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Abstract. We study a primitive vehicle routing-type problem in which a fleet of n unit speed robots
start from a point within a non-obtuse triangle ∆, where n ∈ {1,2,3}. The goal is to design robots’
trajectories so as to visit all edges of the triangle with the smallest visitation time makespan. We
begin our study by introducing a framework for subdividing∆ into regions with respect to the type
of optimal trajectory that each point P admits, pertaining to the order that edges are visited and to
how the cost of the minimum makespan Rn (P ) is determined, for n ∈ {1,2,3}. These subdivisions
are the starting points for our main result, which is to study makespan trade-offs with respect to the
size of the fleet. In particular, we define Rn,m (∆) = maxP∈∆Rn (P )/Rm (P ), and we prove that, over
all non-obtuse triangles ∆: (i) R1,3(∆) ranges from

p
10 to 4, (ii) R2,3(∆) ranges from

p
2 to 2, and

(iii) R1,2(∆) ranges from 5/2 to 3. In every case, we pinpoint the starting points within every trian-
gle ∆ that maximize Rn,m (∆), as well as we identify the triangles that determine all inf∆Rn,m (∆)
and sup∆Rn,m (∆) over the set of non-obtuse triangles.

Keywords: 2-Dimensional Search and Navigation · Vehicle Routing · Triangle · Make-span · Trade-
offs.

1 Introduction

Vehicle routing problems form a decades old paradigm of combinatorial optimization questions. In
the simplest form, the input is a fleet of robots (vehicles) with some starting locations, together with
stationary targets that need to be visited (served). Feasible solutions are robots’ trajectories that even-
tually visit every target, while the objective is to minimize either the total length of traversed trajecto-
ries or the time that the last target is visited.

Vehicle routing problems are typically NP-hard in the number of targets. The case of 1 robot in
a discrete topology corresponds to the celebrated Traveling Salesman Problem whose variations are
treated in numerous papers and books. Similarly, numerous vehicle routing-type problems have been
proposed and studied, varying with respect to the number of robots, the domain’s topology and the
solutions’ specs, among others.

We deviate from all previous approaches and we focus on efficiency trade-offs, with respect to the
fleet size, of a seemingly simple geometric variation of a vehicle routing-type problem in which tar-
gets are the edges of a non-obtuse triangle. The optimization problem of visiting all these three targets
(edges), with either 1, 2 or 3 robots, is computationally degenerate. Indeed, even in the most interest-
ing case of 1 robot, an optimal solution for a given starting point can be found by comparing a small
number of candidate optimal trajectories (that can be efficiently constructed geometrically). From a
combinatorial geometric perspective, however, the question of characterizing the points of an arbi-
trary non-obtuse triangle with respect to optimal trajectories they admit when served by 1 or 2 robots,
e.g. the order that targets are visited, is far from trivial (and in fact it is still eluding us in its generality).

In the same direction, we ask a more general question: Given an arbitrary non-obtuse triangle, what
is the worst-case trade-off ratio of the cost of serving its edges with different number of robots, over
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all starting points? Moreover, what is the smallest and what is the largest such value as we range over
all non-obtuse triangles? Our main contributions pertain to the development of a technical geometric
framework that allows us to pinpoint exactly the best-case and worst-case non-obtuse triangles, along
with the worst-case starting points that are responsible for the extreme values of these trade-off ratios.
To the best of our knowledge, the study of efficiency trade-offs with respect to fleet sizes is novel, at
least for vehicle routing type problems or even in the realm of combinatorial geometry.

1.1 Motivation & Related Work

Our problem is related to a number of topics including vehicle routing problems, the (geometric) trav-
eling salesman problem, and search and exploration games. Indeed, the main motivation for our prob-
lem comes from the so-called shoreline search problem, first introduced in [4]. In this problem, a unit
robot is searching for a hidden line on the plane (unlike our problem in which the triangle edges are
visible). The objective is to visit the line as fast as possible, relative to the distance of the line to the
initial placement of the robot. The best algorithm known for this problem has performance of roughly
13.81, and only very weak (unconditional) lower bounds are known [3]. Only recently, the problem of
searching with multiple robots was revisited, and new lower bounds were proven in [1,8].

As it is common in online problems, a typical argument for a lower bound for the shoreline problem
lets an arbitrary algorithm perform for a certain time until the hidden item is placed at a location
that cannot have been visited before by the robot. The lower bound then is obtained by adding the
elapsed time with the distance of the robot to the hidden item (the line), since at this point one may
only assume that the (online) algorithm has full knowledge of the input. Applying this strategy to the
shoreline problem, one is left with the problem of identifying a number of lines, as close as possible to
the starting point of the robot, and then computing the shortest trajectory of the robot that could visit
them all, exactly as in our problem. In the simplest configuration that could result strong bounds, one
would identify three lines, forming a non-obtuse triangle. The latter is also the motivating reason we
restricted our attention to non-obtuse triangles (a second reason has to do with the optimal visitation
cost of 3 robots, which for non-obtuse triangles is defined as the maximum distance over all triangle
edges, treated as lines).

Our problem could also be classified as a vehicle routing-type problem, the first of which was intro-
duced in [6] more than 60 years ago. The objective in vehicle routing problems is typically to minimize
the visitation time (makespan) or the total distance traveled for serving a number of targets given a
fleet of (usually capacitated) robots, see surveys [11,14] for early results. Even though the underlying
domain is usually discrete, geometric vehicle type problems have been studied extensively too, e.g.
in [7]. Over time, the number of proposed vehicle routing variations is so vast that surveys for the
problem are commonly subject-focused; see surveys [10,12,13] for three relatively recent examples.

Famously, vehicle routing problems generalize the celebrated traveling salesman problem (TSP)
where a number of targets need to be toured efficiently by one vehicle. Similarly to vehicle routing,
TSP has seen numerous variations, including geometric [2,9], where in the latter work targets are lines.
The natural extension of the problem to multiple vehicles is known as the multiple traveling salesman
problem [5], a relaxation to vehicle routing problems where vehicles are un-capacitated. The latter
problem has also seen variations where the initial deployment of the vehicles is either from a single
location (single depot), as in our problem, or from multiple locations.

1.2 A Note on our Contributions & Paper Organization

We introduce and study a novel concept of efficiency/fleet size trade-offs in a special geometric vehi-
cle routing-type problem that we believe is interesting in its own right. Deviating from the standard
combinatorial perspective of the problem, we focus on the seemingly simple case of visiting the three
edges of a non-obtuse triangle with n ∈ {1,2,3} robots. Interestingly, the problem of characterizing the
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starting points within arbitrary non-obtuse triangles with respect to structural properties of the opti-
mal trajectories they admit is a challenging question. More specifically, one would expect that the latter
characterization is a prerequisite in order to analyze efficiency trade-offs when serving with different
number of robots, over all triangles. Contrary to this intuition, and without fully characterizing the
starting points of arbitrary triangles, we develop a framework that allows us (a) to pinpoint the starting
points of any triangle at which these (worst-case) trade-offs attain their maximum values, and (b) to
identify the extreme cases of non-obtuse triangles that set the boundaries of the inf and sup values of
these worst-case trade-offs.

This is an extended abstract of our work. Due to space limitations we only present the backbone
of our arguments, along with the critical intermediate lemmata that are invoked toward proving our
main results. The full version of the paper with a revised structure is attached as an appendix at the
end of the submission. The paper organization of the extended abstract is as follows. In Section 2.1
we give a formal definition of the problem we study, and we quantify our main contributions. Then,
in Section 2.2 we establish some of the necessary terminology and we present some preliminary and
important observations. The technical analysis starts in Section 3. First, in Section 3.1 we study the
simpler problem of visiting only two triangle edges with one robot. It is followed by Section 3.2, were
we find optimal trajectories for visiting all three triangle edges by one robot in a predetermined order.
That brings us to Section 4 where we characterize triangle regions with respect to the optimal visita-
tion strategies they admit, for 3 (Section 4.1), 2 (Section 4.2) and 1 robots (Section 4.1). Equipped with
that machinery, we outline in Section 5 how our main contributions are proved. More specifically, Sec-
tion 5.1, Section 5.2 and Section 5.3 discuss trade-offs between 1 and 3, 2 and 3, and 1 and 2 robots,
respectively. Finally in Section 6 we conclude with some open questions.

2 Our Results & Basic Terminology and Observations

2.1 Problem Definition & Main Contributions

We consider the family of non-obtuse triangles D, equipped with the Euclidean distance. For any n ∈
{1,2,3}, any given triangle ∆ ∈ D, and any point P in the triangle, denoted by P ∈ ∆, we consider a
fleet of n unit speed robots starting at point P . A feasible solution to the triangle ∆ visitation problem
with n robots starting from P is given by robots’ trajectories that eventually visit every edge of ∆, that
is, each edge needs to be touched by at least one robot in any of its points including the endpoints.
The visitation cost of a feasible solution is defined as the makespan of robots’ trajectory lengths, or
equivalently as the first time by which every edge is touched by some robot. By Rn(∆,P ) we denote the
optimal visitation cost of n robots, starting from some point P ∈ ∆. When the triangle ∆ is clear from
the context, we abbreviate Rn(∆,P ) simply by Rn(P ).

In this work we are interested in determining visitation cost trade-offs with respect to different
fleet sizes. In particular, for some triangle ∆ ∈ D (which is a compact set as a subest of R2), and for
1 ≤ n < m ≤ 3, we define

Rn,m(∆) := max
P∈∆

Rn(∆,P )

Rm(∆,P )
.

Our main technical results pertain to the study of Rn,m(∆) as∆ ranges over all non-obtuse triangles D.
In particular, we determine inf∆∈D Rn,m(∆) and sup∆∈D Rn,m(∆) for all pairs (n,m) ∈ {(1,3), (2,3), (1,2)}.
Our contributions are summarized in Table 1.1

For establishing the claims above, we observe that inf∆∈D maxP∈∆ Rn (∆,P )
Rm (∆,P ) =α is equivalent to that

∀∆ ∈D,∃P ∈∆,
Rn(∆,P )

Rm(∆,P )
≥α and ∀ε> 0,∃∆ ∈D,∀P ∈∆,

Rn(∆,P )

Rm(∆,P )
≤α+ε.

1 Note that the entries in column 1 are not obtained by multiplying the entries of columns 2,3. This is because
the triangles that realize the inf and sup values are not the same in each column.
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R1,3(∆) R2,3(∆) R1,2(∆)
inf∆∈D

p
10

p
2 2.5

sup∆∈D 4 2 3
Table 1: Our main contributions.

Similarly, sup∆∈D maxP∈∆ Rn (∆,P )
Rm (∆P ) =β is equivalent to that

∀∆ ∈D,∀P ∈∆,
Rn(∆,P )

Rm(∆,P )
≤β and ∀ε> 0,∃∆ ∈D,∃P ∈∆,

Rn(∆,P )

Rm(∆,P )
≥β−ε.

Therefore, as a byproduct of our analysis, we also determine the best and the worst triangle cases of
ratios Rn,m(∆), as well as the starting points that determine these ratios. In particular we show that
(i) the extreme values of R1,3(∆) are attained as ∆ ranges between “thin” isosceles and equilateral tri-
angles, and the worst starting point is the incenter, (ii) the extreme values of R2,3(∆) are attained as ∆
ranges between right isosceles and equilateral triangles, and the worst starting point is again the in-
center, and (iii) the extreme values of R1,2(∆) are attained as ∆ ranges between equilateral and right
isosceles triangles, and the worst starting point is the middle of the shortest altitude.

2.2 Basic Terminology & Some Useful Observations

The length of segment AB is denoted by ‖AB‖. An arbitrary non-obtuse triangle will be usually denoted
by 4ABC , which we assume is of bounded size. More specifically, without loss of generality, we often
consider 4ABC represented in the Cartesian plane in standard analytic form, with A = (p, q),B = (0,0)
and C = (1,0).

The cost of optimally visiting a collection of line segments C (triangle edges) with 1 robot starting
from point P is denoted by d(P,C ). For example, when C = {AB ,BC } we write d(P, {AB ,BC }). When, for
example, C = {AB } is a singleton set, we slightly abuse the notation and for simplicity write d(P, AB)
instead of d(P, {AB }). Note that if the projection P ′ of P onto the line defined by points A,B lies in
segment AB , then d(P, AB) = ∥∥PP ′∥∥, and otherwise d(P, AB) = min{‖PA‖ ,‖PB‖}. The following obser-
vation follows immediately from the definitions, and the fact that we restrict our study to non-obtuse
triangles.

Observation 1 For any non-obtuse triangle ∆=4ABC , and P ∈∆, we have
(i) R3(∆,P ) = max{d(P, AB),d(P,BC ),d(P,C A)}.

(ii) R2(∆,P ) = min


max{d(P, AB),d(P, {BC ,C A})}
max{d(P,BC ),d(P, {AB ,C A})}
max{d(P,C A),d(P, {BC , AB})}


(iii) R1(∆,P ) = d(P, {AB ,BC ,C A}).

Motivated by our last observation, we also introduce notation for the cost of ordered visitations.
Starting from point P , we may need to visit an ordered list of (2 or 3) line segments in a specific
order. For example, we write d(P, [AB ,BC , AC ]) for the optimal cost of visiting the list of segments
[AB ,BC , AC ], in this order, with 1 robot. As we will be mainly concerned with 4ABC edge visita-
tions, and due to the already introduced standard analytic form, we refer to the trajectory realizing
d(P, [AB ,BC , AC ]) as the (optimal) LDR strategy (L for “Left” edge AB , D for “Down” edge BC , and R for
“Right” edge AC). We introduce analogous terminology for the remaining 5 permutations of the edges,
i.e. LRD, RLD, RDL, DRL, DLR. Note that it may happen that in an optimal ordered visitation, robot
visits a vertex of the triangle edges. In such a case we interpret the visitation order of the incident edges
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arbitrarily. For ordered visitation of 2 edges, we introduce similar terminology pertaining to (optimal)
LD, LR, RL, RD, DR and DL strategies.

In order to obtain the results reported in Table 1, it is necessary to subdivide any triangle ∆ into
sets of points that admit the same optimal ordered visitations (e.g. all points P in which an optimal
R1(∆,P ) strategy is LRD). For n ∈ {2,3} robots, the subdivision is also with respect to the cost Rn(∆,P ).
Specifically for n = 2, the subdivision is also with respect to whether the cost R2(∆,P ) is determined by
the robot that is visiting one or two edges (see Observation 1). We will refer to these subdivisions as the
R1,R2,R3 regions. For each n ∈ {1,2,3}, the Rn regions will be determined by collection (loci) of points
between neighbouring regions that admit more than one optimal ordered visitations.

Angles are read counter-clockwise, so that for example for 4ABC in standard analytic form, we
have ∠A =∠B AC . For aesthetic reasons, we may abuse notation and drop symbol ∠ from angles when
we write trigonometric functions. Visitation trajectories will be denoted by a list of points 〈A1, . . . , An〉
(n ≥ 2), indicating a movement along line segments between consecutive points. Hence, the cost of
such trajectory would be

∑n
i=2 ‖Ai Ai−1‖.

3 Preliminary Results

3.1 Optimal Visitations of Two Triangle Edges

As a preparatory step, first consider the simpler problem of visiting two distinguished edges of a trian-
gle ∆= ABC , starting from a point within the triangle.

When ∠A ≥ π/3, we define the concept of its optimal bouncing subcone, which is defined as a
cone of angle 3∠A −π and tip A, so that ∠A and the subcone have the same angle bisector. When
∠A =π/3, then the optimal bouncing subcone is a ray with tip A that coincides with the angle bisector
of ∠A. Whenever ∠A < π/3 we define its optimal bouncing subcone as the degenerate empty cone.
The following two observations are used repeatedly in our results.

Observation 2 If P is in the optimal bouncing subcone of ∠A, then d(P, {AB , AC }) = ‖PA‖.

For a point P ∈4ABC outside the optimal bouncing subcone of ∠A, we define the (two) optimal
bouncing points M , N of the ordered [AB , AC ] visitation as follows. Let C ′ be the reflections of C around
AB . Let also P ′ be the projection of P onto AC ′. Then, M is the intersection of PP ′ with AB and N is
the projection of M onto AC . Note that equivalently, M , N are determined uniquely by requiring that
(i) ∠B MP =∠N M A, and (ii) ∠AN M =π/2 (see also Figure 1a).

Observation 3 If P is outside the optimal bouncing subcone of∠A, then d(P, {AB , AC }) = ‖P M‖+‖M N‖,
where M , N are the optimal bouncing points of ordered [AB , AC ] visitation.

3.2 Optimal (Ordered) Visitation of Three Triangle Edges

In this section we discuss optimal LRD visitations of non-obtuse 4ABC , together with optimality con-
ditions when serving with one robot. Optimality conditions for the remaining 5 ordered visitations
are obtained similarly. In order to determine the optimal LRD visititation, we obtain reflection C ′ of C
across AB , and reflection B ′ of B across C ′A, see also Figure 1b.

From C ′ and A, we draw a lines ε,ζ, both perpendicular to C ′B ′ which may (or may not) intersect
4ABC . We refer to line ε as the LRD bounce indicator line. We also refer to line ζ as the LRD subopt
indicator line. Each of the lines identify a halfspace on the plane. The halfspace associated with ε on
the side of vertex A will be called the positive halfspace of the LRD bounce indicator line or in short the
positive LRD bounce halfspace, and its complement will be called the negative LRD bounce halfspace.
The halfspace associated with ζ on the side of vertex B will be called the positive halfspace of the LRD
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(a) Optimal trajectory for visiting {AB , AC } for∠A ≥
π/3, starting outside the optimal bouncing sub-
cone.

(b) Arbitrary non-obtuse 4ABC shown with its
LRD bounce indicator line and its LRD subopt in-
dicator line.

Fig. 1

subopt indicator line, or in short the positive LRD subopt halfspace, and its complement will be called
the negative LRD subopt halfspace.

For a point P in the positive LRD bounce and subopt halfspaces, let P ′ be its projection onto C ′B ′.
Let E ,F be the intersections of PP ′ with AB , AC ′, respectively. Let also H be the reflection of F across
AB . Points E , H ,G will be called the optimal LRD bouncing points for point P . The points are also
uniquely determined by requiring that∠BEP =∠HE A and that HG is perpendicular to BC . For a point
R in the negative LRD bounce halfspace and in the positive subopt halfspace, let J be the intersection of
RC ′ with AB . Point J will be called the degenerate optimal LRD bouncing point, which is also uniquely
determined by the similar bouncing rule ∠B JR =∠C J A. Finally, let A′, A′′ be the projection of A onto
B ′C ′,BC , respectively.

The next lemma refers to such points P,R together with the construction of Figure 1b. Its proof
uses the observations of Section 3.1 and follows easily by noticing that the optimal LRD visitation is
in 1-1 correspondence with the optimal visitation of segment B ′C ′ using a trajectory that passes from
segment AB .

Lemma 1. The optimal LRD visitation trajectory, with starting points P,R,T , is:

– trajectory 〈P,E , H ,G〉, provided that P is in the positive LRD bounce and subopt halfspaces,
– trajectory 〈R, J ,C〉, provided that R is in the negative LRD bounce halfspace and in the positive sub-

opt halfspace,
– trajectory 〈T, A, A′′〉, provided that T is in the negative LRD subopt halfspace.

4 Computing the Rn Regions, n = 1, 2, 3

By Observations 2, 3 and Lemma 1, we see that optimal visitations of 2 or 3 edges have cost equal
to (i) the distance of the starting point to a line (reflection of some triangle edge), or (ii) the distance
of the starting point to some point (triangle vertex) or (iii) the distance of the starting point to some
triangle vertex plus the length of some triangle altitude. In this section we describe the Rn regions of
certain triangles, n ∈ {1,2,3}. For this, we compare optimal ordered strategies, and the subdivisions of
the regions are determined by loci of points that induce ordered trajectories of the same cost. As these
costs are of type (i), (ii), or (iii) above (and considering all their combinations) the loci of points in which
two ordered strategies have the same cost will be either some line (line bisector or angle bisector), or
some conic section (parabola or hyperbola).
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4.1 Triangle Visitation with 3 Robots - The R3 Regions

Consider∆ ∈D with vertices A,B ,C . For every P ∈∆, any trajectories require time at least the maximum
distance of P from all edges, in order to visit all of them. This bound is achieved by having all robots
moving along the projection of P onto the 3 edges, and so we have R3(P ) = max{d(P, AB),d(P,BC ),d(P,C A)},
as also in Observation 1. Next we show how to subdivide the region of ∆ with respect to which of the
3 projections is responsible for the optimal visitation cost. For this, we let I denote the incenter (the
intersection of angle bisectors) of ∆. Let also K ,L, M be the intersections of the bisectors with edges
BC ,C A and AB , respectively, see also Figure 2.

Fig. 2: The R3 regions of an arbitrary non-obtuse 4ABC . AK ,BL,C M are the angle bisectors of
∠A,∠B ,∠C , respectively. Recall that the incenter I is equidistant from all triangle edges.

Lemma 2. For every starting point P ∈∆, we have that

R3(∆,P ) =


d(P, AB) , provided that P ∈C LI K
d(P,BC ) , provided that P ∈ AM I L
d(P,C A) , provided that P ∈ BK I M

.

4.2 Triangle Visitation with 2 Robots - The R2 Regions

In this section we show how to subdivide the region of any non-obtuse triangle ∆ ∈D into subregions
with respect to the optimal trajectories and their costs, for a fleet consisting of 2 robots. The following
technical lemma describes a geometric construction.

Lemma 3. Consider non-obtuse 4ABC along with its incenter I . Let K , M be the intersections of angle
bisectors of A,C with segments BC , AB respectively. From K , M we consider cones of angles A,C respec-
tively, having direction toward the interior of the triangle, and placed so that their bisectors are per-
pendicular to BC , AB, respectively. Then, the extreme rays of the cones intersect at some point F in line
segment B I .

Motivated by Lemma 3, we will be referring to the subject point F in the line segment B I as the sep-
arator of the angle B bisector. Similarly, we obtain separators J , H of angles C , A bisectors, respectively,
see also Figure 3a. In what follows, we will be referring to the (possibly non-convex) hexagon MF K JLH
as the R2 (hexagon) separator of 4ABC .

The remaining of the section refers to non-obtuse triangle ∆ = 4ABC as in Figure 3a, where in
particular MF K JLH is the R2 separator of ∆. Assume that ∠B ≥ π/3. It can be shown that for every
point P either in MF or F K which are outside the optimal bouncing subcone of angle B , we have
that d(P, AC ) = d(P, {BC , AB }). For points within the subcone, the optimal trajectory to visit {BC , AB }
would be to go directly to B . So for points P within the optimal bouncing subcone, condition d(P, AC ) =
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(a) The R2 hexagon separator of 4ABC . (b) The refined R2 mixed-hexagon separator of 4ABC ,
where ∠B >π/3.

Fig. 3

d(P, {BC , AB}) translates into that P is equidistant from AC and B . Hence, P lies in a parabola with AC
being the directrix and B being the focus. Next, we refer to that parabola as the separating parabola of
B .

Motivated by the previous observation, we introduce the notion of the refined R2 mixed-hexagon
separator of triangle∆ as follows. For every angle of∆which is more thanπ/3, we replace the portion of
the R2 hexagon separator within the optimal bouncing subcone of the same angle by the correspond-
ing separating parabola. In Figure 3b we display an example where only one angle is more than π/3.
Combined with Observation 1 (ii), we can formalize our findings as follows.

Lemma 4. For every starting point on the boundary of the refined R2 mixed-hexagon separator of a tri-
angle∆, the cost of visiting only the opposite edge equals the cost of visiting the other two edges. For every
starting point P outside the R2 separator, R2(P ) equals the distance of P to the opposite edge. Moreover,
for every starting point P in the interior of the refined R2 separator, R2(P ) is determined by the cost of
visiting two of the edges of ∆.

(a) The R2 regions of the equilateral triangle, see
also Corollary 1 and Lemma 5 for detailed descrip-
tion.

(b) The R2 regions of the right isosceles, see also
Corollary 2 and Lemma 6 for detailed descrip-
tion. The coloured region identifies the refined R2
mixed-hexagon separator.

Fig. 4
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Lemma 4 implies the following corollaries pertaining to specific triangles 4ABC . In both state-
ments, and the associated figures, I is the incenter of the triangles, and points K ,L, M are defined as in
Figure 2.

Corollary 1 (Hexagon separator of equilateral triangle). Consider equilateral ∆ = 4ABC , see Fig-
ure 4a. Let W, Z ,Y be the intersections of AK ,BL,C M respectively (also the separators of angle A bisector,
angle B bisector, and angle C bisector, respectively). Then, the R2 hexagon separator of ∆ is M Z K Y LW ,
which is also triangle MK L. More specifically, for all P ∈4AML, we have that R2(∆,P ) = d(P,BC ).

Corollary 2 (Mixed-hexagon separator of right isosceles). Consider right isosceles∆=4ABC , see Fig-
ure 4b. The separator of angle A bisector is incenter I . Let also F, J be the separators of angle B bisector
and angle C bisector, respectively. Then, the R2 hexagon separator of ∆ is I MF K JL. The parabola with
directix BC and focus A, intersecting AK at Q and passing through M ,L is the separating parabola of A.
Hence, for every point P ∈ ∆ above the parabola, we have R2(∆,P ) = d(P,BC ), as well as for every point
X in tetragon MBK F , we have R2(∆, X ) = d(X , AC ).

Describing the subdivisions within the refined R2 mixed-hexagon separator for arbitrary triangles
is a challenging task. On the other hand, by Observation 1 (ii) and Lemma 4 the cost within the sep-
arator is determined by the cost of visiting just two edges. Also, by Observations 2, 3 the cost of such
visitation can be described either as a distance to a line or to a point. We conclude that, within the
R2 separator, the subdivisions are determined by separators that are either parts of lines or parabolas
(loci of points for which the cost of visiting some two edges are equal). Hence, for any fixed triangle,
an extensive case analysis pertaining to pairwise comparisons of visitations costs can determine all R2

subdivisions (and the challenging ones are within the refined separator). In what follows we summa-
rize formally the subdivisions only of two triangle types, focusing on the visitation cost of all starting
points within the (refined) hexagon separators.

Lemma 5 (R2 regions of an equilateral triangle). Consider equilateral ∆ = 4ABC , as in Corollary 1,
see Figure 4a. Then for every starting point P ∈ 4MW I , we have that R2(∆,P ) = d(P, [AB , AC ]). The
remaining cases of starting points within the hexagon separator M Z K Y LW follow by symmetry.

Lemma 6 (R2 regions of a right isosceles triangle). Consider right isosceles ∆ = 4ABC , as in Corol-
lary 2, see Figure 4b. Consider parabola with directrix the line passing through B that is perpendicular
to BC (also the reflection of BC across AB) and focus A, passing through M ,K and intersecting BL at
point T (define also S as the symmetric point of T across AK ). That parabola is the locus of points P for
which ‖PA‖ = d(P, [AB ,BC ]). Let also A′ be the reflection of A across BC . Consider parabola with direc-
trix B A′ and focus A, passing through T and intersecting AK at point U . That parabola is the locus of
points P for which ‖PA‖ = d(P, [BC , AB ]). Therefore, if P is a starting visitation point, we have that:
- R2(∆,P ) = ‖PA‖, for all P in mixed closed shape MTU SLQ (grey shape in Figure 4b),
- R2(∆,P ) = d(P, [AB ,BC ]), for all P in mixed closed shape MF T (blue shape in Figure 4b),
- R2(∆,P ) = d(P, [BC , AB ]), for all P in mixed closed shape F KU T (red shape in Figure 4b).
The visitation costs with starting points in the remaining subdivisions of the refined R2 mixed-hexagon
separator, green and purple regions in Figure 4b, follow by symmetry.

4.3 Triangle Visitation with 1 Robot - The R1 Regions

In this section we show how to partition the region of an arbitrary non-obtuse 4ABC into sets of
points P with respect to the optimal strategy of R1(P ). There are 6 possible visitation strategies for
d(P, {AB , AC , AB }), one for each permutation of the edges indicating the order they are visited (ordered
visitations). Clearly, it is enough to describe, for each two ordered visitations, the borderline (separa-
tor) of points in which the two visitations have the same cost. By Lemma 1, any such ordered visitation
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cost is the distance of the starting point either to a point, or to a line, or a distance to a line plus the
length of some altitude. Since the R1 regions are determined by separators, i.e. loci of points in which
different ordered visitations induce the same costs, it follows that these separators are either lines, or
conic sections. Therefore, by exhaustively pairwise-comparing all ordered visitations along with their
separators, we can determine the R1 regions of any triangle. Next, we explicitly describe the R1 regions
only for three types of triangles that we will need for our main results. For the sake of avoiding redun-
dancies, we omit any descriptions that are implied by symmetries.

(a) The R1 regions of an
equilateral triangle.

(b) The R1 regions of a right
isosceles triangle.

(c) The R1 regions of an
isosceles triangle ABC with
small ∠A.

Fig. 5

The next lemma describes the R1 regions of an equilateral triangle, as in Figure 5a.

Lemma 7 (R1 regions of an equilateral triangle). Consider equilateral triangle 4ABC with angle bi-
sectors AK ,BL,C M and incenter I . Then, the angle bisectors are the loci of points in which optimal or-
dered visitations have the same cost. Moreover, for every starting point P ∈4AM I , the optimal strategy
of R1(∆,P ) is LRD visitation.

The next lemma describes the R1 regions of a right isosceles, as in Figure 5b. Curve F J is part of the
parabola with directrix the relfection of BC across A and focus the reflection of A across BC . Curve BF
is part of the parabola with directrix a line parallel to AB which is ‖AB‖ away from AB , and focus the
reflection of A across BC . Curve C J is part of the parabola with directrix a line parallel to AC which
is ‖AC‖ away from AC , and focus the reflection of A across BC . C E (not shown in the figure) is the
bisector of ∠C , and segment EF is part of the reflection of that bisector across AB . B H is the bisector
of ∠C , and segment H J is part of the reflection of that bisector across AC . Segment AN is part of the
altitude corresponding to A.

Lemma 8 (R1 regions of a right isosceles triangle). Consider right isosceles ∆ = 4ABC , and starting
point P. Then, the optimal visitation strategy for R1(∆,P ) is:
- an LRD visitation, if P ∈ AEF N ,
- an LDR visitation if P ∈ BF E, and
- both an DRL,DLR visitation if P ∈ BC JF (trajectory visits {AB , AC } at point A).

Next we consider a “thin” isosceles ∆ =4ABC with ∠A ≤ π/3, as in Figure 5c. (Eventually we will
invoke the next lemma for ∠A → 0.) AK is the altitude corresponding to A. C D,BG are the altitudes
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corresponding to AB , AC , respectively. C E ,BF (not shown) are the extreme rays of the optimal bounc-
ing subcone corresponding to C ,B , respectively. H is the intersection of AK with BG (and C D), i.e. the
orthocenter of the triangle. Segment E J (as part of a line) is the reflection of EC (as part of a line) across
AB . Segment F J (as part of a line) is the reflection of BF (as part of a line) across AC .

Lemma 9 (R1 regions of a thin isosceles triangle). Consider isosceles ∆ =4ABC , with ∠A ≤ π/3 and
starting point P. Then, the optimal visitation strategy for R1(∆,P ) is:
- an LRD visitation if P ∈ AE J,
- both LRD and LDR (optimal strategy is to visit first AB and then move to C ), if P ∈ ED H J,
- an LDR visitation, if P ∈ DB H, and
- a DLR visitation if P ∈ BK H.

5 Visitation Trade-offs

In this section we outline how we obtain our main results, as reported in Table 1. For this we invoke the
lemmata we already established, along with the the following claims (requiring lengthy and technical
proofs) pertaining to optimal visitation costs of some special starting points. For the remaining of the
section, we denote by I the incenter of 4ABC . All three following lemmata refer to non-obtuse 4ABC .

Lemma 10. If ∠C is the largest angle, then R2(I ) = ‖IC‖.

Lemma 11. If ∠A is the largest angle, then R1(I ) = ∥∥I A′∥∥, where A′ is the reflection of A across BC .

Lemma 12. Let ∠A ≥∠B ≥∠C , and T be the middle point of the altitude corresponding to the largest
edge BC . Then the optimal R1(T ) strategy is of LRD type, and has cost 1

2 (2−cos(2A))sin(B)sin(C )csc(B+
C ).

5.1 Searching with 1 vs 3 Robots

First we sketch the proof of sup∆∈D R1,3(∆) = 4. The lower bound for sup∆∈D R1,3(∆) is given by the
following lemma that utilizes Lemma 2 and Lemma 11.

Lemma 13. Let ∆ be an equilateral triangle.Then, R1(I )/R3(I ) = 4.

The remaining of the section is devoted in proving a tight upper bound for sup∆∈D R1,3(∆). Without
loss of generality, we also assume that the starting point P lies within the tetragon (4-gon) AM I L, see
also Figure 2.

In order to provide the promised upper bound, we propose a heuristic upper bound for R1(P ), as
follows. Consider the projections P1,P2,P3 of P onto AB ,BC and C A respectively. Then, three (pos-
sibly) suboptimal visitation trajectories for one robot are TC (P ) := 〈P,P1,P,C ,〉, TA(P ) := 〈P,P2,P, A〉,
TB (P ) := 〈P,P3,P,B〉, that is R1(P ) ≤ min{TA(P ),TB (P ),TC (P )}. The upper bound proof follows by fol-
lowing lemma.

Lemma 14. If ∠A ≤π/3, then min{TB (P ),TC (P )}/R3(P ) ≤ 4. If ∠A ≥π/3, then TA(P )/R3(P ) ≤ 4.

Next we outline how we obtain that inf∆∈D R1,3(∆) =p
10. First, using Lemma 2 and Lemma 9 we

show that inf∆∈D R1,3(∆) ≤p
10.

Lemma 15. For isosceles ABC with base BC , we have lim∠A→0 maxP∈ABC
R1(P )
R3(P ) =

p
10.

Next, we invoke Lemma 2 and Lemma 11 in order to show that inf∆∈D R1,3(∆) ≥p
10.

Lemma 16. For any triangle ∆ ∈D we have R1(I )/R3(I ) ≥p
10.
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5.2 Searching with 2 vs 3 Robots

First we outline the proof of that sup∆∈D R2,3(∆) = 2. For this, and using Lemma 2 and Lemma 10, we
establish that sup∆∈D R2,3(∆) ≥ 2.

Lemma 17. For the equilateral triangle we have R2(I )/R3(I ) = 2.

The remaining of the section is devoted in proving that sup∆∈D R2,3(∆) ≤ 2. In that direction, we
consider a triangle ∆= ABC along with its incenter I , see also Figure 2.

In order to provide the promised upper bound, we propose a heuristic upper bound for R2(P ). The
two robots visit all edges as follows; one robot goes to the vertex corresponding to the largest angle
(visiting the two incident edges), and the second robot visits the remaining edge moving along the
projection of P along that edge. The heuristic is used the to show the following.

Lemma 18. For any ∆ ∈D and starting point P, we have R2(P )/R3(P ) ≤ 2.

Next we outline how we prove that inf∆∈D R2,3(∆) =p
2. Using Lemma 2 and Lemma 6 we can show

that inf∆∈D R2,3(∆) ≤p
2.

Lemma 19. Let 4ABC be a right isosceles. Then, we have maxP∈ABC
R2(P )
R3(P ) =

p
2.

Then, by invoking Lemma 10 we show that inf∆∈D R2,3(∆) ≥p
2.

Lemma 20. For any ∆ ∈D, we have R2(I )/R3(I ) ≥p
2.

5.3 Searching with 1 vs 2 Robots

Finally, we outline how we prove that sup∆∈D R1,2(∆) = 3. Using a simple heuristic upper bound for R1,
we can show the following.

Lemma 21. For any ∆ ∈D and any starting point P ∈∆, we have R1(P )/R2(P ) ≤ 3.

The lower bound for sup∆∈D R1,2(∆) is attained for the right isosceles triangle (and for certain start-
ing point). Indeed, using Lemma 12 we show that sup∆∈D R1,2(∆) ≥ 3.

Lemma 22. Let ABC be a right isosceles triangle with right angle A. Let also P be the middle point of
the altitude corresponding to angle A. Then, R1(P )/R2(P ) = 3.

It remains to sketch the proof of inf∆∈D R1,2(∆) = 5/2. For this, using Lemma 5 and Lemma 7 we
prove that inf∆∈D R1,2(∆) ≤ 5/2.

Lemma 23. For the equilateral triangle ∆, we have maxP∈∆R1(P )/R2(P ) = 5/2.

Then, using Lemma 12, we prove that inf∆∈D R1,2(∆) ≥ 5/2.

Lemma 24. For any 4ABC ∈ D, let T be the middle point of the altitude corresponding to the largest
edge. Then, we have R1(T )/R2(T ) ≥ 5/2.

6 Conclusions

We considered a new vehicle routing-type problem in which (fleets of) robots visit all edges of a tri-
angle. We proved tight bounds regarding visitation trade-offs with respect to the size of the available
fleet. In order to avoid degenerate cases of visiting the edges with 3 robots, we only focused our study
on non-obtuse triangles. The case of arbitrary triangles, as well as of other topologies, e.g. graphs, re-
mains open. We believe the definition of our problem is of independent interest, and that the study
of efficiency trade-offs in combinatorial problems with respect to the number of available processors
(that may not be constant as in our case), e.g. vehicle routing type problems, will lead to new, deep and
interesting questions.
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