured on the real networks as it is done, for example, in ReCoN [32] that we already discussed in
Section 2.1.

2.4 Densities of Communities

The LFR model aims to generate a graph in which (1 − µ) fraction of edges adjacent to a given vertex
stays within the community of that vertex. This property should hold for all vertices regardless whether
this vertex belongs to large or small community. As a result, small communities will become much denser
comparing to large ones. It is not clear that this property is desirable, especially in the case of unbalanced
community sizes which the model is aiming for. Indeed, it seems to us that larger clusters should capture a
proportionally larger fraction of edges—see Subsection 4.3 for a detailed discussion.

The approach used in LFR (which we call a local variant) seems to be inherited from the definition of
the community in the classical book of Barabási [4]. We challenge it and propose another approach (that
we call a global variant) although we do respect this point of view. For those researchers and practitioners
who prefer the original approach, we describe two variants of the ABCD model, one for each approach, and
both variants are available on GitHub repository.

5

Figure 1: Examples of graphs generated by the LFR algorithm (top) and by the ABCD algorithm (bottom).
All graphs have the same degree distribution and community sizes. The three LFR graphs correspond to
values of the mixing parameter µ ∈ {0.1, 0.3, 0.95}, whereas for the ABCD graphs the plots correspond to
ξ ∈ {0.1, 0.3, 0.95}. Edges that fall between vertices in the same community are coloured accordingly. We
see strong communities for the leftmost plots, and noisy yet still coherent communities for the middle plots.
The rightmost plots, where µ = ξ = 0.95, illustrate our point regarding one of the main differences between
LFR and ABCD. For LFR, in the top right plot, we see almost no edges within each community so the
model generates “anti-communities”. With ABCD, we see a random looking graph, where the number of
edges within each “community” is proportional to the number of vertices that belong to it, as expected in a
random graph.

3 Proposed Model

3.1 Parameters of the Model

We assume that the following parameters are provided as the input for the algorithm (for each input we
specify a general approach and a proposed default specification):

1. The number of vertices, n.
(Notation: We label vertices with numbers from V = [n] := {1, . . . , n}.)

2. The exact (or expected) degree distribution w = (w1, . . . , wn). The user can decide if the degree
distribution has to follow a given distribution exactly (the configuration model will be used in this
case) or only to follow it in expectation (the Chung-Lu model will be used instead).
(Remark: Note that the user does not have to provide vector w explicitly; it could be generated at
random. In particular, it could follow a power law distribution with parameter γ and extreme values
wmin, wmax. Alternatively, the average value w̄ can be supplied instead of wmin, which can then be
computed, as it is done in the original LFR model.)

3. The number of clusters, k, and the sequence of cluster sizes s = (s1, . . . , sk) satisfying
∑k
i=1 si = n.

(Remark: In particular, s could be a random sequence following the power law distribution with

6

parameter β and extremes smin, smax, as it is done in LFR. If not specified, by default LFR sets smin

and smax to the minimum and, respectively, the maximum degree.)
(Notation: We label clusters with numbers from [k]. We will use f(σ(i)) ∈ [k] to denote the cluster of
vertex i ∈ [n], see Subsection 3.5 for a formal definition of this mapping.)

4. The mixing parameter ξ.
(Remark: As already mentioned, at one extreme case when ξ = 0, all links are within clusters. On the
other hand, if ξ = 1, then communities do not influence distribution of edges. Moreover, to add more
flexibility, one may introduce different parameters ξ for each cluster—see Subsection 4.3 for more on
that.)

3.2 Sampling w and s

At the very beginning, we sample the exact/expected degree distribution w, the number of clusters, and
the cluster sizes s (unless they are given as deterministic parameters of the model). The algorithms used
to generate them are presented in Appendix. Let us stress the fact that if w and s are sampled, then they
are random variables. However, for fair comparison purposes, the same values of w and s are used when
experiments on LFR and ABCD models are performed in Section 5.

3.3 Background and Cluster Graphs

Our model can be viewed as a union of k + 1 independent random graphs Gi (i ∈ [k] ∪ {0})—one for each
cluster, and one for the whole graph. As a result, one can view it as a generalization of the double round
exposure method (also known in the literature as “sprinkling”). We start with the background graph G0 and
“sprinkle” additional edges within communities that come from graphs Gi (i ∈ [k]); the smaller value of ξ,
the stronger ties between members of the same cluster are. As these graphs are generated independently,
one can alternatively start with the cluster graphs and then “sprinkle” the background graph on top of it
that can be seen as adding the “noise”; the larger value of ξ, the larger level of noise is.

First, we need to split the weight vector w into y and z; z will be responsible for the background graph
and y will affect additional edges within communities. The process of splitting the weight is discussed in
Section 3.4. Then, for a given cluster i ∈ [k], we restrict ourselves to Vi ⊆ V = [n], the set of vertices that
belong to cluster i. We discuss the process of assigning vertices into clusters in Section 3.5. Let yi be the
sub-sequence of y restricted to terms corresponding to vertices from Vi. Let Gi = (Vi, Ei) be a random graph
G(yi) guided by the sequence yi—the exact model will be specified in Section 3.6. Finally, let G0 = (V,E0)
be a random graph G(z) guided by the sequence z. We call graph G0 the background graph and the
remaining graphs Gi (for i ∈ [k]) are called the cluster graphs. The model is defined as the union of these

graphs, that is, G = (V,E), where E =
⋃k
i=0Ei.

Note that G allows loops and multiple edges. Indeed, they can occur both in any of the generated graphs
Gi (i ∈ [k]∪{0}) or after taking a union of their edge sets. In general, however, there will not be very many
of them, especially for sparse graphs. If one wants to study this random graph theoretically, one option is
to work with multi-graphs or condition on G to be simple. From a practical point of view, one can still
work with multi-graphs or do some minor adjustments to the graph such as rewiring, re-sampling, or simply
delete parallel edges. We will come back to this practical issue and provide a specific solution in Section 3.6.
However, note that the proposed model of G is important as it can be rigorously analyzed theoretically as all
its components are well studied in graph theory literature and we take a union of independent graphs—see
Subsection 2.2 for motivation for theoretical results.

3.4 Distribution of Weights

Parameter ξ ∈ [0, 1] controls the fraction of edges that are between communities; that is, it reflects the
amount of noise in the network. Its role is similar to the role of the mixing parameter µ in the original LFR
model. We split weights w into y and z as follows, keeping the same value of ξ for each vertex (recall that

7

y will be associated with clusters and z will be associated with the noise):

y = (y1, . . . , yn) = (1− ξ)w = ((1− ξ) · w1, . . . , (1− ξ) · wn),

z = (z1, . . . , zn) = ξw = (ξ · w1, . . . , ξ · wn).

However, in order to add more flexibility, one may allow different coefficients ξ for each cluster. Let
(ξ1, . . . , ξk) ∈ [0, 1]k. In the next subsection, vertices will be assigned into clusters: vertex i ∈ [n] will
be assigned to cluster f(σ(i)) ∈ [k]. Then,

y = (y1, . . . , yn) = ((1− ξf(σ(1))) · w1, . . . , (1− ξf(σ(n))) · wn),

z = (z1, . . . , zn) = (ξf(σ(1)) · w1, . . . , ξf(σ(n)) · wn).

This variant is important if one wants to mimic the original LFR model as closely as possible, that is, to
try to keep the fraction of internal edges for each cluster equal; otherwise, using the same ξ for all vertices
suffice—see Subsection 4.3 for more discussion.

3.5 Assigning Vertices into Clusters

Our task now is to assign vertices into clusters, that is, to define the mapping f : [n]→ [k] from vertices to
clusters. Our goal is to design a fast algorithm that produces an assignment selected uniformly at random
from some natural class of admissible assignments (formal definition is provided below).

The main problem is that vertices of large degree cannot be assigned to small clusters, as we aim to
generate simple graphs for some applications of the proposed model. Recall that the weight vector w will be
split into y and z that will guide the process of generating cluster graphs and, respectively, the background
graph. All edges within cluster graphs will end up between vertices of the same community. On the other
hand, only some fraction of the background edges will be present within communities as an effect of the
random sampling. Unfortunately, the number of such edges depends on the mapping f we are about to
create, and so it is not known at this point. So how can we decide which vertex can be assigned to a given
cluster leaving enough room for not only edges from the cluster graph but also for additional edges coming
from the background graph? Fortunately, this “chicken and egg” problem can be solved as there exists a
universal upper bound xi for yi that leaves enough room for the edges coming from the background graphs
that works for all i ∈ [n], namely,

xi :=
⌈
(1− ξφ)wi

⌉
, (1)

where φ := 1−
∑
`∈[k](s`/n)2. The reason for this choice of xi is as follows. In Subsection 4.1, we will show

that the expected number of edges between communities is equal to ξµ0, where µ0 = 1 −
∑
`∈[k](W`/W)2

(W` is the volume of cluster `, and W is the volume of the whole graph). If vertices are assigned to clusters
randomly, then the expected value of W` is s`W . It follows that φ is a good approximation of µ0 that is not
known at this point. In any case, since φ < 1, we observe that xi ≥ (1− ξφ)wi ≥ (1− ξ)wi = yi and so there
is definitely room for edges of the cluster graphs.

Let us call an assignment of vertices into clusters admissible if each vertex i ∈ [n] is assigned to cluster
j ∈ [k] with xi ≤ sj − 1. Recall that our goal is to select one admissible assignment uniformly at random.
This condition is a necessary condition for the existence of a simple graph that this cluster induces. Note that
it is only a necessary condition; in fact, the corresponding degree sequence has to be graphic. (A graphic
sequence is a sequence of numbers which can be the degree sequence of some graph; see, for example [35]
or any other textbook on graph theory for more.) We use this slightly weaker condition because it is much
simpler and more convenient to use which gives us an easier framework to work with. Finally, let us stress that
for the final graph G to be able to be simple, we get some additional constraints on admissible assignments
of vertices into clusters. Not only z and all yi’s must be graphic but the union of all graphs needs to be
simple as well. However, in practice, this causes no issue as we usually deal with sparse graphs that leave a
lot of room for graphs to be fit.

Indeed, in practice the probability that a non-graphic degree sequence is obtained for some cluster graph
is extremely low. However, in order to deal with such potential problematic situations the algorithm tries

8

to assign as many edges as possible to stay within the cluster graph and move the remaining ones to the
background graphs. See the end of Subsection 3.6 for more details.

A formal definition is slightly technical. Suppose that vertices are sorted according to their bounds on
the expected/exact internal degree, that is, x1 ≥ x2 ≥ . . . ≥ xn. Similarly, suppose that cluster sizes are
sorted, that is, s1 ≥ s2 ≥ . . . ≥ sk. In order to define the assignment of vertices into clusters, we need the
following auxiliary sequence s≤`. For each ` ∈ [k] ∪ {0}, let

s≤` :=
∑̀
i=1

si.

In particular, s≤0 = 0 and s≤k = n. Function f : [n]→ [k], that we informally introduced earlier, is defined
as follows. For each i ∈ [n] and j ∈ [k], we fix

f(i) = j if and only if s≤j−1 < i ≤ s≤j .

The assignment now can be viewed as a permutation σ : [n] → [n]—vertex i ∈ [n] is assigned to cluster
f(σ(i)) ∈ [k]. Such assignments guarantee that the right number of vertices is assigned to each cluster but
vertices of large degree could be assigned to small clusters. Let A be the set of admissible assignments
defined as follows:

A :=
{
σ : [n]→ [n] : xi ≤ sf(σ(i)) − 1 for all i ∈ [n]

}
.

In other words, no vertex in an admissible assignment gets assigned to a cluster of size smaller than or equal
to its expected/exact degree. Our goal is to select one member of the family A uniformly at random.

Sampling with uniform distribution is often a difficult task. Of course, generating one permutation with
uniform distribution on the set of all permutations is easy and can be done in many different ways. If such
permutation falls into A, then we could accept it; otherwise, we repeat the process until we get one that
does it. Unfortunately, the size of A comparing to n!, the number of all possible permutations, can be very
small so this rejection sampling process is not feasible from a practical point of view. However, this point of
view does have theoretical implications and might be useful in the future for analyzing the model.

Fortunately, sampling uniformly from A turns out to be relatively easy. To that end, we will use the
following natural algorithm. (See also a pseudo-code in the Appendix.) Recall that vertices are sorted
according to their bounds on internal degrees, that is, sequence x = (x1, . . . , xn) is non-increasing. Consider
vertices, one by one, starting with vertices that are associated with large values of xi, and assign them
randomly to a cluster that has size larger than the corresponding bound and still has some “free spots”;
that is, a cluster of size sj is considered for a vertex of degree xi if xi ≤ sj − 1 and the number of vertices
already assigned to it is less than sj . The probability that a given vertex is assigned to a given cluster is
proportional to the number of “free spots” that remain in that cluster.

The reason why this algorithm produces an admissible assignment uniformly at random comes from the
fact that clusters that are assigned to earlier vertices could also be assigned to vertices considered later. In
other words, it is not the case that vertices considered earlier could make decisions that create more (or less)
choices for vertices considered later. They need to be assigned somewhere and, regardless of where they get
assigned, the number of choices left for future vertices is not affected. In particular, the algorithm always
terminates, unless A = ∅.

To see a formal argument, let
ti := max{s≤` : xi ≤ s` − 1}.

It is straightforward to see that σ ∈ A if and only if σ(i) ∈ [ti] for all i ∈ [n]. Note that, for any given
admissible permutation σ ∈ A, our algorithm produces it with probability p that is only a function of ti but
does not depend on σ. Indeed, it is easy to see that

p =

n∏
i=1

1

ti − i+ 1
,

as there are ti−(i−1) available “free spots” for a vertex i ∈ [n]. Clearly, the algorithm does not produce any
permutation that is not admissible. Hence, indeed, the algorithm generates a permutation from A uniformly
at random. As mentioned above, the algorithm fails only if A = ∅.

9

3.6 Exact vs. Expected Degree Distribution — Two Variants of the Model

We will consider two variants of the model: the first one generates graphs with the expected degree distribu-
tion w (related to the well-known Chung-Lu model), and the second one with the exact degree distribution
w (related to another well-known model, the configuration model). We will start with the description of
the first variant, as it is slightly easier. However, it is presumably the case that the practitioners prefer the
second variant. (In particular, a potential appearance of isolated vertices in sparse Chung-Lu models might
not be desirable for practical purposes.)

Recall that at this point we have vertices assigned to clusters: vertex i ∈ [n] belongs to cluster f(σ(i)).
Moreover, the weight vector w is split into two vectors y and z that will guide the creation of cluster graphs
Gi (i ∈ [k]) and, respectively, the background graph G0. We need to specify how we actually do it and how
we deal with potential problems after taking the union of these graphs.

3.6.1 The Expected Degree Distribution

In this variant of the model, we use the Chung-Lu model that produces a random graph with expected degree
sequence following a given sequence.

Chung-Lu Model

Let w = (w1, . . . , wn) be any vector of n real numbers, and let W =
∑n
i=1 wi. We define C(w) = ([n], E) to

be the probability distribution of graphs on the vertex set [n] following the well-known Chung-Lu model [10,
30, 33, 36]. In this model, each set e = {i, j}, i, j ∈ [n], is independently sampled as an edge with probability
given by:

P(i, j) =

{
wiwj
W , i 6= j

(wi)
2

2W , i = j.

(Let us mention about one technical assumption. Note that it might happen that P(i, j) is greater than
one and so it should really be regarded as the expected number of edges between i and j; for example, as
suggested in [24], one can introduce a Poisson-distributed number of edges with mean P(i, j) between each
pair of vertices i, j. However, since typically the maximum degree ∆ satisfies ∆2 ≤ 2|E| it rarely creates a
problem and so we may assume that P(i, j) ≤ 1 for all pairs.)

One desired property of this random model is that it yields a distribution that preserves the expected
degree for each vertex, namely: for any i ∈ [n],

E[deg(i)] =
∑

j∈[n]\{i}

wiwj
W

+ 2 · (wi)
2

2W
=
wi
W

∑
j∈[n]

wj = wi.

Theoretical Approach

The original Chung-Lu model is a multi-graph so it is natural and convenient to stay with multi-graphs in
our model too. We simply take Gi = G(yi) = C(yi) for each i ∈ [k], and G0 = G(z) = C(z).

Practical Approach — Insisting on Simple Graphs

From practical point of view, it is desired to generate a simple graph and use a fast algorithm that does it.
In order to achieve both things, we use a version of the (fast) Chung-Lu model that produces the graph with
a given number of edges. As a result, we need to round some numbers to integers. We use the following
randomized way that is also used in the original LFR model. For a given integer k ∈ Z and real number
` ∈ [0, 1), let ⌊

k + `
⌉

=

{
k with probability 1− `
k + 1 with probability `.

(Note that the expected value of random variable bk + `e is equal to k + `.)

10

We independently generate cluster graphs Gi (i ∈ [k]) as follows. Note that
∑
v∈Vi yv/2 is the expected

number of edges in C(yi). We fix

ei :=

⌊
1

2

∑
v∈Vi

yv

⌉
∈ N ∪ {0},

and then we generate the Chung-Lu graph C(yi) conditioning on not having parallel edges or loops, and
having exactly ei edges. This can be done in a fast way. We independently sample two vertices i and j with
probabilities proportional to their weights. If i 6= j and adding an edge {i, j} does not create a parallel edge,
then we accept it. We continue this process until ei edges are created.

Once all cluster graphs are created, we move to the background graph. In order to keep the total number
of edges as desired, we fix

e :=
1

2

∑
v∈V

wv −
k∑
i=1

ei.

Note that
∑
v∈V wv is usually an even integer (since vector w corresponds to the degree sequence) so

e ∈ N ∪ {0}. (If not, we may replace
∑
v∈V wv/2 with b

∑
v∈V wv/2e.) Note also that the expected value

of e is equal to
∑
v∈V zv/2, the expected number of edges in C(z). We generate the Chung-Lu graph C(z)

conditioning on not having loops, not creating parallel edges (in the union of all cluster graphs and the
background edges created so far!), and having exactly e edges. To that end, we use the same fast algorithm
as before. Note that, as long as the whole graph is sparse (which is typically the case), the second step is
fast since not too many collisions occur, even if some of the cluster graphs Gi (i ∈ [k]) are dense.

3.6.2 The Exact Degree Distribution

This variant of the model uses the configuration model (instead of the Chung-Lu model) that produces a
random graph with a given degree sequence. However, this change brings a few small issues that need to be
dealt with.

Configuration Model

Let w = (w1, . . . , wn) be any vector of n non-negative integers such that W :=
∑n
i=1 wi is even. We define a

random miuti-graph M(w) with a given degree sequence known as the configuration model (sometimes
called the pairing model), which was first introduced by Bollobás [7]. (See [5, 37] for related models and
results.)

Let us consider W configuration points partitioned into n labelled buckets v1, . . . , vn; bucket vi consists
of wi points. A pairing of these points is a perfect matching into W/2 pairs. (There are W !/((W/2)!2W)
such pairings.) Given a pairing P , we may construct a multi-graph G(P), with loops and parallel edges
allowed, as follows: the vertices are the buckets v1, . . . , vn, and a pair {x, y} in P corresponds to an edge
{vi, vj} in G(P) if x and y are contained in the buckets vi and vj , respectively. We take a pairing P uniformly
at random from the family of all pairings of W points and set M(w) = G(P).

It is an easy but a fundamental fact that the probability of a random pairing corresponding to a given
simple graph G is independent of the graph. Indeed, an easy calculation shows that every simple graph
corresponds to exactly

∏n
i=1 wi! pairings. Hence, the restriction of the probability space of random pairings

to simple graphs is precisely S(w), the uniform probability space of all simple graphs with a given degree
sequence. Moreover, it is well known that if

n∑
i=1

wi = Θ(n) and

n∑
i=1

w2
i = O(n),

then the expected number of loops and multiple edges that are present inM(w) is O(1) and so the probability
that M(w) is simple tends to δ = δ(w) > 0 which depends on w but is always separated from zero. As
a result, event holding a.a.s. (that is, with probability tending to 1 as n → ∞) over the probability space
M(w) also holds a.a.s. over the corresponding space S(w). For this reason, asymptotic results over random
pairings immediately transfer to S(w). One of the advantages of using this model is that the pairs may
be chosen sequentially so that the next pair is chosen uniformly at random over the remaining (unchosen)
points.

11

Distribution of Weights

We assume that integer-valued vector w is such that
∑
i wi is even so that a given degree sequence is feasible.

(As mentioned earlier, it is only a trivial, necessary condition—in fact, w should be a graphic sequence.)
Recall that the weights, vector w, is split into real-valued vectors y and z. However, since we deal with exact
degree sequences not expected ones, this time we have two additional constraints that we need to satisfy,
namely, that a) all involved weights are integers, and b) for each of the k clusters, the corresponding sum of
weights is even. Note that once these conditions are satisfied for all cluster graphs, the background graph
immediately has them too—all degrees are integers and the sum of weights is even.

We split w into integer-valued vectors ŷ = (ŷ1, . . . , ŷn) and ẑ = (ẑ1, . . . , ẑn) as follows. For each cluster
i ∈ [k], we identify the leader, vertex of the largest weight in cluster i. (If more than one vertex has the
largest weight, we select one of them to be the leader, arbitrarily.) In order to deal with non-integer values,
for all vertices i ∈ [n] that are not leaders, we set ŷi = byie. For the remaining k vertices, the leaders, we
round yi up or down so that the sum of weights in each cluster is even. (If some leader has the weight yi ∈ N
and the sum of weights in its cluster is odd, then we randomly make a decision whether subtract or add 1
to make the sum to be even.)

Theoretical Approach

We take Gi = G(ŷi) =M(ŷi) for each i ∈ [k], and G0 = G(ẑ) =M(ẑ). Some of the involved graphs might
not be simple but the expected number of loops and parallel edges is small, especially for sparse graphs. We
have a few options how to deal with them. The first option is the easiest: we could do nothing and work with
multi-graphs. Alternatively, we could condition on all Gi (i ∈ [k] ∪ {0}) to be simple. From a theoretical
point of view, this model is equally easy to analyze, provided that for each Gi, the probability of getting a
simple graph tends to a constant as n→∞ (does not matter how small it is and could be different for each
i ∈ [k]∪{0}). It is known that under some mild assumptions this is the case (in particular, the order of each
cluster graph should tend to infinity with n, etc.)—see above for the discussion around the configuration
model. Let us remark that even though all Gi’s are simple, it is not guaranteed that the final graph, G, is
simple as edges from G0 can overlap with edges of Gi for some i ∈ [k]. Hence, we could condition on G to be
simple. Unfortunately, this model might be more challenging to analyze (as it introduces some dependencies
between the background graph and the cluster graphs) but this is certainly worth investigating in the future
work.

Practical Approach — Insisting on Simple Graphs

Before we discuss how we apply these observations to our problem, let us discuss a general approach and
some theoretical, asymptotic results. Let us generate a random graph with a given degree sequence using
the configuration model. If it happens that it is a simple graph, it is a uniformly distributed random graph
from the family of simple graphs with this degree sequence. Suppose then that it is not simple. It is known
that after performing some kind of “switching” we get a random graph that is very close to the uniform
distribution and we should solve all problems in O(1) time. Indeed, in [18], it is proved that, assuming
essentially a bounded second moment of the degree distribution, the configuration model with the simplest
types of switchings yields a simple random graph with an almost uniform distribution, in the sense that the
total variation distance is o(1). For each parallel edge uv, one needs to choose a random edge xy, remove
uv, xy, and with probability 1/2 add ux, vy; otherwise, add uy, vx.

Let us now explain how we actually apply switchings to our problem. We start with the configuration
model to generate cluster multi-graphs Gi (i ∈ [k]). We then apply switchings to get a family of simple
graphs. After that, we use the configuration model to generate the background graph G0 and use switchings
to remove loops and parallel edges. After taking the union, more parallel edges could be created. As usual,
we use switchings to remove them. However, this time we restrict ourselves to edges in the background graph
and switch only those. This can be done since all graphs Gi are simple at this point and so collisions must
involve at least one edge from the background graph. During switching more collisions can be created but
each collision again involves at least one edge from the background graph (after switching the resulting edges
are kept in the background graph). We do this to preserve the number of internal edges within cluster; the
cluster graphs are not affected by this final round of switchings.

12

In order for our algorithm to be fast in all potential situations, we have implemented a procedure that
controls the process of fixing multiple edges and self loops so that it is not extremely slow (and, in particular,
to be robust against a mentioned earlier rare possibility of obtaining a non-graphic degree sequence). If some
cluster graph Gi is extremely dense, it might be computationally expensive (or simply impossible for non-
graphic degree sequence) to sample a correct replacement that maintains all the desired constraints. This
situation is extremely rare but if it happens, then we retry it only for a limited number of times. This creates
a small bias for the number of edges captured within that community, but we have empirically found that
it happens less than 1 per 1,000,000 edges for typical tight configurations of the model so the bias should
not be noticeable in practice. It is possible to resolve all conflicts exactly (unless, of course, a non-graphic
degree sequence is obtained, which is rare) so this is simply a trade-of between the speed and the quality of
the implementation.

In summary, the conflict resolution algorithm we use for each cluster graph Gi works as follows:

1. perform a standard configuration model on Gi but put all self loops and multiple edges in a recycle
list assigned to this graph;

2. iteratively, remove one edge from the recycle list and try to rewire it with randomly selected edge from
Gi including those from the recycle list; this process is tried as many times as the target number of
edges in Gi (so, in expectation, each edge is tried for rewiring once); if we successfully do the switching,
then we move forward; otherwise, we return the chosen edge back to the recycle list;

3. the whole process is repeated as long as we are able to find a good rewiring for an edge in recycle until
recycle becomes empty or the number of times we were unable to reduce the recycle list size is equal
to the size of recycle, that is, we unsuccessfully tried to recycle all edges in recycle; in such a case, we
give up and move the remaining degrees of the vertices forming those unmatched edges from Gi to the
global graph so that the final degree of all vertices in the union graph follows w—as noted above, this
action is extremely rare—approximately less frequent than once per 1,000,000 edges.

For the background graph we follow the same procedure. However, we do not “give up” recycling and follow
the process until all required edges are created. As the background graph is sparse, this process is very fast
in practice.

4 Comparing ABCD and LFR

The role of parameter ξ in ABCD is similar to the one of parameter µ in LFR; however, they are not the
same! If ξ = µ = 0, then in both models all edges are within communities, but if ξ = µ = 1, then ABCD is
a random graph and so is substantially different than LFR which produces “anti-communities”. As a result,
in order to compare the two models one needs to tune the parameters such that the corresponding densities
of communities are comparable.

The are two natural ways of distributing the weight w—the first one preserves the densities globally
whereas the second one preserves it locally for each vertex in the graph. We will independently consider
both approaches. After that we will discuss the difference between the two and their implications. However,
before that let us recall one subtle caveat we already discussed in Section 3.5 when we assigned vertices into
clusters.

If one creates a pure ABCD graph, then ξ is known upfront and there is no issue. Now, we try to find
ξ for ABCD that matches given µ for LFR. The problem is that we cannot compute ξ before vertices are
assigned to clusters. On the other hand, to do the assignment we need to bound the number of neighbours
of each vertex that belong to its own cluster graph that is a function of ξ—recall equation (1). To overcome
this “chicken and egg” problem, we apply some universal upper bound xi for yi, namely xi := d(1 − µ)wie
to do the assignment, and then compute ξ. Hence, in what follows we may assume that the assignment is
given to us and we simply tune ξ to match given µ.

4.1 Recovering the Mixing Parameter µ (Globally)

In this scenario, we start with a fixed ξ that will be applied for all vertices regardless to which cluster they
belong to. Recall that V` = {t ∈ V : f(σ(t)) = `} (` ∈ [k]) is the set of vertices assigned to cluster `. Let

13

W =
∑
t∈V wt be the volume of G, and let W` =

∑
t∈V` wt be the expected/exact volume of vertices of

cluster `. Clearly, W =
∑
`∈[k]W`.

There are two models (namely, Chung-Lu and Configuration Model) used to generate multi-graphs Gi
(i ∈ [k] ∪ {0}) but both of them have the property that edges occur with probability proportional to the
product of the weights of the two endpoints. Consider two vertices i, j with weights wi and, respectively, wj .
If they are in different clusters (f(σ(i)) 6= f(σ(j))), then the probability that they are adjacent is equal to

zizj∑
t∈V zt

=
ξwi · ξwj∑
t∈V ξwt

= ξ
wiwj∑
t∈V wt

= ξ
wiwj
W

.

(In fact, for multi-graphs it is the expected number of edges as the value above could potentially exceed 1.
However, it is a rare situation in practice.) It follows that the fraction of edges that are between communities
is equal to

1

W

∑
i∈V

∑
j∈V \Vf(σ(i))

ξ
wiwj
W

=
ξ

W 2

∑
i∈V

wi
∑

j∈V \Vf(σ(i))

wj =
ξ

W 2

∑
i∈V

wi(W −Wf(σ(i)))

=
ξ

W 2

∑
`∈[k]

W`(W −W`) =
ξ

W 2

W 2 −
∑
`∈[k]

W 2
`

= ξ

1−
∑
`∈[k]

(W`/W)2

 = ξ µ0,

where µ0 := 1 −
∑
`∈[k](W`/W)2. Hence, in order to mimic the structure of the LFR graph, one should

consider

ξ =
µ

µ0
= µ

1−
∑
`∈[k]

(W`/W)2

−1 . (2)

On the other hand, if vertices i and j are in the same cluster `, the probability is equal to

zizj∑
t∈V zt

+
yiyj∑
t∈V` yt

= ξ
wiwj∑
t∈V wt

+ (1− ξ) wiwj∑
t∈V` wt

=
ξwiwj
W

+
(1− ξ)wiwj

Wl
=
wiwj
W

+ (1− ξ)wiwj
(
W −W`

W ·Wl

)
.

The expected number of neighbours of i that are in cluster ` then equal to∑
j∈V`

(
ξwiwj
W

+
(1− ξ)wiwj

Wl

)
= wi

(
ξ
W`

W
+ (1− ξ)

)
= wi

(
W`

W
+ (1− ξ)W −W`

W

)
. (3)

Let us make one remark. Note that if µ > µ0, then the corresponding value of ξ is greater than 1. As a
result, we cannot generate our random graph. One can see it as a potential problem but, in fact, it is the
opposite. Such values of µ correspond to models in which the density between clusters is larger than the
internal density. As discussed in Subsection 2.3, we should not be ever concerned with such networks with
“anti-communities”.

4.2 Recovering the Mixing Parameter µ for Each Vertex (Locally)

In this scenario, we consider a sequence of parameters ξi (i ∈ [k]), one per each cluster. In the original LFR
model, once the degree sequence w = (w1, . . . , wn) is fixed, the algorithm tries to re-wire the edges such
that for each vertex i, the internal degree is close to (1− µ)wi. There is some variability in the final “local”
mixing parameters, but mainly due to the presence of low degree vertices which clearly must deviate from
the desired ratio.

14

It is not clear if matching local parameters is what we want (see the discussion in the introduction and
in Subsection 4.3) but here is a possible way to modify the approach presented above in order to have local
mixing parameters close to µ. Instead of using the same ratio ξ for splitting weights into background and
cluster portions, one can carefully tune it and use different values of ξ for different clusters. Consider vertex
i with degree wi that belongs to a cluster with the total weight equal to Wf(σ(i)). For the background graph
G0 = G(z), let zi = ξf(σ(i)) · wi be such that

zi

(
W −Wf(σ(i))

W

)
= wi · µ.

Indeed, this is desired as only the (W −Wf(σ(i)))/W fraction of the background edges are expected to be
present between the communities. It follows that the ratio for cluster ` ∈ [k] should be defined as follows:

ξ` = µ

(
W

W −W`

)
. (4)

As a result, for the cluster graph Gf(σ(i)) = G(yf(σ(i))) corresponding to the cluster of vertex i, we let
yi = wi − zi = (1− ξf(σ(i))) · wi.

As before, there exists a threshold µ1 such that if µ > µ1, then some value of ξ` is greater than 1 and so
the model cannot be applied. This time

µ1 = min
`∈[k]

W −W`

W
= 1−

max`∈[k]W`

W
.

4.3 The Comparison Between the Two Variants (Global vs. Local)

Let us summarize the difference between the two approaches discussed above. Both of them preserve the
same number of edges between clusters: µ fraction of all edges are of this type (global property). The
difference is how we split the degree of each vertex into internal degree and external one (local property).
The original LFR model insists on each vertex keeping the same fraction of internal neighbours and the
local version of our model (with k parameters ξi) does this too. As a result, small clusters will be much
denser than large clusters. Is it what we expect to happen in complex networks?

Suppose that two researchers have the same number of friends (say, 100) but belong to different commu-
nities. The first one, Bob, belongs to a small community (say, he is a mathematician doing some esoteric part
of mathematics), the second one, Alice, is part of a large community (say, she is a data scientist). Suppose
that 30% of friends of Alice do data science. Should we expect 30% of friends of Bob to be in his field? We
believe the answer is no. It might be the case that there are less than 30 people around the world working
on this subject! Coming back to the model, it seems that it makes more sense for the number of internal
neighbours of a given vertex to be a function of the size of the cluster this vertex belongs to. As long as the
probability that a given vertex is connected to another member of its cluster is larger than the probability
of being adjacent to a random vertex in the whole graph, this vertex is a legit member of this cluster. This
is what we propose in our first variant, the global version of our model (with only one parameter ξ).

5 Experimental Results

In this Section, we compare ABCD and LFR benchmarks with respect to their respective mixing parameters
(Subsection 5.1), the efficiency of the algorithms (Subsection 5.2), and properties of the graphs they generate
(Subsection 5.3). In order to perform fair comparisons, we fix the LFR mixing parameter µ and then derive
the corresponding parameters for ABCD: ξ via equation (2) for the global model, or ξi’s via equation (4)
for the local model.

Instructions how to reproduce Figures 2 and 4 can be found on-line3. We do not make the codes for
producing the exact results given in Section 5.2 public, as they required some technical changes in comparison
to publicly available implementations of the algorithms; in particular, we wanted to measure only the graph

3https://github.com/bkamins/ABCDGraphGenerator.jl/tree/master/instructions

15

generation time without saving it to disk. Using the instructions presented on GitHub, that are based on
end-user versions of codes, allow to reproduce the presented results with high accuracy while minimizing
complexity of execution of the experiments. Moreover, for Figures 2 and 4 we performed a slightly more exact
comparison than presented on GitHub; that is, the same vertex degrees and community sizes are provided
to all algorithms rather than generating them independently each time to make sure that the corresponding
graph generation processes are compared on exactly the same data. However, the results are very similar
to what is obtained with the simplified approach available on-line. The modified implementations that were
used to generate figures in this paper can be made available upon request.

5.1 Global vs. Local Mixing Parameters

We showed above that in the ABCD model (global variant), we expect a larger proportion of internal edges
for larger communities. This implies a negative correlation between the community-wise mixing parameters
µi (that is, the proportion of external edges for a given community) and the community sizes si. This
is slightly different than in the LFR model which tries to preserve the same community-wise µi for each
community. We showed that the ABCD model can be easily modified to mimic this property by defining
community-wise parameters ξi, which we refer to as the local variant of the model.

In Figure 2, we illustrate this behaviour for graphs with n = 250,000 vertices and the same degree and
community sizes distributions. We plot the mixing parameter µi for each community as a function of its size.
For comparison purpose, the dashed black horizontal line corresponds to the constant value µ = 0.2. For
the global variant of the ABCD model, we also display the regression line obtained by fitting the expected
values for the µi using the formula (3). In each case, due to rounding issue we see more variability for small
communities, as expected. For LFR, we see that the average value stays close to µ = 0.2 while with the
global variant of the ABCD, the value decreases with the community size matching the expected behaviour
quite well. Using the local version of ABCD, we see that we get similar behaviour to the LFR model.

Figure 2: Comparing the behaviour of graphs with n = 250, 000 vertices generated from 3 models: LFR,
ABCD (with the configuration model), and its local variant. We used the same degree and community sizes
distributions obtained with parameters: w̄ = 25, wmax = 1500 and γ = 2.5 for the degrees, and cmin = 50,
cmax = 2500 and β = 1.5 for the community sizes. We see that with LFR and ABCD (local variant), the
expected community-wise mixing parameter µi is constant while for the ABCD model, it decreases as a
function of the community size.

5.2 Efficiency Comparison

In this subsection, we compare efficiency of the generating algorithms. All the results were obtained on
a single thread of Intel Core i7-8550U CPU @ 1.80GHz, run under Microsoft Windows 10 Pro, and per-
forming all computations in RAM. The computations for LFR were performed using the C++ language
implementation4 for smaller graphs (as it is a reference) and NetworKit5 for larger graphs (as it is faster).
For ABCD, the Julia 1.3 language implementation was used [6] in order to ensure high performance of graph

4https://github.com/eXascaleInfolab/LFR-Benchmark UndirWeightOvp/
5https://networkit.github.io/

16

104 105

n

10 1

100

101

102

se
c.

= 3.0, = 2.0

LFR
CL local
CL global
CM local
CM global

104 105

n

10 1

100

101

102

se
c.

= 2.5, = 1.5

LFR
CL local
CL global
CM local
CM global

104 105

n

10 1

100

101

102

se
c.

= 2.0, = 1.0
LFR
CL local
CL global
CM local
CM global

Figure 3: Generation times in seconds of the C++ LFR implementation and the ABCD models; CL
indicates the Chung-Lu model and CM indicates the configuration model.

generation, while keeping the size of the code base small. We tested all four combinations of the ABCD
model (Chung-Lu vs. Configuration Model, and global vs. local variant).

In order for comparison to be fair, we first generated the degree distribution and the distribution of
cluster sizes, and then used it for all five algorithms tested (LFR and 4 combinations of ABCD). Only
the times to generate the corresponding graphs (single threaded, in memory, without storing the outcome
on a hard drive) were measured, assuming the degree distribution and the distribution of cluster sizes are
given—these steps are fast anyway.

The models were generated for µ = 0.2 (and its counterparts for ξ’s for ABCD—see equations (2)
and (4)), vertex average degree of 25 with maximum of 500, and community sizes varying between 50 and
1,000. Three different configurations of (γ, β) guiding the degree distribution and the distribution of cluster
sizes are presented on Figure 3 ((γ, β) ∈ {(3, 2), (2.5, 1.5), (2, 1)}). The number of vertices, n, spans from
8,192 to 472,392 and the timings are presented on the log-log scale. We present the results for one run of the
reference C++ LFR model whereas averages over five runs of the ABCD model are reported. The reason
for running the ABCD generator more than once was that in most cases one run took less than a second,
and so there was some non-negligible variability between runtimes due to external noise when performing
the computing.

The conclusion is that the reference C++ LFR algorithm is of the order of 100 times slower than the one
for the ABCD model; the largest ABCD was generated in a similar time to the smallest LFR. The worst
scenario for ABCD is when the configuration model is used with low exponents of the two distributions
(namely, γ = 2 and β = 1); in this case, ABCD is roughly 40 times faster.

In order to test an influence of various distributions of (γ, β) on the generation times of ABCD for larger
networks, we performed benchmark tests for 10,000,000 vertices and switched the LFR generator used to
NetworKit implementation. As before, the mixing parameter is fixed to µ = 0.2, vertex average degree is
25 with maximum of 500, and community sizes vary between 500 and 10,000 (we increased the community
sizes in comparison to the earlier test, as we now consider much larger number of vertices).

The time to generate the graphs using ABCD are of order of several minutes—see Table 1 where we vary
parameters γ and β. In general, Configuration Model variant of ABCD is faster when local communities are
not very dense. (See the rightmost plot in Figure 3 where we presented the case of very dense communities
where Chung-Lu based generator is faster.) Also we note that an increase of parameter β leads to longer
run times. This is associated with the fact that small values of β produce several very large communities
that attract heavy vertices. In such scenarios, the generators do not have to resolve too many collisions
(multiple edges or self loops) and so the algorithm terminates quickly. Each row in Table 1 is produced
for the same of vectors w and s (but they vary across rows). The high variability of the results between
rows indicates that the run-time is quite sensitive to specific sampled values of w and s. Specifically, we
have checked that the longest run-times are to be expected if there is a lot of heavy vertices sampled in w
and at the same time not many large clusters sampled in s. Based on the results reported in Table 1, we
also observe that for larger graphs the NetworKit implementation of the LFR generator is faster than the
reference C++ implementation of LFR, but still over 10 times slower than the ABCD generator based on

17

the configuration model.
In all the tests that we report in this paper, we concentrated on a single threaded implementation of all

the generators that run in RAM. We made this choice as our objective was to get a fair comparison of the
time complexities of graph generation processes, unaffected by potential approaches to their parallelizations.
Indeed, there are many architectures that could be used here and the approach taken significantly affects
timing (the three major options are: multi-threading on a single machine, out of core distributed computing,
and moving the graph generation to GPU/TPU). However, we would like to highlight that parallelization
of ABCD generator is conceptually relatively straightforward. The major steps are the following. Cluster
graphs Gi (i ∈ [k]) can be generated completely independently so their generation can be distributed with a
large degree of flexibility to a given number of processors. This can be done using a dynamic load balancing
of assigning jobs to workers. Generation of the background graph G0 can be achieved by using standard
procedures for parallel generation of Chung-Lu or configuration model graphs, as described, for example,
in Section 6.1 and, respectively, Section 6.2 in [26]. We currently work on various implementations of
parallelization options that should be available at GitHub repository6. These are relatively straightforward
adjustments, as the Julia language provides a native multi-threading and distributed computing support and
the code can be compiled to a GPU/TPU target.

(γ, β) CL local CL global CM local CM global LFR NetworKit
(3.0, 2.0) 170 169 86 94 926
(3.0, 1.5) 141 184 81 74 922
(3.0, 1.0) 143 155 85 83 930
(2.5, 2.0) 228 203 105 118 1,072
(2.5, 1.5) 153 132 74 73 1,013
(2.5, 1.0) 116 116 67 67 1,099
(2.0, 2.0) 167 160 91 91 1,130
(2.0, 1.5) 132 132 79 77 1,114
(2.0, 1.0) 129 125 72 71 1,198

Table 1: Generation times in seconds of the ABCD model—4 variants with n = 10,000,000 vertices; CL
indicates the Chung-Lu model and CM indicates the configuration model. Generation time of comparable
graphs with LFR is presented using NetworKit package.

5.3 Comparing Graph Properties

In this subsection, we compare graphs generated with the LFR and the ABCD benchmarks via some
topology-based measures. We investigate the following graph statistics: clustering coefficient (the average
vertex transitivity), eigenvector centrality, the global transitivity, and the average shortest paths length
(approximated via sampling).

We generated graphs with 100,000 vertices, average degree 25, maximum degree 500 and power law
exponent γ = 2.5; for the community sizes, we used power law exponent β = 1.5 with sizes between 50 and
2000. The mixing parameter for LFR is set to µ = 0.2 and, in order to compare similar graphs, for the
ABCD algorithm we derive ξ from (2) and the ξi’s from (4) (for the local model). In Figure 4, we report the
distribution of the graph properties obtained by generating 30 graphs each using LFR as well as 4 variations
of ABCD, namely:

• CMg: Configuration Model with global ξ,

• CMl: Configuration Model with local ξi’s,

• CLg: Chung-Lu model with global ξ,

• CLl: Chung-Lu model with local ξi’s.

6https://github.com/bkamins/ABCDGraphGenerator.jl

18

The results of these experiments show high similarity of graphs generated with LFR and ABCD, in
particular, when the configuration model is used. Indeed, some graph parameters that are sensitive with
respect to the degree distribution (such as clustering coefficient) are not well preserved for the Chung-Lu
variant of the model, which is natural and should be expected. Having said that, all graph parameters we
evaluated are relatively well aligned.

Figure 4: Comparing some properties for graphs generated with the LFR and ABCD benchmarks, using
the same degree and community size distributions.

6 Conclusion and Future Work

The paper has two interrelated angles, theoretical and practical. We tried to define the model in as easy and
natural way as possible. As a result, from the theoretical point of view, using abundant tools from the theory
of random graphs, we plan to investigate an asymptotic behaviour of the ABCD model. As explained in
Subsection 2.2, this is not only interesting from pure math point of view but also might be important for
practitioners. Finally, we plan to generalize the model and add geometry into the model. This would allow,
for example, for overlapping and hierarchical communities.

From practical point of view, the implementation we propose in this paper is single-threaded which we
believe is sufficient for generating small to medium size graphs. Indeed, it usually takes under one minute to
generate a graph consisting of several millions of vertices; in fact, the timing of the process of generating an
ABCD graph is of comparable magnitude as the time needed to save it to the hard drive later (on a typical
server). However, in order to deal with enormous graphs containing billions of vertices, users might need
out-of-core distributed implementation of the ABCD algorithm. In Section 2.1, we have commented on
how this could be achieved in future work. Independently, it would be interesting to perform more extensive
experiments with ABCD (and, in particular, compare it to LFR) when the generated graphs are used to
test algorithms that require knowledge of ground truth community structure (such as clustering algorithms).
We think that performing such experimental comparison is an important follow-up to this theoretical paper.

19

Acknowledgements

The project is partially financed by the Polish National Agency for Academic Exchange and by the Canadian
Natural Sciences and Engineering Research Council.

References

[1] William Aiello, Anthony Bonato, Colin Cooper, Jeannette C. M. Janssen, and Pawe l Pra lat. A spatial
web graph model with local influence regions. Internet Mathematics, 5(1):175–196, 2008.

[2] Reka Albert Albert-László Barabási. Emergence of scaling in random networks. Science, 286(5439):509–
512, 1999.

[3] Seung-Hee Bae and Bill Howe. Gossipmap: A distributed community detection algorithm for billion-edge
directed graphs. In SC’15. ACM, 27:1–12, 2015.

[4] Albert-Lászlá Barabási. Network Science. Cambridge U Press, 2016.

[5] Edward A. Bender and E. Rodney Canfield. The asymptotic number of labeled graphs with given degree
sequences. J. Combinatorial Theory Ser. A, 24(3):296–307, 1978.

[6] J. Bezanson, A. Edelman, S. Karpinski, and V.B. Shah. Julia: A fresh approach to numerical computing.
SIAM Review, 69:65–98, 2017.

[7] Béla Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs.
European Journal of Combinatorics, 1:311–316, 1980.

[8] Nazar Buzun, Anton Korshunov, Valeriy Avanesov, Ilya Filonenko, Ilya Kozlov, Denis Turdakov, and
Hangkyu Kim. Egolp: Fast and distributed community detection in billion-node social networks. IEEE
ICDM Mining Workshop, page 533–540, 2014.

[9] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive model for graph
mining. In Proceedings of the 2004 SIAM International Conference on Data Mining. SIAM, page
442–446, 2004.

[10] Fan Chung and Linyuan Lu. Complex Graphs and Networks. American Mathematical Society, 2006.

[11] Vinh Loc Dao, Cécile Bothorel, and Philippe Lenca. Community structure: A comparative evaluation
of community detection methods. Network Science, page 1–41, 2020.

[12] Scott Emmons, Stephen G. Kobourov, Mike Gallant, and Katy Börner. Analysis of network clustering
algorithms and cluster quality metrics at scale. PLoS One, 11:1–18, 2016.

[13] Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schultz, Darren Strash, and Mortiz von Looz.
Communication-free massively distributed graph generation. In International Parallel and Distributed
Processing Symposium (IPDPS), 2018.

[14] M. Girvan and M.E.J. Newman. Community structure in social and biological networks. Proceedings
of the National Academy of Sciences, 99:7821–7826, 2002.

[15] Christos Gkantsidis, Milena Mihail, and Ellen W. Zegura. The markov chain simulation method for
generating connected power law random graphs. In In ALENEX’03. SIAM, pages 16–25, 2003.

[16] Catherine Greenhill and Matteo Sfragara. The switch markov chain for sampling irregular graphs and
digraphs. Theoretical Computer Science, 719:1–20, 2018.

[17] Michael Hamann, Ulrich Meyer, Manuel Penschuck, Hung Tran, and Dorothea Wagner. I/o-efficient
generation of massive graphs following the lfr benchmark. J. Exp. Algorithmics, 23:2.5:1–2.5:33, August
2018.

20

[18] Svante Janson. Random graphs with given vertex degrees and switchings. Random Structures Algo-
rithms, to appear, 2019.

[19] Bogumi l Kaminski, Valerie Poulin, Pawe l Pra lat, Przemys law Szufel, and Francois Theberge. Clustering
via hypergraph modularity. PLoS ONE, 14:e0224307, 2019.

[20] Dmitri V. Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguñá.
Hyperbolic geometry of complex networks. Phys. Rev. E, 82(036106), 2010.

[21] Andrea Lancichinetti and Santo Fortunato. Benchmark graphs for testing community detection algo-
rithms on directed and weighted graphs with overlapping communities. Physical Review E, 80, 2009.

[22] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing community
detection algorithms. Physical Review E, 78, 2008.

[23] Ron Milo, Nadav Kashtan, Shalev Itzkovitz, Mark E.J. Newman, and Uri Alon. On the uniform
generation of random graphs with prescribed degree sequences. arXiv:cond-mat/0312028, 2003.

[24] Mark Newman. Networks: An Introduction. Oxford University Press, 2010.

[25] M.E.J. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys. Rev.
E., 69:26–113, 2004.

[26] Manuel Penschuck, Ulrik Brandes, Michael Hamann, Sebastian Lamm, Ulrich Meyer, Ilya Safro, Peter
Sanders, and Christian Schulz. Recent advances in scalable network generation, 2020.

[27] Liudmila Ostroumova Prokhorenkova, Pawe l Pra lat, and Andrei Raigorodskii. Modularity of complex
networks models. Internet Mathematics, 2017.

[28] Jaideep Ray, Ali Pinar, and C. Seshadhri. Are we there yet? when to stop a markov chain while
generating random graphs. In In WAW’12. Lecture Notes in Computer Science. Springer, pages 153–
164, 2012.

[29] Fortunato S. Community detection in graphs. Physics Reports, 486:75–174, 2010.

[30] C. Seshadhri, Tamara G. Kolda, and Ali Pinar. Community structure and scale-free collections of
erdös-rényi graphs. Physical Review E, 85:056109, 2012.

[31] G. M. Slota, J. Berry, S. D. Hammond, S. Olivier, C. Phillips, and S. Rajamanickam. Scalable generation
of graphs for benchmarking hpc community-detection algorithms. In IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), 2019.

[32] Christian L. Staudt, Michael Hamann, Alexander Gutfraind, Ilya Safro, and Henning Meyerhenke.
Generating realistic scaled complex networks. Applied Network Science, 2(36):1–29, 2017.

[33] Kolda T.G., Pinar A., Plantenga T., and Seshadhri C. A scalable generative graph model with com-
munity structure. SIAM Journal on Scientific Computing, 36:C424–C452, 2014.

[34] Fabien Viger and Matthieu Latapy. Efficient and simple generation of random simple connected graphs
with prescribed degree sequence. In Lusheng Wang, editor, Computing and Combinatorics, pages 440–
449, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[35] Douglas B. West. Introduction to Graph Theory (second edition). Prentice Hall, 2001.

[36] M. Winlaw, H. DeSterck, and G. Sanders. An in-depth analysis of the chung-lu model. Technical Report
LLNL-TR-678729, Lawrence Livermore Technical Report, doi: 10.2172/1239211, 2015.

[37] Nicholas C. Wormald. Generating random regular graphs. J. Algorithms, 5(2):247–280, 1984.

[38] Jianping Zeng and Hongfeng Yu. A study of graph partitioning schemes for parallel graph community
detection. Parallel Computing, 58:131–139, 2016.

21

Appendix - Algorithm Pseudo-Code

1 INPUT: n: number of nodes, β: community sizes power law exponent, cmin: min community size
and cmax: max community size; Imax (optional, default to 100);

2 let sbest :=∞ and I := 0;
3 initialize empty list Sbest;
4 repeat
5 check if it is possible to generate the required cluster sizes; throw an error if it is not possible;
6 let s := 0;
7 initialize empty list X;
8 repeat
9 Sample value x from truncated discrete power law distribution with parameter β, restricted

to the interval [cmin, cmax] and store in x in X;
10 let s := s+ x;

11 until s ≥ n;
12 if s = n then
13 OUTPUT: list of community sizes X;
14 exit;

15 else
16 if s < sbest then
17 let sbest := s and Sbest := X;
18 end

19 end
20 I = I + 1

21 until I > Imax;
22 Truncate Sbest and update sbest accordingly if needed (it might be impossible to find corrections

that produce admissible community sizes in corner cases; this may lead to sbest < n case).;
23 repeat
24 In random order cyclically precess elements of Sbest;
25 If sbest > n decrease values sequentially by 1 unless some element is cmin; decrease sbest by one.;
26 If sbest < n increase values sequentially by 1 unless some element is cmax; increase sbest by one.;

27 until sbest = n;
28 OUTPUT: list of community sizes Sbest;

Algorithm 1: Generation of the community sizes

22

1 INPUT: n: number of nodes, wmin: min degree, wmax: max degree, γ: degree power law exponent;
Imax (optional, default to 100);

2 initialize empty list W ;
3 let I := 0;
4 repeat
5 repeat
6 sample value w from truncated discrete power law distribution with parameter γ, restricted

to the interval [wmin, wmax] and add w to W ;

7 until |W | = n;
8 if sum of degrees in W is even then
9 OUTPUT: list of degrees W

10 end
11 let I := I + 1

12 until I > Imax;
13 decrease the largest value in W by 1 to make the sum of degrees even;
14 OUTPUT: list of degrees W

Algorithm 2: Generation of the degree sequence

1 INPUT: Degree sequence W on n nodes, community sizes S with |S| = k and parameter ξ
(LFR-style µ can be supplied instead);

2 sort nodes from largest to smallest degrees in W: w1 ≥ . . . ≥ wn;
3 sort communities from largest to smallest sizes in S: s1 ≥ . . . ≥ sk;
4 initialize number of free spots in each community: fi := si, 1 ≤ i ≤ k;
5 initialize empty lists S1, . . . , Sk;
6 for 1 ≤ i ≤ n do
7 find max value in 1 ≤ t ≤ k s.t. wi < (1− ξφ)st where φ is defined in (1)a;
8 pick random 1 ≤ j ≤ t proportional to f1, . . . , ft;
9 assign vertex i to community j by adding it to Sj ;

10 let fj := fj − 1;

11 end
12 OUTPUT: community assignment of vertices: S1, . . . , Sk;

Algorithm 3: Assign nodes with degree sequence W to communities with sizes S. Algorithm given
for global ABCD. For local version of ABCD, use cluster-local ξi’s instead of ξ.

aif µ is specified instead of (1 − ξφ)st, we use (1 − µ)st.

1 INPUT: Community assignment S1, . . . , Sl from Algorithm 3 for n vertices, degree sequence W from
Algorithm 2, and parameter ξ (LFR-style µ can be supplied instead);

2 if µ was given, compute ξ;
3 for 1 ≤ i ≤ k do
4 let Wi, the sum of the degrees of all vertices in Si;
5 randomly sample b(1− ξ)Wi/2e edges within Si where each vertex is selected proportionally to

its internal degree; duplicate edges and self-loops are skipped;

6 end
7 let s := (sum(W) - sum(∀i : Wi))/2; sample s edges randomly where each vertex is selected

proportionally to its external degree; duplicate edges and self-loops are skipped;
8 OUTPUT: ABCD graph (list of edges generated);

Algorithm 4: ABCD with Chung-Lu Model. Algorithm given for global ABCD. For local version
of ABCD, use cluster-local ξi’s instead of ξ.

23

1 INPUT: Community assignment S1, . . . , Sl from Algorithm 3 for n vertices, degree sequence W from
Algorithm 2, and parameter ξ (LFR-style µ can be supplied instead);

2 if µ was given, compute ξ;
3 for 1 ≤ i ≤ k do
4 for each vertex in Si, given its degree w, assign internal wint := b(1− ξ) · we;
5 if the sum of all wint is odd, adjust highest degree node randomly to make it even;
6 wire the vertices in Si randomly according to their values wint

a;
7 re-wire duplicated edges and self-loops;
8 if re-wiring fails update the wint to achieved values

9 end
10 compute the external degree for each vertex as wext =: w − wint;
11 wire the vertices randomly according to their values wext (global model);
12 re-wire duplicated edges and self-loops only considering edges in the global model;
13 OUTPUT: ABCD graph (list of edges generated);

Algorithm 5: ABCD with Configuration Model. Algorithm given for global ABCD. For local
version of ABCD, use cluster-local ξi’s instead of ξ.

aother methods can be used here; for example, high degree nodes can be wired first to limit the collisions, or algorithms such
as [34] which yields simple graphs can be used

24

