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Abstract. We study a primitive vehicle routing-type problem in which a fleet
of n unit speed robots start from a point within a non-obtuse triangle∆, where
n ∈ {1,2,3}. The goal is to design robots’ trajectories so as to visit all edges of
the triangle with the smallest visitation time makespan. We begin our study
by introducing a framework for subdividing ∆ into regions with respect to the
type of optimal trajectory that each point P admits, pertaining to the order
that edges are visited and to how the cost of the minimum makespan Rn (P )
is determined, for n ∈ {1,2,3}. These subdivisions are the starting points for
our main result, which is to study makespan trade-offs with respect to the size
of the fleet. In particular, we define Rn,m (∆) = maxP∈∆Rn (P )/Rm (P ), and we
prove that, over all non-obtuse triangles ∆: (i) R1,3(∆) ranges from

p
10 to 4,

(ii) R2,3(∆) ranges from
p

2 to 2, and (iii) R1,2(∆) ranges from 5/2 to 3. In ev-
ery case, we pinpoint the starting points within every triangle ∆ that maximize
Rn,m (∆), as well as we identify the triangles that determine all inf∆Rn,m (∆)
and sup∆Rn,m (∆) over the set of non-obtuse triangles.

Keywords: 2-Dimensional Search and Navigation · Vehicle Routing · Triangle ·
Make-span · Trade-offs.

1 Introduction

Vehicle routing problems form a decades old paradigm of combinatorial optimiza-
tion questions. In the simplest form, the input is a fleet of robots (vehicles) with some
starting locations, together with stationary targets that need to be visited (served).
Feasible solutions are robots’ trajectories that eventually visit every target, while the
objective is to minimize either the total length of traversed trajectories or the time
that the last target is visited.

Vehicle routing problems are typically NP-hard in the number of targets. The
case of 1 robot in a discrete topology corresponds to the celebrated Traveling Sales-
man Problem whose variations are treated in numerous papers and books. Similarly,
numerous vehicle routing-type problems have been proposed and studied, varying
with respect to the number of robots, the domain’s topology and the solutions’ specs,
among others.

⋆ Research supported in part by NSERC.
⋆⋆ This is full version of the paper with the same title which will appear in the proceedings of

the 32nd International Workshop on Combinatorial Algorithms (IWOCA’21), 5-7 July 2021,
Ottawa, Canada.
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We deviate from all previous approaches and we focus on efficiency trade-offs,
with respect to the fleet size, of a seemingly simple geometric variation of a vehicle
routing-type problem in which targets are the edges of a non-obtuse triangle. The
optimization problem of visiting all these three targets (edges), with either 1, 2 or 3
robots, is computationally degenerate. Indeed, even in the most interesting case of
1 robot, an optimal solution for a given starting point can be found by comparing a
small number of candidate optimal trajectories (that can be efficiently constructed
geometrically). From a combinatorial geometric perspective, however, the question
of characterizing the points of an arbitrary non-obtuse triangle with respect to opti-
mal trajectories they admit when served by 1 or 2 robots, e.g. the order that targets
are visited, is far from trivial (and in fact it is still eluding us in its generality).

In the same direction, we ask a more general question: Given an arbitrary non-
obtuse triangle, what is the worst-case trade-off ratio of the cost of serving its edges
with different number of robots, over all starting points? Moreover, what is the small-
est and what is the largest such value as we range over all non-obtuse triangles? Our
main contributions pertain to the development of a technical geometric framework
that allows us to pinpoint exactly the best-case and worst-case non-obtuse triangles,
along with the worst-case starting points that are responsible for the extreme values
of these trade-off ratios. To the best of our knowledge, the study of efficiency trade-
offs with respect to fleet sizes is novel, at least for vehicle routing type problems or
even in the realm of combinatorial geometry.

1.1 Motivation & Related Work

The main motivation for our work stems from its classification as a vehicle routing-
type problem, first introduced by Dantzig and Ramser in 1959 [6]. In vehicle rout-
ing problems (VRPs), the primary objective is to minimize either the visitation time
(makespan) or the total distance traveled to serve a set of targets using a fleet of
(usually capacitated) robots. Early results on this topic are detailed in surveys such
as [11,14].

While VRPs are typically studied in discrete domains, geometric vehicle rout-
ing problems have also been extensively explored, as seen in [7]. The long list of
VRP variations proposed over time has led to numerous subject-focused surveys;
see [10,12,13] for three relatively recent examples.

Famously, VRPs generalize the celebrated Traveling Salesman Problem (TSP), where
a single vehicle must efficiently tour a set of targets. Similar to VRPs, TSP has numer-
ous variations, including geometric ones [2,9], where targets are lines in the latter
work. The natural extension of TSP to multiple vehicles is known as the Multiple
Traveling Salesman Problem (MTSP) [5], a variant of VRPs where vehicles are un-
capacitated. MTSP has also been studied with variations in the initial deployment
of vehicles, either from a single location (single depot), as in our problem, or from
multiple locations.

Apart from being related to vehicle routing problems, the geometric traveling
salesman problem, and search and exploration games, our problem also relates to
the so-called shoreline search problem, first introduced in [4]. Our research ques-
tion arose from attempting to derive new lower bounds for this problem.
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In the shoreline search problem, a unit robot searches for a hidden line on the
plane, unlike our problem where the triangle edges are visible. The objective is to
visit the line as quickly as possible relative to the distance from the robot’s initial
placement. The best known algorithm for this problem has a performance ratio of
roughly 13.81, with only very weak (unconditional) lower bounds known [3]. Re-
cently, the problem of searching with multiple robots was revisited, resulting in new
lower bounds [1,8].

In typical online problems, a lower bound argument involves allowing an arbi-
trary algorithm to run for a certain time until the hidden item is placed at a location
that the robot has not yet visited. The lower bound is then obtained by adding the
elapsed time to the distance from the robot to the hidden item (the line), as it is
assumed that the online algorithm has full knowledge of the input at this point. Ap-
plying this strategy to the shoreline problem involves identifying a number of lines
as close as possible to the robot’s starting point and computing the shortest trajec-
tory for the robot to visit all of them, which mirrors our problem. This reasoning also
applies to the case of multiple agents.

In the simplest configuration that could yield strong bounds, three lines forming
a non-obtuse triangle are identified. The question then arises: what is the shortest
trajectory that allows one (or multiple) agent(s) to visit all these edges? This question
led to the research we present in this work. The motivation for restricting our atten-
tion to non-obtuse triangles is twofold: firstly, to address this specific configuration
that arose from our motivating search problem, and secondly, because the optimal
visitation cost for three robots in non-obtuse triangles is defined as the maximum
distance over all triangle edges, treated as lines. Although our quantified results do
not have immediate implications for the shoreline problem (or its lower bounds), we
hope that the techniques we developed to compare optimal visitation trajectories by
one or more agents will provide new insights for improving the lower bounds of the
shoreline problem.

1.2 A Note on our Contributions & Paper Organization

We introduce and study a novel concept of efficiency/fleet size trade-offs in a special
geometric vehicle routing-type problem that we believe is interesting in its own right.
Deviating from the standard combinatorial perspective of the problem, we focus on
the seemingly simple case of visiting the three edges of a non-obtuse triangle with
n ∈ {1,2,3} robots. Interestingly, the problem of characterizing the starting points
within arbitrary non-obtuse triangles with respect to structural properties of the op-
timal trajectories they admit is a challenging question. More specifically, one would
expect that the latter characterization is a prerequisite in order to analyze efficiency
trade-offs when serving with different number of robots, over all triangles. Contrary
to this intuition, and without fully characterizing the starting points of arbitrary tri-
angles, we develop a framework that allows us (a) to pinpoint the starting points of
any triangle at which these (worst-case) trade-offs attain their maximum values, and
(b) to identify the extreme cases of non-obtuse triangles that set the boundaries of
the inf and sup values of these worst-case trade-offs.
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In Section 2.1 we give a formal definition of our problem, as well as we quantify
our main results. Section 2.2 introduces some basic terminology, together with some
preliminary and important observations. Then, in Section 3.1, we address first the
basic question of visiting optimally two triangle edges, and we move in Section 3.2 to
the problem of visiting optimally three triangle edges in a specific order. Section 4 is
the beginning of our technical contribution, were we introduce a framework for char-
acterizing triangle points with respect to optimal solutions they admit when serving
with n = 3,2,1 robots, see Sections 4.1, 4.2 and 4.3, respectively. Using that frame-
work, we expand our technical contribution by computing in Section 5 the visitation
cost with 1, 2 robots of some special triangle starting points. Finally, in Section 6
we quantify the efficiency trade-offs with respect to the fleet size where, in particu-
lar, Sections 6.1, 6.2 and 6.3 focus on the cases of serving with 1 vs. 3 robots, 2 vs. 3
robots, and 1 vs. 2 robots, respectively.

2 Our Results & Basic Terminology and Observations

2.1 Problem Definition & Main Contributions

We consider the family of non-obtuse triangles D, equipped with the Euclidean dis-
tance. For any n ∈ {1,2,3}, any given triangle ∆ ∈ D, and any point P in the triangle,
denoted by P ∈ ∆, we consider a fleet of n unit speed robots starting at point P . A
feasible solution to the triangle ∆ visitation problem with n robots starting from P is
given by robots’ trajectories that eventually visit every edge of ∆, that is, each edge
needs to be touched by at least one robot in any of its points including the end-
points. The visitation cost of a feasible solution is defined as the makespan of robots’
trajectory lengths, or equivalently as the first time by which every edge is touched by
some robot. By Rn(∆,P ) we denote the optimal visitation cost of n robots, starting
from some point P ∈∆. When the triangle ∆ is clear from the context, we abbreviate
Rn(∆,P ) simply by Rn(P ).

In this work we are interested in determining visitation cost trade-offs with re-
spect to different fleet sizes. In particular, for some triangle∆ ∈D (which is a compact
set as a subest of R2), and for 1 ≤ n < m ≤ 3, we define

Rn,m(∆) := max
P∈∆

Rn(∆,P )

Rm(∆,P )
.

Our main technical results pertain to the study of Rn,m(∆) as ∆ ranges over all non-
obtuse triangles D. In particular, we determine inf∆∈D Rn,m(∆) and sup∆∈D Rn,m(∆)
for all pairs (n,m) ∈ {(1,3), (2,3), (1,2)}. Our contributions are summarized in Table 1.1

For establishing the claims above, we observe that inf∆∈D maxP∈∆ Rn (∆,P )
Rm (∆,P ) = α is

equivalent to that

∀∆ ∈D,∃P ∈∆,
Rn(∆,P )

Rm(∆,P )
≥α and ∀ϵ> 0,∃∆ ∈D,∀P ∈∆,

Rn(∆,P )

Rm(∆,P )
≤α+ϵ.

1 Note that the entries in column 1 are not obtained by multiplying the entries of columns
2,3. This is because the triangles that realize the inf and sup values are not the same in each
column.
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R1,3(∆) R2,3(∆) R1,2(∆)
inf∆∈D

p
10

p
2 2.5

sup∆∈D 4 2 3
Table 1: Our main contributions.

Similarly, sup∆∈D maxP∈∆ Rn (∆,P )
Rm (∆P ) =β is equivalent to that

∀∆ ∈D,∀P ∈∆,
Rn(∆,P )

Rm(∆,P )
≤β and ∀ϵ> 0,∃∆ ∈D,∃P ∈∆,

Rn(∆,P )

Rm(∆,P )
≥β−ϵ.

Therefore, as a byproduct of our analysis, we also determine the best and the worst
triangle cases of ratios Rn,m(∆), as well as the starting points that determine these
ratios. In particular we show that (i) the extreme values of R1,3(∆) are attained as
∆ ranges between “thin” isosceles and equilateral triangles, and the worst starting
point is the incenter, (ii) the extreme values of R2,3(∆) are attained as ∆ ranges be-
tween right isosceles and equilateral triangles, and the worst starting point is again
the incenter, and (iii) the extreme values of R1,2(∆) are attained as ∆ ranges between
equilateral and right isosceles triangles, and the worst starting point is the middle of
the shortest altitude.

2.2 Basic Terminology & Some Useful Observations

The length of segment AB is denoted by ∥AB∥. An arbitrary non-obtuse triangle will
be usually denoted by △ABC , which we assume is of bounded size. More specifi-
cally, without loss of generality, we often consider △ABC represented in the Carte-
sian plane in standard analytic form, with A = (p, q),B = (0,0) and C = (1,0) (certain
conditions imposed on p, q for the triangle to be non-obtuse and for AC to be the
largest edge will be invoked when necessary). The following will be used repeatedly.

Observation 1 For △ABC in standard analytic form, where A = (p, q), we have that

p = cos(B)sin(C )

sin(B +C )
, q = sin(B)sin(C )

sin(B +C )
. (1)

Therefore, for the incenter I = (p I , qI ) (the intersection of angle bisectors), we have

p I = cos(B/2)sin(C /2)

sin((B +C )/2)
, qI = sin(B/2)sin(C /2)

sin((B +C )/2)
. (2)
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Proof. Consider the projection D of A onto BC . We have that tan(B) = ∥AD∥/∥BD∥,
as well as tan(C ) = ∥AD∥/∥C D∥. Therefore

∥BC∥ = ∥BD∥+∥C D∥

= ∥AD∥
(

1

tan(B)
+ 1

tan(C )

)
= ∥AD∥ sin(C )cos(B)+cos(B)sin(B)

sin(B)sin(C )

= ∥AD∥ sin(B +C )

sin(B)sin(C )
.

Since ∥BC∥ = 1, it follows that

q = ∥AD∥ = sin(B)sin(C )

sin(B +C )
.

Finally, we have

p = ∥BD∥ = ∥AD∥
tan(B)

= cos(B)sin(C )

sin(B +C )
,

and so (1) follows. Note that (2) is obtained as an immediate corollary, since △I BC
is in analytic form too. ⊓⊔

The next corollary is obtained after elementary algebraic manipulations.

Corollary 1. For △ABC in standard analytic form, its incenter I = (p I , qI ) is given by
the formula

p I = 1

2

(√
p2 +q2 −

√
(p −1)2 +q2 +1

)
, qI = q√

p2 +q2 +
√

(p −1)2 +q2 +1
.

The cost of optimally visiting a collection of line segments C (triangle edges) with
1 robot starting from point P is denoted by d(P,C ). For example, when C = {AB ,BC }
we write d(P, {AB ,BC }). When, for example, C = {AB } is a singleton set, we slightly
abuse the notation and for simplicity write d(P, AB) instead of d(P, {AB }). Note that
if the projection P ′ of P onto the line defined by points A,B lies in segment AB ,
then d(P, AB) = ∥∥PP ′∥∥, and otherwise d(P, AB) = min{∥PA∥ ,∥PB∥}. The following
observation follows immediately from the definitions, and the fact that we restrict
our study to non-obtuse triangles.

Observation 2 For any non-obtuse triangle ∆=△ABC , and P ∈∆, we have
(i) R3(∆,P ) = max{d(P, AB),d(P,BC ),d(P,C A)}.

(ii) R2(∆,P ) = min


max{d(P, AB),d(P, {BC ,C A})}
max{d(P,BC ),d(P, {AB ,C A})}
max{d(P,C A),d(P, {BC , AB })}


(iii) R1(∆,P ) = d(P, {AB ,BC ,C A}).
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Motivated by our last observation, we also introduce notation for the cost of
ordered visitations. Starting from point P , we may need to visit an ordered list of
(2 or 3) line segments in a specific order. For example, we write d(P, [AB ,BC , AC ])
for the optimal cost of visiting the list of segments [AB ,BC , AC ], in this order, with
1 robot. As we will be mainly concerned with △ABC edge visitations, and due to
the already introduced standard analytic form, we refer to the trajectory realizing
d(P, [AB ,BC , AC ]) as the (optimal) LDR strategy (L for “Left” edge AB , D for “Down”
edge BC , and R for “Right” edge AC). We introduce analogous terminology for the
remaining 5 permutations of the edges, i.e. LRD, RLD, RDL, DRL, DLR. Note that it
may happen that in an optimal ordered visitation, robot visits a vertex of the triangle
edges. In such a case we interpret the visitation order of the incident edges arbitrar-
ily. For ordered visitation of 2 edges, we introduce similar terminology pertaining to
(optimal) LD, LR, RL, RD, DR and DL strategies.

In order to obtain the results reported in Table 1, it is necessary to subdivide any
triangle ∆ into sets of points that admit the same optimal ordered visitations (e.g.
all points P in which an optimal R1(∆,P ) strategy is LRD). For n ∈ {2,3} robots, the
subdivision is also with respect to the cost Rn(∆,P ). Specifically for n = 2, the sub-
division is also with respect to whether the cost R2(∆,P ) is determined by the robot
that is visiting one or two edges (see Observation 2). We will refer to these subdivi-
sions as the R1,R2,R3 regions. For each n ∈ {1,2,3}, the Rn regions will be determined
by collection (loci) of points between neighbouring regions that admit more than
one optimal ordered visitations.

Angles are read counter-clockwise, so that for example for △ABC in standard an-
alytic form, we have ∠A =∠B AC . For aesthetic reasons, we may abuse notation and
drop symbol ∠ from angles when we write trigonometric functions. Visitation trajec-
tories will be denoted by a list of points 〈A1, . . . , An〉 (n ≥ 2), indicating a movement
along line segments between consecutive points. Hence, the cost of such trajectory
would be

∑n
i=2 ∥Ai Ai−1∥.

3 Preliminary Results

3.1 Optimal Visitations of Two Triangle Edges

We consider the simpler problem of visiting two distinguished edges of a triangle
∆= ABC , starting from a point within the triangle. The following preliminary obser-
vations will be useful, and the reader may refer to Figures 1 and 2. Consider some
P ∈∆, and let K be on BC such that AK is the angle bisector of A. Any point on AK is
equidistant from AB , AC . Moreover, for any P ∈ ABK visiting AB is not more costly
than visiting AC .

Now we consider the problem of visiting AB , AC starting from P ∈∆. Let C ′,B ′ be
the reflections of C ,B around AB , AC , respectively. Clearly,

d(P, {AB , AC }) = min{d(P, AC ′),d(P, AB ′)}. (3)

Since, in particular, AK is also the angle bisector of C ′AB ′, we conclude that if P ∈
ABK , then d(P, {AB , AC }) is determined by visiting AB no later than AC , that is,
d(P, {AB , AC }) = d(P, [AB , AC ]). In the remaining of this section, we fix such a P .
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Fig. 1: Optimal trajectory for visiting {AB , AC } for ∠A ≤π/3.
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Fig. 2: Optimal trajectory for visiting {AB , AC } for ∠A ≥ π/3, starting outside the op-
timal bouncing subcone.

For the specifics of the optimal trajectory, we need some additional terminology.
When ∠A ≥π/3, we define the concept of its optimal bouncing subcone, which is de-
fined as a cone of angle 3∠A−π and tip A, so that∠A and the subcone have the same
angle bisector. When ∠A =π/3, then the optimal bouncing subcone is a ray with tip
A that coincides with the angle bisector of ∠A. Whenever ∠A < π/3 we define its
optimal bouncing subcone as the degenerate empty cone.

Observation 3 If P is in the optimal bouncing subcone of ∠A, then d(P, {AB , AC }) =
∥PA∥.

Proof. Consider a line passing through A that is perpendicular to AC ′ that intersects
BC at Q (see Figure 2). Consider also a line passing through A that is perpendicular to
AB ′ that intersects BC at R. Then, the cone with tip A and angle∠Q AR is the optimal
bouncing subcone of ∠A. Let P be a point within the subcone. By construction, the
projection of P onto the line defined by points A,C ′ falls outside the line segment
AC ′, and similarly for points A,B ′. Therefore, for any point P within the subcone, we
have that d(P, AB ′) = d(P, AC ′) = ∥PA∥, so combined with (3), the claim follows. ⊓⊔

For a point P ∈ △ABC outside the optimal bouncing subcone of ∠A, we define
the (two) optimal bouncing points M , N of the ordered [AB , AC ] visitation as follows.
Let P ′ be the projection of P onto AC ′. Then, M is the intersection of PP ′ with AB
and N is the projection of M onto AC . Note that equivalently, M , N are determined
uniquely by requiring that (i) ∠B MP =∠N M A, and (ii) ∠AN M =π/2.
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Observation 4 If P is outside the optimal bouncing subcone of∠A, then d(P, {AB , AC }) =
∥P M∥+∥M N∥, where M , N are the optimal bouncing points of ordered [AB , AC ] visi-
tation.

Proof. Since P in △ABK , we have that d(P, {AB , AC }) = d(P, [AB , AC ]). Also by (3), we
have that d(P, [AB , AC ]) = ∥∥PP ′∥∥. The claim follows by noticing that

∥∥MP ′∥∥= ∥M N∥.
⊓⊔

3.2 Optimal (Ordered) Visitation of Three Triangle Edges

In this section we discuss optimal LRD visitations of non-obtuse △ABC , together
with optimality conditions (recall that optimality refers to the cost incured by one
robot visiting all edges). Optimality conditions for the remaining 5 ordered visita-
tions are obtained similarly. In order to determine the optimal LRD visititation, we
obtain reflection C ′ of C across AB , and reflection B ′ of B across C ′A, see also Fig-
ure 3.

From C ′ and A, we draw a lines ϵ,ζ, both perpendicular to C ′B ′ which may (or
may not) intersect △ABC . We refer to line ϵ as the LRD bounce indicator line. We
also refer to line ζ as the LRD subopt indicator line. Each of the lines identify a half-
space on the plane. The halfspace associated with ϵ on the side of vertex A will be
called the positive halfspace of the LRD bounce indicator line or in short the positive
LRD bounce halfspace, and its complement will be called the negative LRD bounce
halfspace. The halfspace associated with ζ on the side of vertex B will be called the
positive halfspace of the LRD subopt indicator line, or in short the positive LRD sub-
opt halfspace, and its complement will be called the negative LRD subopt halfspace.

For a point P in the positive LRD bounce and subopt halfspaces, let P ′ be its pro-
jection onto C ′B ′. Let E ,F be the intersections of PP ′ with AB , AC ′, respectively. Let
also H be the reflection of F across AB , and let G be the projection of H onto BC .
Points E , H ,G will be called the optimal LRD bouncing points for point P . The points
are also uniquely determined by requiring that ∠BEP =∠HE A and that HG is per-
pendicular to BC . For a point R in the negative LRD bounce halfspace and in the pos-
itive subopt halfspace, let J be the intersection of RC ′ with AB . Point J will be called
the degenerate optimal LRD bouncing point, which is also uniquely determined by
the similar bouncing rule ∠B JR = ∠C J A. Finally, let A′, A′′ be the projection of A
onto B ′C ′,BC , respectively.

The next lemma refers to such points P,R together with the construction of Fig-
ure 3. Its proof follows immediately by noticing that the optimal LRD visitation is in
1-1 correspondence with the optimal visitation of segment B ′C ′ using a trajectory
that passes from segment AB .

Lemma 1. The optimal LRD visitation trajectory, with starting points P,R,T , is:

– trajectory 〈P,E , H ,G〉, provided that P is in the positive LRD bounce and subopt
halfspaces,

– trajectory 〈R, J ,C〉, provided that R is in the negative LRD bounce halfspace and
in the positive subopt halfspace,

– trajectory 〈T, A, A′′〉, provided that T is in the negative LRD subopt halfspace (see
Figure 3).
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Fig. 3: Arbitrary non-obtuse △ABC shown with its LRD bounce indicator line (blue
dotted line) and its LRD subopt indicator line (red dotted line).

Fig. 4: Equilateral △ABC shown with its LRD bounce indicator line (blue dotted line)
and its LRD subopt indicator line (red dotted line).

Fig. 5: Right isosceles △ABC shown with its LRD bounce indicator line (blue dotted
line) and its LRD subopt indicator line (red dotted line).
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4 Computing the Rn Regions, n = 1, 2, 3

By Observations 3, 4 and Lemma 1, we see that optimal visitations of 2 or 3 edges
have cost equal to (i) the distance of the starting point to a line (reflection of some
triangle edge), or (ii) the distance of the starting point to some point (triangle vertex)
or (iii) the distance of the starting point to some triangle vertex plus the length of
some triangle altitude. In this section we describe the Rn regions of certain triangles,
n ∈ {1,2,3}. For this, we compare optimal ordered strategies, and the subdivisions
of the regions are determined by loci of points that induce ordered trajectories of
the same cost. As these costs are of type (i), (ii), or (iii) above (and considering all
their combinations) the loci of points in which two ordered strategies have the same
cost will be either some line (line bisector or angle bisector), or some conic section
(parabola or hyperbola).

4.1 Triangle Visitation with 3 Robots - The R3 Regions

Consider ∆ ∈ D with vertices A,B ,C . For every P ∈ ∆, any trajectories require time
at least the maximum distance of P from all edges, in order to visit all of them. This
bound is achieved by having all robots moving along the projection of P onto the 3
edges, and so we have R3(P ) = max{d(P, AB),d(P,BC ),d(P,C A)}, as also in Observa-
tion 2. Next we show how to subdivide the region of ∆ with respect to which of the
3 projections is responsible for the optimal visitation cost. For this, we let I denote
the incenter (the intersection of angle bisectors) of ∆. Let also K ,L, M be the inter-
sections of the bisectors with edges BC ,C A and AB , respectively, see also Figure 6.

Fig. 6: The R3 regions of an arbitrary non-obtuse △ABC . AK ,BL,C M are the angle
bisectors of ∠A,∠B ,∠C , respectively. Recall that the incenter I is equidistant from
all triangle edges.

Lemma 2. For every starting point P ∈∆, we have that

R3(∆,P ) =


d(P, AB) , provided that P ∈C LI K
d(P,BC ) , provided that P ∈ AM I L
d(P,C A) , provided that P ∈ BK I M

.
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Proof. The subdivision of the R3 regions are determined by the regions’ separators,
i.e. as per loci of points that are equidistant from the most distant edge. Since also
the angle bisector is the locus of points that are equidistant from the lines forming
the angle, the lemma follows. ⊓⊔

4.2 Triangle Visitation with 2 Robots - The R2 Regions

In this section we show how to subdivide the region of any non-obtuse triangle ∆ ∈
D into subregion with respect to the optimal trajectories and their costs, for a fleet
consisting of 2 robots. The following lemma describes a geometric construction.

Lemma 3. Consider non-obtuse △ABC along with its incenter I . Let K , M be the in-
tersections of angle bisectors of A,C with segments BC , AB respectively. From K , M we
consider cones of angles A,C respectively, having direction toward the interior of the
triangle, and placed so that their bisectors are perpendicular to BC , AB, respectively.
Then, the extreme rays of the cones intersect in line segment B I .

Proof. Consider non-obtuse triangle ∆ = ABC and angle A bisector AK , where K ∈
BC . Let A′ be the reflection of A across BC . Without loss of generality we may assume
that ∠B ≥ ∠C or, in other words, that ∠AK B ≤ π/2. First we consider the case that
∠B > ∠C , see Figure 7, and in particular that △ABC is not isosceles (the case of
isosceles triangle is much easier and can be treated similarly). Then

∠A′B A+∠B AC = 2∠B +∠A >∠C +∠B +∠A =π,

and therefore B A′ and AC are not parallel. Moreover the extensions of these line
segments (on the directions of B , A, respectively) meet at a point, call it D .

Fig. 7: The case of ∠B >∠C , in the proof of Lemma 3.
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Next we claim that DK is the angle bisector of ∠A′DC . To prove this, it suffices to
show that K is the incenter of △D A′C . Indeed, K lies on the bisector of ∠AC A′, since
△A′BC was the result of the reflection of ABC across BC . For the same reason, K lies
on the bisector of ∠C A′B (which is an equivalent claim to that AK is the bisector of
∠B AC ). Hence, K is the intersection of two bisectors of △D A′C , as promised.

Next we denote by ∠A,∠B ,∠C the angles of △ABC . We have the following claim:
∠DK B =π/2−∠A/2. Indeed,

∠DK B =π−∠K BD −∠BDK

=π− (π−∠A′BC )−∠A′DC /2

=∠B − (π−∠C A′B −∠DC A′)/2

=∠B −π/2+∠A/2+∠C

=π−∠A−π/2+∠A/2

=π/2−∠A/2.

In particular, this shows that K D is an extreme ray of a cone with tip K and angle ∠A,
having direction toward the interior of the triangle, and placed so that its bisector is
perpendicular to BC .

Similarly, consider the reflection of C across AB . Since∠A ̸=∠C , the lines passing
through pairs C ′,B and A,C are not parallel. So their extensions meet at some point,
call it E , in the directions of points B ,C respectively. Let also C M be the angle bisector
of ∠C , where M ∈ AB . Exactly as before, E M is the angle bisector of ∠AEB , and
hence all points on E M are equidistant from E A and EB . It follows that E M and DK
intersect at the incenter of △BED , call it F .

The above argument proves that F is the intersection of two of the extreme rays
of the two cones with tips K , M and angles A,C , as per the description of the lemma.
It remains to prove that F lies on the bisector of angle B . Indeed, F is on the bisec-
tor of ∠DEB and on the bisector of ∠EDB . Therefore, F is the incenter of △BDE .
In particular, F should lie on the bisector of ∠DBE . Note however that ∠DBE and
∠ABC have the same bisector, because ∠C BE =∠ABD =π−2∠B . ⊓⊔

Motivated by Lemma 3, we will be referring to the subject point F in the line
segment B I as the separator of the angle B bisector. Similarly, we obtain separators
J , H of angles C , A bisectors, respectively, see also Figure 8.

In what follows, we will be referring to the (possibly non-convex) hexagon MF K JLH
as the R2 hexagon separator of △ABC .

From the proof of Lemma 3 we also derive a useful observation. Referring to Fig-
ure 7, recall that DK is the angle bisector of ∠A′DC . Therefore all points on DK are
equidistant from D A′ and AC . At the same time the distance of any point P on F K
to D A′ equals d(P, {AB ,BC }) = d(P, [BC , AB ]) unless d(P, {AB ,BC }) = ∥PB∥, that is,
unless the optimal strategy for visiting {AB ,BC } would be to move directly to vertex
B (which happens only if ∠B ≥π/3 and P lies within the optimal bouncing subcone
of angle B , see Observation 3).

The remaining of the section refers to non-obtuse triangle ∆ =△ABC as in Fig-
ure 8, where in particular MF K JLH is the R2 separator of ∆. We are now in a posi-
tion to make a preliminary observation which will be generalized soon. Suppose that
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Fig. 8: The R2 hexagon separator of △ABC .

Fig. 9: The refined R2 mixed-hexagon separator of △ABC , where ∠B >π/3.

∠B ≤ π/3. Then for every point P either on MF or on F K , we have that d(P, AC ) =
d(P, {BC , AB}). Moreover, for every P within tetragon BK F M , we have that R2(P ) =
d(P, AC ).

The previous observation can be extended to larger angles. Assume that ∠B ≥
π/3. Then, the same reasoning shows that for every point P either on MF or on F K ,
which are outside the optimal bouncing subcone of angle B , we have that d(P, AC ) =
d(P, {BC , AB}). For points within the subcone, the optimal trajectory to visit {BC , AB }
would be to go directly to B . So for points P within the optimal bouncing subcone,
condition d(P, AC ) = d(P, {BC , AB }) translates into that P is equidistant from AC and
B . Hence, P lies in a parabola with AC being the directrix and B being the focus. Next,
we refer to that parabola as the separating parabola of B .

Motivated by the previous observation, we introduce the notion of the refined
R2 mixed-hexagon separator of triangle ∆ as follows. For every angle of ∆ which is
more than π/3, we replace the portion of the R2 hexagon separator within the opti-
mal bouncing subcone of the same angle by the corresponding separating parabola.
In Figure 9 we display an example where only one angle is more than π/3. Combined
with Observation 2 (ii), we can formalize our findings as follows.

Lemma 4. For every starting point on the boundary of the refined R2 mixed-hexagon
separator of a triangle ∆, the cost of visiting only the opposite edge equals the cost of
visiting the other two edges. For every starting point P outside the R2 separator, R2(P )
equals the distance of P to the opposite edge. Moreover, for every starting point P in
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the interior of the refined R2 separator, R2(P ) is determined by the cost of visiting two
of the edges of ∆.

Fig. 10: The R2 regions of the equilateral triangle, see also Corollary 2 and Corollary 4
for detailed description.

Fig. 11: The R2 regions of the right isosceles, see also Corollary 3 and Lemma 5 for
detailed description. The coloured region identifies the refined R2 mixed-hexagon
separator.

Lemma 4 implies the following corollaries pertaining to specific triangles △ABC .
In both statements, and the associated figures, I is the incenter of the triangles, and
points K ,L, M are defined as in Figure 6.

Corollary 2 (Hexagon separator of equilateral triangle). Consider equilateral ∆ =
△ABC , see Figure 10. Let W, Z ,Y be the intersections of AK ,BL,C M respectively (also
the separators of angle A bisector, angle B bisector, and angle C bisector, respectively).
Then, the R2 hexagon separator of ∆ is M Z K Y LW , which is also triangle MK L. More
specifically, for all P ∈△AML, we have that R2(∆,P ) = d(P,BC ).
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By symmetry, one can derive R2(∆,P ) for all starting points P outside the hexagon
separator of isosceles ∆.

Corollary 3 (Mixed-hexagon separator of right isosceles). Consider right isosceles
∆ =△ABC , see Figure 11. The separator of angle A bisector is incenter I . Let also F, J
be the separators of angle B bisector and angle C bisector, respectively. Then, the R2

hexagon separator of ∆ is I MF K JL. The parabola with directix BC and focus A, in-
tersecting AK at Q and passing through M ,L is the separating parabola of A. Hence,
for every point P ∈ ∆ above the parabola, we have R2(∆,P ) = d(P,BC ), as well as for
every point X in tetragon MBK F , we have R2(∆, X ) = d(X , AC ). The remaining case of
starting points in tetragon KC L J follows by symmetry.

Describing the subdivisions within the refined R2 mixed-hexagon separator for
arbitrary triangles is a challenging task. On the other hand, by Observation 2 (ii) and
Lemma 4 the cost within the separator is determined by the cost of visiting just two
edges. Also, by Observations 3, 4 the cost of such visitation can be described either
as a distance to a line or to a point. We conclude that, within the R2 separator, the
subdivisions are determined by separators that are either parts of lines or parabolas
(loci of points for which the cost of visiting some two edges are equal). Hence, for any
fixed triangle, an extensive case analysis pertaining to pairwise comparisons of visi-
tations costs can determine all R2 subdivisions (and the challenging ones are within
the refined separator). In what follows we summarize formally the subdivisions only
of two triangle types, focusing on the visitation cost of all starting points within the
(refined) hexagon separators.

Corollary 4 (R2 regions of an equilateral triangle). Consider equilateral∆=△ABC ,
as in Corollary 2, see Figure 10. Then for every starting point P ∈△MW I , we have that
R2(∆,P ) = d(P, [AB , AC ]). The remaining cases of starting points within the hexagon
separator M Z K Y LW follow by symmetry.

Lemma 5 (R2 regions of a right isosceles triangle). Consider right isosceles∆=△ABC ,
as in Corollary 3, see Figure 11. Consider parabola with directrix the line passing
through B that is perpendicular to BC (also the reflection of BC across AB) and fo-
cus A, passing through M ,K and intersecting BL at point T (define also S as the
symmetric point of T across AK ). That parabola is the locus of points P for which
∥PA∥ = d(P, [AB ,BC ]). Let also A′ be the reflection of A across BC . Consider parabola
with directrix B A′ and focus A, passing through T and intersecting AK at point U .
That parabola is the locus of points P for which ∥PA∥ = d(P, [BC , AB ]). Therefore, if P
is a starting visitation point, we have that:
- R2(∆,P ) = ∥PA∥, for all P in mixed closed shape MTU SLQ (grey shape in Figure 11),
- R2(∆,P ) = d(P, [AB ,BC ]), for all P in mixed closed shape MF T (blue shape in Fig-
ure 11),
- R2(∆,P ) = d(P, [AC ,BC ]), for all P in mixed closed shape LJS (purple shape in Fig-
ure 11),
- R2(∆,P ) = d(P, [BC , AB ]), for all P in mixed closed shape F KU T (red shape in Fig-
ure 11).
- R2(∆,P ) = d(P, [BC , AC ]), for all P in mixed closed shape JSU K (green shape in Fig-
ure 11).
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Proof. For every starting point P within the refined R2 mixed-hexagon separator, the
cost R2(∆,P ) is determined by the visitation cost of two edges.

Note that the optimal bouncing subcone of ∠A is one with extreme rays AB , AC
(i.e. the angle itself). Hence, by Observation 3, for every P in mixed closed shape
MTU SLQ, we have that d(P, {AB , AC } = ∥PA∥. Therefore, by the definitions of the
separating parabolas, we have that R2(∆,P ) = ∥PA∥.

Consider now some starting point P in mixed closed shape MF T . By the defini-
tion of the separating parabolas, we have that

R2(∆,P ) = d(P, {AB ,BC }) = d(P, [AB ,BC ]),

where the last equality follows since P is not below line segment BL, the angle bisec-
tor of ∠B (and d(P, [AB ,BC ]) can be computed as the distance of P to the reflection
of BC across AB).

Finally, consider some starting point P in mixed closed shape F KU T . By the def-
inition of the separating parabolas, we have that

R2(∆,P ) = d(P, {AB ,BC }) = d(P, [BC , AB ]),

where the last equality follows since P is not above line segment BL, the angle bisec-
tor of ∠B . ⊓⊔

4.3 Triangle Visitation with 1 Robot - The R1 Regions

In this section we show how to partition the region of an arbitrary non-obtuse △ABC
into sets of points P with respect to the optimal strategy of R1(P ). There are 6 possi-
ble visitation strategies for d(P, {AB , AC ,BC }), one for each permutation of the edges
indicating the order they are visited (ordered visitations). Clearly, it is enough to de-
scribe, for each two ordered visitations, the borderline (separator) of points in which
the two visitations have the same cost. By Lemma 1, any such ordered visitation cost
is the distance of the starting point either to a point, or to a line, or a distance to a
line plus the length of some altitude. Since the R1 regions are determined by separa-
tors, i.e. loci of points in which different ordered visitations induce the same costs, it
follows that these separators are either lines, or conic sections. Therefore, by exhaus-
tively pairwise-comparing all ordered visitations along with their separators, we can
determine the R1 regions of any triangle. Next, we explicitly describe the R1 regions
only for three types of triangles that we will need for our main results. For the sake of
avoiding redundancies, we omit any descriptions that are implied by symmetries.

The next lemma describes the R1 regions of an equilateral triangle, as in Fig-
ure 12.

Lemma 6 (R1 regions of an equilateral triangle). Consider equilateral triangle△ABC
with angle bisectors AK ,BL,C M and incenter I . Then, the angle bisectors are the loci
of points in which optimal ordered visitations have the same cost. Moreover, for every
starting point P ∈△AM I , the optimal strategy of R1(∆,P ) is LRD visitation.



18 K. Georgiou et al.

Fig. 12: The R1 regions of an equilateral triangle.

Fig. 13: The R1 regions of a right isosceles triangle.

Fig. 14: The R1 regions of an isosceles triangle ABC with small ∠A.
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Proof. Points on AI are in the positive LRD and RDL bounce and subopt halfspaces,
since AI is the bisector of ∠A. As such, points on segment AI are the loci of points
P , for which

d(P, {AB ,BC , AC }) = d(P, [AB , AC ,BC ]),d(P, [AC , AB ,BC ]),

i.e. the points in which the optimal R1 visitation is both LRD and RLD. To see why,
note that by Figure 4 we have that d(P, [AB , AC ,BC ]) = ∥∥PP ′∥∥. Considering the re-
flection of C ′′ of C ′ around A, and the reflection B ′′ of B around A, it is easy to see
that the bisector of the line formed by B ′C ′ and B ′′C ′′ coincides with the altitude of
△ABC corresponding to BC (this property is actually true for every non-obtuse tri-
angle). Since △ABC is equilateral triangle, its altitude corresponding to BC is also
the angle ∠A bisector. ⊓⊔

The next lemma describes the R1 regions of a right isosceles, as in Figure 13.
Curve F J is part of the parabola with directrix the relfection of BC across A and focus
the reflection of A across BC . Curve BF is part of the parabola with directrix a line
parallel to AB which is ∥AB∥ away from AB , and focus the reflection of A across BC .
Curve C J is part of the parabola with directrix a line parallel to AC which is ∥AC∥
away from AC , and focus the reflection of A across BC . C E (not shown in the figure)
is the bisector of ∠C , and segment EF is part of the reflection of that bisector across
AB . B H is the bisector of∠C , and segment H J is part of the reflection of that bisector
across AC . Segment AN is part of the altitude corresponding to A.

Lemma 7 (R1 regions of a right isosceles triangle). Consider right isosceles∆=△ABC ,
and starting point P. Then, the optimal visitation strategy for R1(∆,P ) is:
- an LRD visitation, if P ∈ AEF N ,
- an LDR visitation if P ∈ BF E, and
- both an DRL,DLR visitation if P ∈ BC JF (trajectory visits {AB , AC } at point A).

Proof. The reader may consult Figure 13. As in the proof of Lemma 6, points on AN
are the loci of points in which the optimal strategy is both LRD and RLD. Points P
in AEF N are in the positive LRD bounce and subopt halfspace, and so by Lemma 1,
R1(∆,P ) = d(P,B ′C ′), where B ′,C ′ are the reflections of B ,C across A, respectively
(points B ′,C ′ along with the LRD bounce indicator line and the LRD subopt indica-
tor line are depicted separately in Figure 5). Points P in region BC JF are in the nega-
tive DRL (and DLR) bounce halfspace and in the positive subopt halfspace, and so by
Lemma 1, we have that R1(∆,P ) is obtained by a degenerate bouncing trajectory vis-
iting both AB , AC at point A. Considering the reflection A′ of A across BC , the cost in
this case would be

∥∥PA′∥∥. Hence, the loci of points P for which d(P,B ′C ′) = ∥∥PA′∥∥ is
the parabola described in the statement of the lemma, whose portion reads as curve
F J .

The rest of the separators follow using similar arguments. Indeed, line segment
EF is the loci of points in which the optimal R1 visitation is both LDR and LRD (so the
separator is formed by the reflection of the angle bisector of the angle across the first
visited edge, a property that can be shown for every non-obtuse triangle). Finally, the
curve BF (part of a parabola, as described in the statement of the lemma), is the loci
of points P for which the optimal R1 visitation is LDR and has cost equal to

∥∥PA′∥∥.
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The analysis for the rest of the depicted separators is identical, due to the trian-
gle’s symmetry along the bisector of ∠A (that coincides with AN ). ⊓⊔

Next we consider a “thin” isosceles ∆ = △ABC with ∠A ≤ π/3, as in Figure 14.
(Eventually we will invoke the next lemma for ∠A → 0.) AK is the altitude corre-
sponding to A. C D,BG are the altitudes corresponding to AB , AC , respectively. C E ,BF
(not shown) are the extreme rays of the optimal bouncing subcone corresponding to
C ,B , respectively. H is the intersection of AK with BG (and C D), i.e. the orthocenter
of the triangle. Segment E J (as part of a line) is the reflection of EC (as part of a line)
across AB . Segment F J (as part of a line) is the reflection of BF (as part of a line)
across AC .

Lemma 8 (R1 regions of a thin isosceles triangle). Consider isosceles ∆ = △ABC ,
with ∠A ≤π/3 and starting point P. Then, the optimal visitation strategy for R1(∆,P )
is:
- an LRD visitation if P ∈ AE J,
- both LRD and LDR (optimal strategy is to visit first AB and then move to C ), if P ∈
ED H J,
- an LDR visitation, if P ∈ DB H, and
- a DLR visitation if P ∈ BK H.

Proof. The separator AK is justified as in the proof of Lemma 6. Points in region AE J
are in the positive LRD bounce and subopt halfspace, and so by Lemma 1, the opti-
mal R1 visitation is given as a distance of P to a line. Points in region ED H J are in
the negative LRD bounce and positive subopt halfspace, and so by Lemma 1, the op-
timal R1 visitation is given as a distance of P to a point (the projection C ′ of C across
AB). The transition in which the optimal visitation does not visit vertex C happens
exactly at segment E J whose extension passes through C ′, and in particular has the
property that JC ′ is perpendicular to BC ′. Finally, the justification of separator seg-
ments D H ,B H is identical to the reasoning of the equilateral triangle (see Figure 12)
as provided in the proof of Lemma 6. ⊓⊔

5 Optimal Visitations of Some Special Starting Points

5.1 R2 Cost of the Incenter

Lemma 9. Consider△ABC ∈D with largest angle vertex C and incenter I . Then R2(I ) =
∥IC∥.

Proof. Incenter I is equidistant from all edges of △ABC . Since in every optimal R2

strategy, one robot visits an edge and the other visits the remaining two (which is at
least as costly as visiting any one edge), the cost of R2(I ) equals the cheapest cost
of visiting any two edges of △ABC . Now, since ∠C is the largest angle, it follows that
∠C ≥π/3, and hence by Observation 3 we have that d(I , {AC ,BC }) = ∥IC∥. Therefore,
the claim follows once we prove that ∥IC∥ ≤ max{d(I , {AB ,BC }),d(I , {B A, AC }), or
equivalently once we prove that ∥IC∥ ≤ d(I , {AB ,BC }), for every ∠B ≤∠C .
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Fig. 15: Showing that ∥IC∥ ≤ max{d(I , {AB ,BC }),d(I , {B A, AC }).

Since ∠C is the dominant angle, it follows that ∠B ≤ π/3, see also Figure 15.
Consider the reflection I ′ of I around AB , and the projection D of I ′ onto BC (be-
cause ∠B ≤ π/3, point D falls within segment BC ). Then, by Observation 4, we have
d(I , {AB ,BC }) = ∥∥I ′D

∥∥. So it remains to prove that ∥IC∥ ≤ ∥∥I ′D
∥∥. For that we employ

the standard analytic form of △ABC . For notational comvenience, we introduce no-
tation α= ∥BC∥ = 1, β= ∥AC∥ =

√
(1−p)2 +q2 and γ= ∥AB∥ =

√
p2 +q2.

Note that ∠B ≤ π/3, and hence
p

3/2 ≥ sin(B) = q/γ. Moreover, since ∠C ≥ π/3,
we have

p
3/2 ≤ sinC = q/β. Combining the two inequalities we get the following

condition
3(1−p)2 ≤ q2 ≤ 3p2, (4)

which in particular (combined with that p ≤ 1) implies that 1/2 ≤ p ≤ 1.
By Corollary 1, the coordinates of the incenter I = (x, y) can be computed as

x = γ+p

1+β+γ , y = q

1+β+γ .

Point I ′ = (x ′, y ′) can be computed by rotating I by angle B (using the Cartesian sys-
tem), so it follows that

∥∥I ′D
∥∥ = y ′ = x sin(B)+ y cos(B). After elementary algebraic

manipulations, we obtain that

∥∥I ′D
∥∥−∥IC∥ = 1

(1+β+γ)2

(
4p2q2 +4pq2

√
p2 +q2

p2 +q2 − (1+
√

(1−p)2 +q2 −p)2

)
.

It is easy to see that
4p2q2+4pq2

p
p2+q2

p2+q2 is increasing in p, and that (1+
√

(1−p)2 +q2−
p)2 is decreasing in p (when p ∈ [0,1]). Hence, using also (4), a lower bound to

∥∥I ′D
∥∥−

∥IC∥ is obtained by setting 3(1−p)2 = q2 or by setting q2 = 3p2 (and the valid lower
bound would be the minimum of the two). Next we will use that 1/2 ≤ p ≤ 1.

Elementary calculations show that when 3(1−p)2 = q2, we have

∥∥I ′D
∥∥−∥IC∥ ≥−

3(p −1)2
(
2p

(
−2

√
4p2 −6p +3+4p −9

)
+9

)
4p2 −6p +3

.

The real roots of the latter function of p are p = 1/2,1. Hence,
∥∥I ′D

∥∥−∥IC∥ preserves
sign for all p ∈ [1/2,1], and the sign is the same as, say, when p = 2/3, in which case

the value of the function becomes 9
7

(
8
p

7
27 + 16

27

)
−1 ≈ 0.76981 ≥ 0.
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Finally, when q2 = 3p2, we obtain that

∥∥I ′D
∥∥−∥IC∥ ≥ 2p −

√
4p2 −2p +1.

The latter continuous expression of p has only one real root p = 1/2, and it is clearly
positive when p ≥ 1/2. Hence, we conclude again that

∥∥I ′D
∥∥−∥IC∥ ≥ 0, as wanted.

⊓⊔

5.2 R1 Cost of the Incenter

Lemma 10. For non-obtuse △ABC with incenter I , let ∠A be its largest angle. Then,
R1(I ) = ∥∥I A′∥∥, where A′ is the reflection of A across BC .

Proof. The reader may consult Figure 16. Point C ′ is the reflection of C across AB ,
and B ′ the reflection of B across AC ′. First we observe that the optimal trajectory
that visits first BC has cost

∥∥I A′∥∥, that is, the optimal such strategy is both of DLR
and DRL type. Indeed, it is easy to see that I is in the negative DLR bounce halfspace
and in the positive subopt halfspace. Hence, by Section 3.2, the optimal such strat-
egy is of degenerate bouncing type, where the bouncing point J on BC (intersection
point of BC and I A′) lies within the optimal bouncing subcone of angle A (and hence
d(J , {AB , AC }) = J A), and the claim follows.

In order to prove that the DLR (and DRL) type strategy with cost∥∥I A′∥∥= d(I , {AB ,BC , AC })

is optimal, we will compare it with the optimal LRD type and the optimal LDR strat-
egy (and the symmetric argument would also imply the same comparison with the
optimal RLD and RDL strategies).

Comparison with optimal LRD strategy: Next we compare the optimal DLR strat-
egy above with an optimal LRD strategy. There are three cases to consider.
Case (a): I lies in the positive LRD bounce halfspace and in the negative LRD sub-
opt halfspaces (I lies within the optimal bouncing subcone of ∠C ′, when necessarily
∠C ≥π/3), in which case the optimal LRD strategy has cost

∥∥IC ′∥∥, see Figure 18.
Case (b): I lies in the negative LRD subopt halfspace, hence, the optimal LRD strategy
has cost ∥I A∥+hA , where hA is the altitude corresponding to angle A, see Figure 17.
Case (c): I lies in the positive LRD bounce and subopt halfspaces and, in particular,
the cost of the optimal LRD trajectory is d(I ,B ′C ′) (depicted as ∥I N∥ in Figure 16).
We have the following observation.

Observation 5 I lies in the positive LRD bounce and subopt halfspaces exactly when
3A−2C ≤π and

cos2(C )cos2
(

B +C

2

)
≥ sin2

( 3A
2

)
sin2

(C
2

)
−2cos(B +C )+2cos(B)−2cos(C )+3
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Fig. 16: Comparison between the optimal DRL strategy with the optimal LRD and
optimal LDR strategies.

Fig. 17: The boundary case of Observation 5, where the optimal LRD strategy has cost
∥I A∥+hA .

Fig. 18: The boundary case of Observation 5, where the optimal LRD strategy has cost∥∥IC ′∥∥.
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Proof. Let N denote the projection of I onto the line passing through C ′,B ′. For I to
lie in the positive LRD bounce and subopt halfspaces, we need that N falls within
segment B ′C ′ and that I N intersects segment AB . When I , A, N become collinear
(see Figure 17), it is easy to see that A/2+A+π/2−C =π, or equivalently that 3A−2C =
π. It follows immediately that I N intersects AB in its interior only when 3A−2C ≤π.
Similarly, let ρ denote ∠AC ′I , see Figure 18. Point N coincides with C ′ exactly when
ρ+C =π/2, and when ρ+C ≤π/2 point N lies within B ′C ′. Now, using the Sine Law
in △C ′I A, we see that sin(ρ) = ∥I A∥

∥IC ′∥ sin(3A/2). Since ρ+C ≤π/2 is equivalent to that

sin2(ρ) ≤ sin2(π/2−C ), our condition becomes

cos2(C ) ≥ ∥I A∥2

∥IC ′∥2 sin2(3A/2).

The latter expression can be simplified (after trigonometric manipulations), using
also (1) and (2) of Observation 1, together with that C ′ = (cos(2B),sin(2B)), resulting
in the promised condition. ⊓⊔

Case (a) proof: From Observation 1, we have that∥∥I A′∥∥2 = (p I −p)2 + (qI +q)2

= 4sin2
(

B

2

)
sin2

(
C

2

)
(2cos(B +C )+2cos(B)+2cos(C )+3)csc2(B +C ).

(5)

Observe that point C ′ is also obtained by rotating point C = (1,0) by 2∠B , and
hence C ′ = (cos(2B),sin(2B)). Therefore,∥∥IC ′∥∥2 = (cos(2B)−p I )2 + (sin(2B)−qI )2

= sin2
(

B

2

)
(−2cos(B +C )+2cos(B)−2cos(C )+3)csc2

(
B +C

2

)
.

Let f (B ,C ) := ∥∥IC ′∥∥2 /
∥∥I A′∥∥2, so that our goal is to show that f (B ,C ) ≥ 1, subject

to that ∠A is the largest angle. We claim that f (B ,C ) is decreasing in C . Indeed,
elementary calculations show that

∂

∂C
f (B ,C ) =− cos

( B
2

)
csc3

(C
2

)
cos

( B+C
2

)
(2cos(B +C )+2cos(B)+2cos(C )+3)2 g (B ,C ),

where

g (B ,C ) = 2cos(B −C )−4cos(B +C )−2cos(2B +C )+2cos(B +2C )

+4cos(B)+2cos(2B)+4cos(C )+1.

Note that ∂
∂C f (B ,C ) is a product of expressions (multiplied by −1), and clearly all

of them, except possibly g (B ,C ), are non-negative. Therefore, it remains to show
that g (B ,C ) ≥ 0. In order to do that we consider two sub-cases.
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Sub-case i: If B ≤ π/4, then the only summand of g (B ,C ) which is negative is
2cos(B +2C ). Then, we have

g (B ,C ) ≥ 4cos(C )+4cos(B)+2cos(B +2C )

≥ 4cos(C )+2cos(B)+2cos(B +2C )

= 4cos(C )+4cos(B +C )cos(C )

≥ 4cos(C )−4cos(C )

≥ 0,

where the second to last inequality holds because B +C ≤ 2π/3 (since A is the
largest angle and hence A ≥π/3).
Sub-case ii: If B > π/4, then the only two summands of g (B ,C ) which may be
negative are 2cos(2B) and 2cos(B + 2C ). Recalling that A ≥ π/3, and using the
monotonicity of the cosine function, we get the following sequence of inequali-
ties:

1+4cos(B)+2cos(2B) ≥−1

2cos(B −C ) ≥ 2cos(π/12) =
p

3+1p
2

4cos(C ) ≥ 4cos(5π/12) =p
2(
p

3−1)

−4cos(B +C ) ≥−4cos(π/2) ≥ 0

−2cos(2B +C ) ≥−2cos(3π/4) =p
2

2cos(B +2C ) ≥−2.

So, overall we have that

g (B ,C ) ≥ 3

√
3

2
+ 1p

2
−3 > 0,

as wanted. Hence, f (B ,C ) is decreasing in C , as promised.
But then, since A ≥C , we have that C ≤π/2−B/2, and hence it follows that

f (B ,C ) ≥ f (B ,π/2−B/2) = 1,

where the last equality follows by direct substitution. That completes the proof
of case (a).

Case (b) proof: Let N ′ be the projection of A onto BC , so that AN ′ is the altitude
corresponding to angle A. We want to prove that

∥∥I A′∥∥ ≤ ∥I A∥+∥∥AN ′∥∥. By tri-
angle inequality, we have that

∥∥I A′∥∥≤ ∥∥I N ′∥∥+∥∥N ′A′∥∥= ∥∥I N ′∥∥+∥∥AN ′∥∥. Hence,
it suffices to prove that

∥∥I N ′∥∥≤ ∥I A∥.
Using the standard analytic form of the triangle, we have that

∥I A∥2 −∥∥I N ′∥∥2 = (qI −q)2 −q2
I = q(q −2qI ).

Hence, it further suffices to prove that q ≥ 2qI . Indeed,

q

qI
= 2

cos
( B

2

)
cos

(C
2

)
cos

( B+C
2

) =: g (B ,C )
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We have that
∂

∂C
g (B ,C ) = sin(B)

1+cos(B +C )
≥ 0.

Hence, g (B ,C ) ≥ g [B ,0] = 2, where the last equality follows by direct substitu-
tion. That completes the proof of case (b).

Case (c) proof: The analytic equation of the line ℓ passing through B ′,C ′ has equa-
tion

ℓ : tan(2A)x + y − sin(2B)− tan(2A)cos(2B) = 0. (6)

To see why, recall that from the proof of case (a) above we have that

C ′ = (cos(2B),sin(2B)),

as well as ℓ form with the x-axis an angle of π−2A. But then, using the formula
for the distance of point I = (p I , qI ) to ℓ we have that

d(I ,B ′C ′) =
∣∣tan(2A)p I +qI − sin(2B)− tan(2A)cos(2B)

∣∣√
tan2(2A)+1

.

Using (2) of Observation 1, together with (5), and after trigonometric manipula-
tions, it follows that(

d(I ,B ′C ′)
∥I A′∥

)2

= cos2
( B+C

2

)
(−2cos(B +2C )+2cos(C )+1)2

2cos(B +C )+2cos(B)+2cos(C )+3
, (7)

which we need to prove is at least 1. Call function (7) h1(B ,C ). Function h1(B ,C )
attains values as low as 9/10 without conditioning on that I lies the positive LRD
bounce and subopt halfspaces.
Consider the domain D1 ⊆ R2 of (7) corresponding to non-obtuse △ABC with
∠A ≥∠B ,∠C and restricted to 3∠A−2∠C ≤π (as per Observation 5).

Lemma 11. Function h1(B ,C ) is concave over domain D.

Proof. We show that function (7) is concave by verifying numerically that it’s
Hessian HB ,C is negative-definite. Matrix HB ,C is a 2×2 symmetric real matrix,
whose real roots can be computed analytically. The domain D1 can be re-parameterized
as

0 ≤ B ≤ 3π/7, max{π/2−B , (2π−3B)/5} ≤C ≤ min{2π/3−B ,π/2−B/2,π−2B}

so that the eigenvalues can be plotted over D as it is shown in Figure 19. ⊓⊔
Now, by Lemma 11, any (local) minimizers of function (7) are attained at the
boundaries of its domain. Subject to that any of the boundaries of Observation 5
are satisfied tightly, function h1(B ,C ) is at least 1, as already proven in cases (a),
(b). The remaining constraints that might be tight are that A ≥ B ,C .
Subject to that B = A, we have that

h1(B ,π−2B) = sin2
( B

2

)
(2cos(2B)+2cos(3B)−1)2

3−2cos(2B)
.
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Fig. 19: The two eigenvalues of Hessian HB ,C of function (7) are compared to blue
hyperplane z = 0 over domain D1.

The function above can be shown to be concave when B ∈ [π/3,π/2], hence its
minima are attained at the boundaries of its domain. When B = π/3 its value is
1. When B = 3π/7 its value is equal to

sin2
( 3π

14

)(
1+2sin

( 3π
14

)+2cos
(
π
7

))2

3+2cos
(
π
7

) ≈ 1.32715.

Finally, subject to that C = A, it is easy to see that the linear constraints imply
that the smallest value that C can attain is π/3. At the same time, the nonlinear
constraint of Observation 5 becomes (for C = A)

cos2(C )(3−2cos(2C ))csc4
(C

2

)
(2cos(C )+1)2 ≥ 1.

It can be shown that the above constraint is satisfied only when C ≤ π/3. It fol-
lows that when A =C , we must have A = B =C =π/3, in which case h1(π/3,π/3) =
1.

Comparison with optimal LDR strategy: In order to describe the optimal LDR
strategy, we also consider the reflection A′′ of A across BC ′, so that the cost of such
strategy equals the distance of I to segment C ′A′′, see also Figure 16. Let also H de-
note the projection of I onto C ′A′′. As before, we have the following cases to consider.
Case (a’): I lies the positive LDR bounce halfspace and in the negative LDR subopt
halfspaces, in which case the optimal LDR strategy has cost

∥∥IC ′∥∥.
Case (b’): I lies in the negative LDR subopt halfspace, hence, the optimal LDR strat-
egy has cost ∥I B∥+hB , where hB is the altitude corresponding to angle B .
Case (c’): I lies the positive LDR bounce and subopt halfspaces, and in particular the
cost of the optimal LDR trajectory is d(I ,C ′A′′) (depicted as ∥I H∥ in Figure 16).

Observation 6 I lies in the positive LDR bounce and subopt halfspaces exactly when
3B −2C ≤π and

cos2(2C )cos2
(

B +C

2

)
≤ sin2

( 3A
2

)
sin2

(C
2

)
−2cos(B +C )+2cos(B)−2cos(C )+3

.
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Proof. As in the proof of Observation 5, let ρ denote ∠AC ′I . When I ,B , H become
collinear, it is easy to see that B/2+B +π/2−C =π, or equivalently that 3B −2C =π.
It follows immediately that I H intersects BC ′ in its interior only when 3B −2C < π.
Point H coincides with C ′ exactly when C −ρ+C = π/2, and when 2C −ρ+C ≤ π/2
point H lies within B ′,C ′. Using sin(ρ) that was computed in the proof of Observa-
tion 5, we obtain condition

cos2(2C ) ≤ ∥I A∥2

∥IC ′∥2 sin2(3A/2).

The latter expression can be simplified (after trigonometric manipulations), using
also (1) and (2) of Observation 1, together with that C ′ = (cos(2B),sin(2B)), resulting
in the promised condition. ⊓⊔

Case (a’) proof: This case is identical to case (a) above.
Case (b’) proof: Let N ′ be the projection of A onto BC , so that AN ′ is the altitude hA

corresponding to angle A. By triangle inequality, we have that
∥∥I A′∥∥ ≤ ∥∥I N ′∥∥+

hA . At the same time, the optimal LDR visitation in this case has cost ∥I B∥+
hB ≥ hA , where the inequality is due to that ∠A is the dominant angle, hence hA

is the shortest altitude. Hence, it suffices to argue that ∥I B∥ ≥ ∥∥I N ′∥∥, which is

immediate ∥I B∥2 = p2
I +q2

I , while
∥∥I N ′∥∥2 = (p I −p)2 +q2

I .
Case (c’) proof: The analytic equation of the line ℓ passing through C ′, A′′ has equa-

tion
ℓ : − tan(2B −C )x + y − sin(2B)+ tan(2B −C )cos(2B) = 0.

To see why, recall that from the proof of case (c) above we have that

C ′ = (cos(2B),sin(2B)),

as well as ℓ forms with the x-axis an angle of 2B −C . But then, using the formula
for the distance of point I = (p I , qI ) to ℓ we have that

d(I ,ℓ) =
∣∣− tan(2B −C )p I +qI − sin(2B)+ tan(2B −C )cos(2B)

∣∣√
tan2(2B −C )+1

.

Using (2) of Observation 1, together with (5), and after trigonometric manipula-
tions, it follows that(

d(I ,ℓ)

∥I A′∥
)2

= (2cos(B −C )+2cos(C )+1)2 cos2
( B+C

2

)
2cos(B +C )+2cos(B)+2cos(C )+3

, (8)

which we need to prove is at least 1. Call function (8) h2(B ,C ). As in the previous
case, h2(B ,C ) can attain values below 1 without conditioning on that I lies in the
positive LDR bounce and subopt halfspaces (in which case d(I ,C ′A′′) = d(I ,ℓ),
as per Observation 6).
Recall that △ABC is non-obtuse with ∠A ≥ max{∠B ,∠C }, and that 3∠B −2∠C ≤
π (as per Observation 6). The domain D2 defined by these linear constraints can
be described as follows:

0 ≤ B ≤ 3π/7, max{π/2−B , (3B −π)/2} ≤C ≤ min{2π/3−B ,π/2−B/2,π−2B}.
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Unfortunately, h2(B ,C ) is not concave over D2, however we can still show nu-
merically that any minimizers are attained at the boundaries of the domain (and
the boundary imposed by the non linear constraint of Observation 6).

Lemma 12. Function h2(B ,C ) has no minimizers in the interior of domain D2.

Proof. We demonstrate, numerically, that the gradient of function h2(B ,C ) is
never the zero vector over D2. In fact, as Figure 20 shows, ∂h2(B ,C )/∂B does not
attain value 0 in domain D2.2 ⊓⊔

Fig. 20: The plot of ∂h2(B ,C )/∂B (blue) and ∂h2(B ,C )/∂C (orange) over domain D2,
compared with the hyperplane z = 0 (green plane).

Now, by Lemma 12, any (local) minimizers of h2(B ,C ) are attained at the bound-
aries of its domain. Subject to that, any of the boundaries of Observation 6 are
satisfied tightly, function h2(B ,C ) is at least 1, as already proven in cases (a’), (b’).
The remaining constraints that might be tight are that ∠A ≥ max{∠B ,∠C }.
Subject to that B = A, we have that h2(B ,π−2B) = h1(B ,π−2B) which was shown
to be at least 1 previously, subject to that π/3 ≤ (3π/7)B (the same bounds hold
for B using the current linear conditions). Finally, subject to that C = A, it is easy
to see, exactly as before, that the linear constraints imply that the smallest value
that C can attain is π/3. At the same time, the nonlinear constraint of Observa-
tion 6 becomes (for C = A)

sin2
( 3C

2

)
sec2(2C )

3−2cos(2C )
≥ 1.

It can be shown that the above constraint is satisfied only when π/6 ≤C ≤π/3. It
follows that when A =C , we must have A = B =C =π/3, in which case h2(π/3,π/3) =
1.

⊓⊔
2 By considering a sufficiently refined grid, we can numerically (and rigorously) verify that the

function is bounded away from 0, as seen in the figure. The claim then follows by theoretical
bounds on the partial derivatives of the expression.
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5.3 R1 Cost of the Middle Point of the Shortest Altitude

Lemma 13. For a non-obtuse △ABC with ∠A ≥∠B ≥∠C , let T be the middle point
of the altitude corresponding to the largest edge BC . Then the optimal R1(T ) strategy
is of LRD type, and has cost 1

2 (2−cos(2A))sin(B)sin(C )csc(B +C ).

Consider △ABC in standard analytic form, with altitude AF . Let C ′,B ′ be the re-
flection of C ,B across AB , AC ′, respectively (see also Figure 21). Since ∠A ≥ ∠B ≥
∠C , it is easy to verify that T is always in the positive LRD bounce and subopt halfs-
paces. Hence, the projection G of T along B ′C ′ falls within the latter segment, and in
particular by Lemma 1, the optimal LRD strategy has cost d(T,B ′C ′) = ∥TG∥. What
we show is that R1(T ) = ∥T G∥ by comparing ∥TG∥ to the cost of the remaining opti-
mal ordered visitations the triangle edges.

Comparison to optimal LDR strategy: Consider the reflection A′ of A across BC ′,
and let H be the projection of T along C ′A′, see Figure 21. Clearly the optimal LDR
strategy has cost at least d(T,C ′A′) = ∥T H∥. The loci of points P that are equidistant
from C ′A′,C ′B ′ are exactly on the angle bisector of ∠C ′. Moreover, there is no trian-
gle configuration that T falls on the latter angle bisector. To see why, consider the
bisector C M of ∠C (hence C ′M is the bisector of ∠C ′). Because ∠A ≥∠B ≥∠C , we
have ∥B M∥ ≤ ∥M A∥, and hence C M intersects AF below T . That also shows that T
remains always closer to the B ′C ′ segment.

Comparison to optimal DLR and DRL strategies: Consider the reflection A′ of A
across BC . Let also C ′′,B ′′ be the reflections of C ,B across B A′,C A′ respectively, see
also Figure 22. It is easy to see that, since ∠A ≥ ∠B ≥ ∠C , point T is always in the
negative DLR (and DRL) bounce halfspace and in the positive subopt halfspace. It
follows by Lemma 1 that both optimal DLR and DRL strategies have cost

∥∥T A′∥∥= 3
2 q .

We compute d(T,B ′C ′) = ∥TG∥ using (6). Since T = (p, q/2), it follows that

∥TG∥ =
∣∣tan(2A)p +q/2− sin(2B)− tan(2A)cos(2B)

∣∣√
tan2(2A)+1

= 1

2
(2−cos(2A))sin(B)sin(C )csc(B +C ). (9)

Now, using Observation 1 we have that

∥T G∥
∥T A′∥ = 1

3
(2−cos(2A)) ≤ 1,

as wanted.
Comparison to optimal RDL strategy: Consider the reflection B ′′, A′ of B , A across

AC and B ′′C , respectively, see Figure 23. Since ∠A ≥∠B ≥∠C , point T is always in
the negative RDL bounce halfspace and in the positive subopt halfspace. It follows
by Lemma 1 that the optimal RDL strategy has cost

∥∥T B ′′∥∥.
Note that by shifting the origin by (−1,0), point B ′′ is obtained as the rotation of

(−1,0) by angle −2C . Hence,

B ′′ = R−2C

(−1
0

)
+

(
1
0

)
=

(
1−cos(2C )
sin(2C )

)
.
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Fig. 21: Comparison of optimal LRD with optimal LDR strategy.

Fig. 22: Comparison of optimal LRD with optimal DLR and DRL strategies.

Fig. 23: Comparison of optimal LRD with optimal RDL strategy.
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Therefore, the optimal RDL strategy has cost∥∥T B ′′∥∥=
√(

1−cos(2C )−p
)2 + (

sin(2C )−q/2
)2

= 1

2
p

2

sin(C )

sin(B +C )

√
−4cos(2(B +C ))−cos(2B)+4cos(2C )+9.

It follows, after trigonometric manipulations, that∥∥T B ′′∥∥2

∥TG∥2 = (−4cos(2(B +C ))−cos(2B)+4cos(2C )+9)

2(cos(2(B +C ))−2)2 sin2(B)
.

Call the latter function f (B ,C ). We have that

∂

∂C
f (B ,C )

= 10sin(2(B +C ))−2sin(4(B +C ))− sin(4B +2C )+2sin(2B +4C )+6sin(2B)+7sin(2C )

(cos(2(B +C ))−2)3 .

Recall that ∠A ≥ ∠B ≥ ∠C . Since also the triangle is non-obtuse, it follows that 0 ≤
∠C ≤π/4, as well as ∠C ≤∠B ≤π/2−∠C /2. Over this domain, it is easy to verify that
10sin(2(B+C ))−2sin(4(B+C ))−sin(4B+2C )+2sin(2B+4C )+6sin(2B)+7sin(2C ) ≥ 0.
Since also (cos(2(B+C ))−2)3 ≤ 0, it follows that f (B ,C ) is decreasing in C , and hence

f (B ,C ) ≥ f (π/2−C /2,C )

=
(−4cos

(
2
(C

2 + π
2

))−cos
(
2
(
π
2 − C

2

))+4cos(2C )+9
)

sec2
(C

2

)
2
(
cos

(
2
(C

2 + π
2

))−2
)2

= 8

cos(C )+1
− 27

(cos(C )+2)2 .

The last function of C can be seen to be increasing in C , and when C = 0 it equals 1.
This shows that

∥∥T B ′′∥∥/∥T G∥ ≥ 1 as wanted.
Comparison to optimal RLD strategy: The proof of this case is more holistic. We

determine the loci of points P that have the property that R1 costs of the optimal RLD
and optimal LRD visitations are equal. In its generality, the loci of points will be a
mixed curve composed by a line segment, followed by a parabola segment, followed
by a line segment. The mixed curve will split △ABC into regions in which one of
the RLD or LRD strategy is strictly more efficient. As it will follow from the proof, the
middle point of the shortest altitude of △ABC , with ∠A ≥ ∠B ≥ ∠C , will either fall
on that mixed curve, or on the side where the LRD strategy is strictly more efficient.

To compare the optimal LRD and RLD visitation costs, we consider reflection C ′
of C across AB , and reflection B ′ of B across C ′A, see also Figure 24. We also consider
reflection B ′′ of B across AC , and reflection C ′′ of C across B ′′A.

Moreover, consider the LRD and RLD bounce indicator lines, that are perpendic-
ular to C ′B ′ and C ′′B ′′, respectively. Note that C ′B ′ and C ′′B ′′ (or their extensions)
always intersect, say at point Q, unless they coincide (exactly when ∠A = π/2). Let
also AH be the altitude of △ABC passing through A. The next observation will be
useful in the following arguments.
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Fig. 24: The case of all points of altitude AH falling within the positive RLD and LRD
bounce halfspaces.

Fig. 25: The case of the positive RLD and negative LRD bounce halfspaces intersect-
ing attitude AH .

Fig. 26: The case of the negative RLD andLRD bounce halfspaces intersecting attitude
AH .
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Observation 7 The extension ζ of the altitude AH passes also through the intersection
Q of (the extensions of) C ′B ′ and C ′′B ′′. Moreover, unless ∠A ̸= π/2, line ζ is also the
bisector of one of the angles formed by (the extensions of) C ′B ′ and C ′′B ′′.

Proof. Due to the already introduced reflections, the triangle formed by extensions
of BC ,B ′C ′ and B ′′C ′′ is isosceles. This means that Q A is both the altitude and the
bisector of angle Q of that isosceles triangle. Hence, it suffices to prove that Q A is a
bisector of the same angle Q. To that end, it is enough to show that A is equidistant
from B ′C ′ and B ′′C ′′. The latter property is true since triangles AB ′C ′ and AB ′′C ′′ are
equal, and hence have equal altitudes corresponding to A. ⊓⊔

By Observation 7, all points P on the altitude AH are equidistant from the (ex-
tensions of) segments B ′C ′ and B ′′C ′′. Combined with the findings of Section 3.2, we
conclude the following corollary.

Corollary 5. If all points of altitude AH are in the positive bounce and subopt halfs-
paces of both LRD and RLD visitations, then the loci of points whose R1 visitation cost
is the same for the optimal LRD and RLD visitations is the altitude AH.

If the indicator lines intersect in the interior of the altitude AH , then for any start-
ing point in the negative halfspace of an indicator line, the optimal bouncing trajec-
tory of the corresponding ordered visitation ends at a vertex. If ∠A ≥∠B∠C , the LRD
indicator line intersects altitude AH at point U (closer to A than where the RLD in-
dicator line might intersect AH), see also Figure 25.

For every starting point P in the intersection of the positive LRD bounce half-
space and the negative RLD bounce halfspace, the optimal LRD visitation is com-
puted by d(P,B ′C ′) (and the projection of P onto B ′C ′ falls within B ′C ′). Also the
optimal RLD visitation has cost

∥∥PB ′′∥∥. Hence, the loci of points with same LRD and
RLD costs is formed by all points that are equidistant from line B ′C ′ and point B ′′.
That would be the parabola with focus B ′′ and directrix B ′C ′.

Corollary 6. The portion of loci of points with same LRD and RLD costs that lies
within the intersection of the positive LRD and negative RLD bounce halfspaces is a
(part of a) parabola with focus B ′′ and directrix B ′C ′.

If the LRD indicator line intersects the aforementioned parabola outside △ABC ,
then the loci of points with same LRD and RLD costs is formed by the portion of
the altitude AU , followed by the portion of the parabola that lies within the given
triangle (curve UV in Figure 25).

It remains to examine the case that the LRD bound indicator line intersects the
parabola in the interior of triangle ABC , say at point W , see Figure 26. Then, for
all starting points P in the intersection of the negative LRD and RLD bounce halfs-
paces, the optimal LRD and RLD visitations have cost

∥∥PC ′∥∥ and
∥∥PB ′′∥∥, respectively.

Hence, the loci of points with same LRD and RLD costs within these halfspaces are
equidistant from points B ′′ and C ′, hence they lie on the perpendicular bisector of
segment B ′′C ′, and let its intersection with line BC be Z .

Corollary 7. The portion of loci of points with same LRD and RLD costs that lie within
the intersection of the negative LRD and RLD bounce halfspaces is part of the perpen-
dicular bisector of segment B ′′C ′ that lies within triangle ABC .
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To conclude, in its generality (see Figure 26), the loci of points with same LRD
and RLD costs is defined piecewise as, first a portion of altitude AH (segment AU ),
followed by a portion of parabola with focus B ′′ and directrix B ′C ′ (curve UW ), fol-
lowed by part of the perpendicular bisector of segment B ′′C ′ (segment W Z ). If in
particular ∠A ≥∠B ≥∠C , and the middle of the shortest altitude is in the negative
RLD bounce halfspace, it is immediate that the optimal LRD visitation is strictly more
efficient than the optimal RLD visitation (and otherwise they are equal).

6 Visitation Trade-offs

6.1 Searching with 1 vs 3 Robots

Supremum Proof; 1 vs 3 Robots In this section we prove the following theorem.

Theorem 8. sup∆∈D R1,3(∆) = 4.

The lower bound for sup∆∈D R1,3(∆) is given by the following simple lemma.

Lemma 14. Let∆ be an equilateral triangle, and I be its incenter. Then, R1(I )/R3(I ) =
4.

Proof. The reader may consult Figure 12 for a depiction of the points. Let K be the
projection of the incenter onto BC . By Lemma 10, an optimal trajectory for 1 robot
would be to go to K , and then to A (following the bisector of A), inducing cost R1(I ) =
∥I K ∥+∥K A∥. At the same time, all angle bisectors in the equilateral triangle are also
altitudes, so by Lemma 2, the cost for 3 robots equals R3(I ) = ∥I K ∥. The claim follows
by noticing that, in equilateral triangles, ∥I K ∥ = 1

3 ∥K A∥. ⊓⊔

The remaining of the section is devoted in proving a tight upper bound for

sup
∆∈D

R1,3(∆).

In that direction, and for the remaining of the section, we consider a triangle ∆ =
ABC in standard analytic form. Without loss of generality, we also assume that the
starting point P lies within the tetragon (4-gon) AM I L, see also Figure 6.

In order to provide the promised upper bound, we propose a heuristic upper
bound for R1(P ), as follows. Consider the projections P1,P2,P3 of P onto AB ,BC
and C A respectively. Then, three (possibly) suboptimal visitation trajectories for one
robot are TC (P ) := 〈P,P1,P,C ,〉, TA(P ) := 〈P,P2,P, A〉, TB (P ) := 〈P,P3,P,B〉, that is

R1(P ) ≤ min{TA(P ),TB (P ),TC (P )}.3

The proof of the upper bound follows directly by Lemma 15 and Lemma 17 be-
low. At a high level, we further distinguish some of the heuristics TA(P ),TB (P ),TC (P ),
depending on ∠A.

3 Note we abuse notation and we denote by TA(P ) both the trajectory and its cost.
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Lemma 15. If ∠A ≤π/3, then min{TB (P ),TC (P )}/R3(P ) ≤ 4.

Proof. Consider some starting point P in the tetragon AM I L (see Figure 6). Let∠B ′,∠C ′
denote angles ∠C BP and ∠PC B , respectively, and note that since I is the incenter
of the given triangle, then ∠B ′ ≥ ∠B/2 and ∠C ′ ≥ ∠C /2. At the same time, since
P lies in tetragon AM I L (and as a result of the partition of the given triangle us-
ing its bisectors) we have that max{d(P, AB),d(P, AC )} ≤ d(P,BC ), and in particular
R3(P ) = d(P,BC ). But then,

min
{TB (P ),TC (P )}

R3(P )
= min{2d(P, AB)+∥PB∥ ,2d(P, AC )+∥PC∥}

d(P,BC )

≤ 2+ min{∥PB∥ ,∥PC∥}

d(P,BC )
= 2+min

{
1

sin(B ′)
,

1

sin(C ′)

}
.

Since ∠A ≤ π/3, it follows that max{∠B ,∠C } ≥ π/3. Therefore, max{∠B ′,∠C ′} ≥ π/6,
and moreover max{sinB ′, sinC ′} ≥ 1/2, which implies the desired upper bound of 4.

⊓⊔

Note that the proof of Lemma 15 provides evidence that min{TB (P ),TC (P )}/R3(P )
is maximized when P is the incenter of the given triangle. The next lemma makes a
similar observation for heuristic trajectory TA(P ).

Lemma 16. The ratio TA(P )/R3(P ) is maximized when P is either the incenter of ∆,
or the intersections of the bisectors of B ,C with AC , AB, respectively.

Proof. Consider an arbitrary point P in the tetragon AM I L (see Figure 6). We have
that

TA(P )

R3(P )
= 2d(P,BC )+∥PA∥

d(P,BC )
= 2+ ∥PA∥

d(P,BC )
.

Since ∆ is non-obtuse, the closer P is to BC , the larger ∥PA∥ is and the smaller
d(P,BC ) is. In other words, TA(P )/R3(P ) attains is maximum for some point P in the
line segments M I , I L. So, let us consider an arbitrary point P in the line segment I L.
Clearly, it suffices to prove that TA(P )/R3(P ) is maximized either at I or at L. Equiva-
lently, it suffices to prove that ∥PA∥

d(P,BC ) is maximized either at I or at L.
First we show that ∠LI A is strictly acute. Indeed, since ∆ is non-obtuse, we have

∠LI A =π−∠A/2−∠ALI =π−∠A/2− (π−∠B/2− A) = (∠A+∠B)/2 <π/2.

This implies that the projection A0 of A onto line passing through B ,L, falls within
the line segment I L. Now consider an arbitrary point

Pλ = (1−λ)I +λL

on the line segment I L, whereλ ∈ [0,1]. In particular, there existsλ0 ∈ (0,1), such that
Pλ0 = A′. Now, note that as λ increases from 0 to 1, it is immediate that d(Pλ,BC ) in-
creases. Since ∠LI A is non-obtuse, ∥PλA∥ is decreasing when λ ∈ [0,λ0] and increas-
ing when λ ∈ [λ0,1]. It follows that ∥PλA∥

d(Pλ,BC ) attains its maximum either when λ= 0 or
when λ= 1, that is, either at the incenter I or point L. ⊓⊔
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We are now ready to prove the lemma that complements Lemma 15.

Lemma 17. If ∠A ≥π/3, then TA(P )/R3(P ) ≤ 4.

Proof. By Lemma 16, it is enough to prove that TA(P )/R3(P ) ≤ 4, when P is either L
or I , see also Figure 6. As before, we have

TA(P )

R3(P )
= 2d(P,BC )+∥PA∥

d(P,BC )
= 2+ ∥PA∥

d(P,BC )
,

therefore our goal is to show that ∥PA∥
d(P,BC ) ≤ 2.

First, consider starting point P = L, and let L′,L′′ be the projections of L onto BC
and AB , respectively. Note that d(L,BC ) = ∥∥LL′∥∥ = ∥∥L′L′′∥∥ = R3(L). In right △ALL′′
we have that sin(A) = ∥∥LL′′∥∥/∥AL∥ = d(L,BC )/∥AL∥. Since∠A ≥π/3 we have sin(A) ≥
1/2 and the claim follows.

Second, we focus on the starting point P = I , the incenter. For this we consider ∆
in standard analytic form. Then,

TA(I )

R3(I )
= 2d(I ,BC )+∥I A∥

d(I ,BC )
= 2+ ∥I A∥

d(I ,BC )
.

Using Corollary 1 that gives the coordinates of incenter I = (p I , qI ) we can compute

∥I A∥ =
√

(p I −p)2 + (qI −q)2, d(I ,BC ) = qI ,

so that by Observation 1, we get , after some trigonometric manipulations, that

∥I A∥
d(I ,BC )

= 1

cos
( B+C

2

) ≤ 2,

where the last inequality is due to that ∠A ≥π/3, and hence ∠B +∠C ≤ 2π/3. ⊓⊔

Infimum Proof; 1 vs 3 Robots In this section we prove the following theorem.

Theorem 9. inf∆∈D R1,3(∆) =p
10.

The next lemma shows that inf∆∈D R1,3(∆) ≤p
10.

Lemma 18. Let ABC be an isosceles with base BC . Then, we have

lim
∠A→0

max
P∈ABC

R1(P )/R3(P ) =p
10.

Proof. We consider a triangle in standard analytic form, with B = (0,0),C = (1,0) and
A = (1/2, q), with q → ∞. For such a triangle, all the R1 regions are summarized in
Figure 14, and the optimal visitation strategies in Lemma 8. We need to show that for
all starting points P , we have R1(P )/R3(P ) ≤p

10. By symmetry, we may restrict start-
ing points in △ABK , where K is the middle point of BC . We examine the following
four regions of starting points: BK H ,DB H ,D H JE and E J A.
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First we analyze regions BK H ,DB H together. Recall that E is identified by the
optimal bouncing subcone of B , and that D is the projection of C onto AB . Note that
as q grows, point D tends to B , and hence regions BK H ,DB H tend to line segment
BK . An arbitrary point in any of these regions (as q → ∞), will tend to a point P =
(x,0), where 0 ≤ x ≤ 1/2. Clearly, R3(P ) = 1− x. The optimal strategy in DB H is of
LDR-type, and hence has cost (in the limit) x +1. The optimal strategy in BK H is of
DLR-type, and hence has cost (in the limit) x +1. Overall, starting from P in any of
the regions BK H ,DB H , we have R1(P )/R3(P ) tends to (x +1)/(1−x) ≤ 3 <p

10.
Next we analyze region AE J . The key observation is that a robot starting from

that region can move parallel to BC (back and forth) visiting both AB , AC before
moving to BC along the projection. Hence, R1(P ) ≤ 3/2+R3(P ), or in other words,
R1(P )/R3(P ) ≤ 3/(2R3(P ))+1. Next, we show that R3(P ) →∞ as q →∞ (i.e. as ∠B →
π/2), hence concluding this case as well. Indeed, any point in AE J lies above the in-
tersection of BF with AK , call it W . Since ∠F BG = 3B −π, it follows that ∠F BC =
∠W BC = 2∠B −π/2 →π/2, as ∠B →π/2. Hence, W lies arbitrarily away from BC as
∠B →π/2.

Finally, we analyze the region ED H J . Starting from a point P = (x, y), with 0 ≤
x ≤ 1/2 and 0 ≤ y ≤ q (the latter bound is weak but does not affect our analysis),
the optimal strategy for R1(P ) is to bounce optimally to AB and then move to C .
Equivalently, consider the reflection P ′ of P across AC . Then, as q → ∞, we have
P ′ → (x +2(1−x), y) = (2−x, y) , and therefore R1(P ) →

√
(2−x)2 + y2.

We consider three further subcases, and our underlying assumption remains that
0 ≤ x ≤ 1/2 and 0 ≤ y ≤ q . If P is (on or) above bisector of ∠C , then (in the limit) we
have y ≥−x +1 and R3(P ) = y . But then, we have

R1(P )

R3(P )
≤ sup

y≥−x+1

√
(2−x)2 + y2

y
=p

10,

achieved for x, y → 1/2. If P is below the bisector of∠C and (on or) above the bisector
of ∠B , then (in the limit) we have x ≤ y ≤−x +1, y ≥ x, and R3(P ) = 1− x. But then,
we have

R1(P )

R3(P )
≤ sup

x≤y<−x+1,

√
(2−x)2 + y2

1−x
=p

10,

achieved for x, y → 1/2. Finally, if P is below bisector of ∠B , then (in the limit) we
have y ≤ x and R3(P ) = 1−x. But then, we have

R1(P )

R3(P )
≤ sup

y<x

√
(2−x)2 + y2

1−x
=p

10,

achieved again for x, y → 1/2. Note that worst starting point P = (1/2,1/2) is the (limit
of the) incenter of thin isosceles ABC (as ∠A → 0). ⊓⊔

The next lemma shows that inf∆∈D R1,3(∆) ≥p
10.

Lemma 19. For any triangle∆ ∈D, let I denote its incenter. Then, we have R1(I )/R3(I ) ≥p
10.
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Proof. 4 Consider an arbitrary non-obtuse △ABC in standard analytic form. We as-
sume that ∠A is the largest angle. Let I = (x, y) be its incenter, with coordinates
given by Corollary 1. Since the incenter is equidistant from all triangle edges, and
by Lemma 2, we have R3(I ) = y . Moreover, by Lemma 10, we have that

R1(I ) =
√

(x −p)2 + (y +q)2.

In what follows we prove the following claims:
Claim (a): R1(I )/R3(I ) is increasing in q , therefore it is minimized when ∠A =π/2.
Claim (b): The “thinner” a right triangle is, the smaller R1(I )/R3(I ) becomes.

Proof of Claim (a): Assume that ∠A ≤π/2 is the largest angle, and without loss of
generality assume also that p ∈ [0,1/2]. Note that

R1(I )

R3(I )
=

√
(x −p)2 + (y +q)2

y
=

√
(x/y −p/y)2 + (1+q/y)2,

where in particular, x = x(p, q) and y = y(p, q). Since
p

z is an increasing function
of z, it suffices to show that (R1(I )/R3(I ))2 is an increasing function of q . Note that
the function we want to prove increasing in q is of the form f 2(q)+ g 2(q), where
f (q) = (x −p)/y ≥ 0 and g (q) = 1+q/y ≥ 0. Note that,(

f 2(q)+ g 2(q)
)′ = 2 f (q) f ′(q)+2g (q)g ′(q) ≥ ( f (q)+ g (q))′ min{ f (q), g (q)}.

Therefore, for (R1(I )/R3(I ))2 to be increasing in q , it suffices to prove that f (q) +
g (q)−1 = (x −p)/y +q/y is increasing in q . To that end, we compute

∂

∂q

(
(x −p)/y +q/y

)= h(p, q)

βγq2 ,

where h(p, q) := p3(−(β+γ))+p2(β+2γ)−γp+q3(β+γ) andβ= ∥AC∥ =
√

(1−p)2 +q2,γ=
∥AB∥ =

√
p2 +q2. Therefore, it further suffices to prove that h(p, q) ≥ 0.

What we show next is that h(p, q) preserves sign, condition on that p, q > 0, and
on that ∠A ≤ π/2. Indeed, we compute all roots of h(p, q) with respect to q . Some
tedious calculations show that h(p, q) has two complex roots, and the real roots 0

and q1,2 = −p2±
p

−3p4+6p3−4p2+p+p
2p−1 , among which only q1 = −p2−

p
−3p4+6p3−4p2+p+p

2p−1

is non-negative for p ∈ (0,1/2]. At the same time, ∠A ≤π/2, and hence (p−1)2+q2 ≥
1/4. However, it is easy to show that

(p −1)2 +q2
1 ≤ 1/4,

for all p ∈ [0,1/2], and equality holds only when p = 0. Therefore, continuous func-
tion h(p, q) has no real roots in the domain p, q > 0 and (p−1)2+q2 ≥ 1/4, and hence
must preserve sign. The sign is the same as the sign of h(1/2,1) =p

5 > 0, as wanted.

4 The provided proof uses algebraic tools of analytic geometry. An alternative approach, us-
ing Observation 1, is to show, using trigonometric manipulations, that (R1(I )/R3(I ))2 =
4cos(B)+4cos(C )+2

cos(A)+1 +4. Then, one would need to minimize the latter expression over the do-
main of non-obtuse triangles △ABC with dominant angle A.
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Proof of Claim (b): Consider arbitrary right triangle A = (p, q),B = (0,0),C = (1,0),
with ∠A = π/2. Point A must lie on a cycle with radius 1/2 and center (1/2,0), and
hence (p−1/2)2+q2 = 1/22, from which we conclude that q =

√
p −p2. Using Corol-

lary 1 we obtain that

I =
(

1

2

(
−√

1−p +p
p +1

)
,

√
(1−p)p√

1−p +p
p +1

)
.

Then, using the discussion above, and after elementary calculations, we see that

R1(I )

R3(I )
=

√
4
√

1−p +4
p

p +6.

It is easy to see that 4
√

1−p +4
p

p +6 preserves positive sign, and it is increasing p.
Therefore, its square is increasing, that is R1(I )/R3(I ) is increasing in p.

To conclude, using claims (a),(b) above, we have

inf
R1(I )

R3(I )
≥ lim

p→0

√
4
√

1−p +4
p

p +6. =p
10,

and the proof is finished. ⊓⊔

6.2 Searching with 2 vs 3 Robots

Supremum Proof; 2 vs 3 Robots In this section we prove the following theorem.

Theorem 10. sup∆∈D R2,3(∆) = 2.

The next lemma shows that sup∆∈D R2,3(∆) ≥ 2.

Lemma 20. Let ABC be an equilateral triangle with incenter I . Then, we have R2(I )/R3(I ) =
2.

Proof. The incenter I is equidistant from all edges AB ,BC ,C A, and hence by Lemma 2,
we have R3(I ) = d(I ,BC ). Also, by Lemma 9, we have R2(I ) = ∥I A∥, and therefore

R2(I )

R3(I )
= ∥I A∥

d(I ,BC )
.

Now recall that △ABC is equilateral, therefore each of the bisectors coincide with
the altitudes. Moreover, I is the center of the regular triangle, and hence its apothem
(with length d(I ,BC )) is 1/3 of the altitude. The main claim follows by noting that
∥I A∥ makes up the remaining 2/3 of the altitude. ⊓⊔

The remaining of the section is devoted in proving that sup∆∈D R2,3(∆) ≤ 2. In
that direction, we consider a triangle ∆= ABC along with its incenter I , see also Fig-
ure 6. Without loss of generality, we also assume that the starting point P lies within
the △AI L, .

In order to provide the promised upper bound, we propose a heuristic upper
bound for R2(P ). The two robots visit all edges as follows; one robot goes to the vertex
corresponding to the largest angle (visiting the two incident edges), and the second
robot visits the remaining edge moving along the projection of P along that edge.
Note that the largest angle is at least π/3.
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Lemma 21. If the largest angle is ∠A, then R2(P )/R3(P ) ≤ 2.

Proof. Consider an arbitrary point P in △AI L. Due to the heuristic strategy of R2(P ),
one robot goes to A in time ∥PA∥, and the other robot goes to edge BC in time
d(P,BC ). So overall, we have

R2(P ) ≤ max{∥PA∥ ,d(P,BC )}.

Since R3(P ) = d(P,BC ), it follows that if ∥PA∥ < d(P,BC ), then R2(P )/R3(P ) = 1. On
the other hand, if ∥PA∥ ≥ d(P,BC ), then we have

R2(P )

R3(P )
≤ ∥PA∥

d(P,BC )
. (10)

Recall that P lies in △AI L. By the proof of Lemma 16, ratio (10) is maximized either
at the incenter, or at point L. Then, by the proof of Lemma 17, and since ∠A ≥ π/3
the same ratio is at most 2. ⊓⊔

Lemma 22. If the largest angle is either ∠B or ∠C , then R2(P )/R3(P ) ≤ 2.

Proof. We provide the proof of the case that∠C is the largest angle, and hence at least
π/3 (the other case is identical). For every point P in △AI L, we have that R3(P ) =
d(P,BC ) (see Section 4.1). Due to the heuristic we are using, the claim follows once
we show that max{∥PC∥,d(P,AB)}

d(P,BC ) ≤ 2. Note that d(P, AB) ≤ d(P,BC ), and so, if

max{∥PC∥ ,d(P, AB)} = d(P, AB),

it follows that R2(P )/R3(P ) ≤ 1.
It remains to examine the case R2(P ) = ∥PC∥. To that end, note that ∠PC B ≥

∠C /2 ≥π/6. Since moreover the sin function is increasing in [0,π/2], we have

∥PC∥
d(P,BC )

= 1

sin(∠PC B)
≤ 1

sin(π/6)
= 2

as wanted. ⊓⊔

Infimum Proof; 2 vs 3 Robots In this section we prove the following theorem.

Theorem 11. inf∆∈D R2,3(∆) =p
2.

The next lemma shows that inf∆∈D R2,3(∆) ≤p
2

Lemma 23. Let △ABC be a right isosceles with ∠A =π/2. Then, we have

max
P∈ABC

R2(P )/R3(P ) =p
2.

Proof. Consider right isosceles △ABC with ∠A =π/2. For such a triangle, The R3 re-
gions are summarized in Lemma 2. Also, all R2 regions are summarized in Corollary 3
and Lemma 5, see also Figure 11.
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We conclude that the R2 regions of right isosceles ABC with ∠A = π/2 are deter-
mined by the refined R2 separator MF K JLQ and the incenter I . More specifically,
for every starting point P outside MF K JLQ, cost R2(P ) is determined by the cost of
visiting the more distant edge (and hence it equals R3(P )). Hence,

argmax
P∈ABC

R2(P )/R3(P )

lies within MF K JLQ, and by symmetry, we may further assume that P lies in MF AQ.
We consider the analytic representation of right isosceles ABC , that is we set

A = (1/2,1/2),B = (0,0),C = (1,0). Using Corollary 1, the incenter is I = (1/2,1/
p

2−
1/2). By Lemma 9, we have that R2(I ) = ∥I A∥ = 1−1/

p
2. Recalling also that R3(I ) =

d(I ,BC ) = 1/
p

2−1/2, it follows that R2(I )/R3(I ) =p
2, Below, we show that

argmax
P∈MF AQ

R2(P )/R3(P ) ≤p
2.

In what follows, we commonly denote P = (a,b), for any placement of P . Combined
with the partition of ABC that determines all costs R3(P ), as per Section 4.1, we are
motivated to consider the following four cases.

Case 1, P ∈ M IQ: We have that R2(P ) = ∥PA∥ and R3(P ) = d(P,BC ). Clearly, R2(P )
is maximized either at P = M or at P = I (one of which may be a local maximizer).
Note that ∠AMC = π−∠A −∠MC A = π−∠A −∠C /2 = π−π/2−π/8 = 3π/8. Since
∠M AI = π/4, it follows that △AM I is isosceles, and therefore ∥M A∥ = ∥I M∥. We
conclude that R2(P ) is maximized at P = I . At the same time, R3(P ) is clearly mini-
mized at P = I . Hence, argmaxP∈MF AQ R2(P )/R3(P ) = I .

Case 2, P ∈ MTU I : We have that R2(P ) = ∥PA∥ =
√(

a − 1
2

)2 + (
b − 1

2

)2
. Also, the

line passing through A,C has equationx+y−1 = 0, hence R3(P ) = d(P, AC ) =| a+b−1 |
/
p

2. Let f (a,b) = (R2(P )/R3(P ))2, and note that

∇ f (a,b) = 2
a −b

(a +b −1)3

(
2b −1
−2a +1

)
.

Observe that a < b, and that a+b−1 < 1, hence directions e1,−e2 are both increasing.
It follows that when P ∈ MTU I , ratio R2(P )/R3(P ) is maximized at P =U . At the same
time, point U lies on line x = 1/2, and easy calculations show that f (1/2,b) = 2 (that
is, the function is constant), concluding this case as well.

Case 3, P ∈ MF T : As before, we have R3(P ) = d(P, AC ) =| a +b −1 | /
p

2. The op-
timal strategy for R2(P ) is of LD-type. Let P ′ be the reflection of P around AB , that
is P ′ = (b, a). It follows that R2(P ) = d(P ′,BC ) = a, and therefore (R2(P )/R3(P ))2 =
2a2/(a+b−1)2. It is easy to see that the last ratio is at most 2, exactly when (b−1)(2a+
b −1) ≥ 0. Note also that b ≤ 1/2 < 1, hence it suffices to prove that 2a +b −1 ≤ 0 for
all P ∈ MF T .

In region MF T , curve MT is part of a parabola with directrix x = 0 and focus
A = (1/2,1/2), hence it has equation (y−1/2)2 = x−1/4. It follows that point P = (a,b)
satisfies (b −1/2)2 ≥ a −1/4. Since also P is on or below line segment AB (with line
equation y = x), it follows a ≥ b, whereas we also have a ≥ 0. So we consider the
following non-linear program

max{2a +b −1 : b ≤ a ≤ (b −1/2)2 +1/4, a ≥ 0},
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and we show that its value is bounded above by 0. Note the the objective is linear,
so the gradient is never the zero-vector. Therefore any optimizers are attained by
making some of the inequality constraints tight.

If a ≤ 0 becomes tight, then 2a+b−1 = b−1 ≤−1/2. If b ≤ a becomes tight, then
P = M , and that point was already considered in cases 1,2. It remains to examine
the case that constraint a ≤ (b −1/2)2 +1/4 is tight, that is when P lies in the curve
segment MT which is contained in region MTU I already considered in case 2.

Case 4, P ∈ F KU T : Again, we have R3(P ) = d(P, AC ) =| a+b−1 | /
p

2. The optimal
strategy for R2(P ) is now of DL-type. Let P ′′ be the reflection of P around BC , that is
P ′ = (a,−b). It follows that R2(P ) = d(P ′′, AC ) =| a+b | /

p
2. Taking into consideration

that a,b ≥ 0, and that a +b ≤ 1 (for any point P = (a,b), within ABC ), we have that
g (a,b) := (R2(P )/R3(P ))2 = (a +b)/(1−a −b), which we show next is at most

p
2.

Curve TU of region F KU T is part of a parabola with directrix the reflection of AB
around BC (that is line y = −x), and focus A = (1/2,1/2). Therefore the equation of
the parabola is (x−1/2)2+(y−1/2)2 = (x+y)2/2. We conclude that points P ∈ F KU T
satisfy (a−1/2)2 + (b−1/2)2 ≥ (a+b)2/2. At the same time we have that x ≤ 1/2, so it
suffices to prove that optimal value to non-linear program max{g (a,b) : (a −1/2)2 +
(b −1/2)2 ≥ (a +b)2/2, a ≤ 1/2} is at most

p
2.

To that end, we observe that ∂g (a,b)/∂a = 1/(1− a −b)2 ≥ 0, that is e1 is an in-
creasing direction. We conclude that optimizers of the previous optimization prob-
lem within F KU T happen either at line segment U K , or at curve segment TU .

As curve segment TU is contained within region MTU I (already considered in
case 2), it remains to examine the case that P lies in line segment U K , that is a = 1/2.
But then, g (1/2,b) = 1/(1/2− y)− 1, which is further maximized when y attains its
maximum value, i.e. when P coincides with point U , and that point was also consid-
ered in case 2.

⊓⊔
The next lemma shows that inf∆∈D R2,3(∆) ≥p

2.

Lemma 24. For any triangle∆ ∈D, let I denote its incenter. Then, we have R2(I )/R3(I ) ≥p
2.

Proof. Consider △ABC with largest angle C , and incenter I . Since I is equidistant
from all edges, and by Lemma 2, we have R3(I ) = d(I ,BC ). Moreover, since C ≥ π/3,
by Lemma 9, we have that R2(I ) = ∥IC∥. But then, since △ABC is non-obtuse, we
have C ≤π/2, and so

R2(I )

R3(I )
= ∥IC∥

d(I ,BC )
= 1

sin(C /2)
≥ 1

sin(π/4)
=p

2.

This finishes the proof of the lemma. ⊓⊔

6.3 Searching with 1 vs 2 Robots

Supremum Proof; 1 vs 2 Robots In this section we prove the following theorem.

Theorem 12. sup∆∈D R1,2(∆) = 3.
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As we show next, the lower bound for sup∆∈D R1,2(∆) is attained for the right
isosceles triangle (and for certain starting point). The upper bound is much easier
and is presented next.

Lemma 25. For any non-obtuse triangle∆ ∈D, and any starting point P ∈∆, we have
R1(P )/R2(P ) ≤ 3.

Proof. Consider a non-obtuse △ABC , and a point P . Without loss of generality, as-
sume that R2(P ) = max{d(P, AB),d(P, {BC ,C A})}. Note that for the R2(P ) solution,
one robot follows the optimal trajectory for visiting AB and the other follows the
optimal trajectory for visiting {BC ,C A}. Let Tc be the least expensive of the two tra-
jectories, and Te be the most expensive (and break ties arbitrarily if their costs are
equal).

It suffices to present a heuristic trajectory that one robot could follow that does
not cost more than 3R2(P ). Indeed, starting from P , first move along the cheapest tra-
jectory Tc and return to point P , followed by moving along Te . Clearly, this trajectory
visits all {AB ,BC ,C A}, and takes time

2min{d(P, AB),d(P, {BC ,C A})}+max{d(P, AB),d(P, {BC ,C A})},

which is at most 3max{d(P, AB),d(P, {BC ,C A})} = R2(P ). Since the optimal R1(P ) has
cost at most the cost of the heuristic solution, it follows that R1(P )/R2(P ) ≤ 3. ⊓⊔

In order to prove a matching upper bound, we present a non-obtuse triangle and
a starting point for which the optimal R1 trajectory is exactly the heuristic used in
the proof of Lemma 25. Indeed, the next lemma shows that sup∆∈D R1,2(∆) ≥ 3, and
together with the previous lemma imply Theorem 12.

Lemma 26. Let ABC be a right isosceles triangle with right angle A. Let also P be the
middle point of the altitude corresponding to angle A. Then, R1(P )/R2(P ) = 3.

Proof. Note that ∠A ≥ π/3, so starting point P lies in the intersection of angle A bi-
sector and the corresponding separating parabola. In particular R2(P ) = d(P,BC ) =
d(P, {AB , AC }) = ∥AP∥. Without loss of generality, we may assume that ∥BC∥ = 1, and
hence ∥AB∥ = ∥AC∥ = p

2/2, so that R2(P ) = 1/4. Note also that by Lemma 13, the
optimal R1 strategy is of LRD type. More specifically, using ∠A =π/2,∠B =∠C =π/4
and substituting in cost function gives R1(P ) = 3/4, and the claim follows.

⊓⊔

Infimum Proof; 1 vs 2 Robots In this section we prove the following theorem.

Theorem 13. inf∆∈D R1,2(∆) = 5/2.

The next lemma shows that inf∆∈D R1,2(∆) ≤ 5/2.

Lemma 27. Consider an equilateral triangle∆. Then, we have maxP∈∆R1(P )/R2(P ) =
5/2.
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Proof. We consider equilateral △ABC , with bisectors (and altitudes) AK ,BL,C M ,
and incenter I , see also Figure 27. Let also W be the intersection of ML with AK . By
symmetry, it is enough to show that maxP∈AM I R1(P )/R2(P ) = 5/2. Below we use the
R1 regions that are summarized in Lemma 6, and the R2 regions, that are summa-
rized in Corollary 2 and Corollary 4.

Fig. 27: Equilateral △ABC , and comparison of optimal R1,R2 strategies for arbitrary
starting points.

In particular, R1 and R2 regions are determined by the bisectors and points K ,L, M .
More specifically, consider the reflections C ′,P ′,B ′,P ′′ of C ,P,B ,P ′ around AB , AC , AC , AB ′,
respectively. We also assume that the triangle is in standard analytic form, i.e. we set
A = (p, q)T ,B = (0,0)T ,C = (1,0)T in a Cartesian system (here we treat points as col-
umn vectors so at to perform some linear algebra manipulation), where p = 1/2 and
q =p

3/2.

For every P ∈ AM I , the optimal R1 strategy is LRD-type, and hence R1(P ) = d(P ′′,BC ).
Note also that P ′′ is obtained by rotating P by 2π/3 with center A. Hence, if P = (a,b)T

we have that

P ′′ = R2π/3(P − A)+ A = R2π/3

((
a
b

)
−

(
p
q

))
+

(
p
q

)
.

Since also d(P ′′,BC ) equals the second coordinate of P ′′, we have that

R1(P ) = sin(2π/3)(a −p)+ (cos(2π/3)(b −q)+q =
p

3

2
(a −p)− 1

2
(b −q)+q.

For starting points P ∈ AM I , we have two cases regarding the cost of the optimal
R2 strategy. If P ∈ AMW , then we have R2(P ) = ∥PG∥ = b. If P ∈ M IW , then the
dominant cost for the R2 strategy is due to a robot that visits AB , AC . Note also that
d(P, {AB , AC }) = d(P, AC ′) = q −b. Overall, we have that for all P ∈ AM I

R2(P ) = max{b, q −b}.
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Combining the above, we have that

max
P∈AM I

R1(P )

R2(P )
= max

a,b

p
3

2 (a −1/2)− 1
2 (b −p

3/2)+p
3/2

max{b,
p

3/2−b}

(a≤1/2)≤ max
b

− 1
2 (b −p

3/2)+p
3/2

max{b,
p

3/2−b}

= 5

2
,

i.e. the maximum is attained at a = 1/2,b =p
3/4 which is point W . ⊓⊔

The next lemma shows that inf∆∈D R1,2(∆) ≥ 5/2.

Lemma 28. For any △ABC ∈D, let T be the middle point of the altitude correspond-
ing to the largest edge. Then, we have R1(T )/R2(T ) ≥ 5/2.

Proof. Without loss of generality, we assume that BC is the largest edge of non-
obtuse △ABC , hence ∠A is the largest angle. Consider the standard analytic rep-
resentation of ABC . By Lemma 4, we have that R2(T ) = d(T,BC ) = q/2, which can be
expressed by Observation 1 using only triangle angles. By Lemma 13, we also have
that the optimal strategy of R1(T ) is of LRD type and the cost is expressed as a func-
tion of the angles. But then, it is immediate that R1(T )/R2(T ) = 2− cos(2A) ≥ 5/2,
where the last inequality is due to that ∠A ≥π/3.

⊓⊔

7 Conclusions

We considered a new vehicle routing-type problem in which (fleets of) robots visit
all edges of a triangle. We proved tight bounds regarding visitation trade-offs with
respect to the size of the available fleet. In order to avoid degenerate cases of visiting
the edges with 3 robots, we only focused our study on non-obtuse triangles. The case
of arbitrary triangles, as well as of other topologies, e.g. graphs, remains open. We be-
lieve the definition of our problem is of independent interest, and that the study of
efficiency trade-offs in combinatorial problems with respect to the number of avail-
able processors (that may not be constant as in our case), e.g. vehicle routing type
problems, will lead to new, deep and interesting questions.
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