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Abstract

We study p-Faulty Search, a variant of the classic cow-path optimization problem, where a unit speed
robot searches the half-line (or 1-ray) for a hidden item. The searcher is probabilistically faulty, and
detection of the item with each visitation is an independent Bernoulli trial whose probability of success p
is known. The objective is to minimize the worst case expected detection time, relative to the distance of
the hidden item to the origin. A variation of the same problem was first proposed by Gal [28] in 1980.
Alpern and Gal [3] proposed a so-called monotone solution for searching the line (2-rays); that is, a
trajectory in which the newly searched space increases monotonically in each ray and in each iteration.
Moreover, they conjectured that an optimal trajectory for the 2-rays problem must be monotone. We
disprove this conjecture when the search domain is the half-line (1-ray). We provide a lower bound for all
monotone algorithms, which we also match with an upper bound. Our main contribution is the design and
analysis of a sequence of refined search strategies, outside the family of monotone algorithms, which we
call t-sub-monotone algorithms. Such algorithms induce performance that is strictly decreasing with t,
and for all p ∈ (0, 1). The value of t quantifies, in a certain sense, how much our algorithms deviate from
being monotone, demonstrating that monotone algorithms are sub-optimal when searching the half-line.

Key words and phrases: Linear Search, Online Algorithms, Competitive Analysis, Faulty Robot,
Probabilistic Faults.

1 Introduction

The problem of searching for a hidden item in a specified continuous domain dates back to the early 1960’s
and to the early works of Beck [8] and Bellman [9]. In its simplest form, a unit speed robot (that is, a mobile
agent) starts at a known location, the origin, in a known search-domain. An item, sometimes called the
treasure or the exit, is located (hidden) at an unknown distance d away from the origin, and it can be located
by the robot only if it walks over it. What is the robot’s trajectory that minimizes the worst case relative time
that the treasure is located, compared to d? This worst case measure of efficiency is known as the competitive
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ratio of the trajectory. Interestingly, numerous variations of the problem admit trajectories inducing constant
competitive ratios. In certain cases, for example, in the so-called linear-search problem where the domain is
the line, tight lower bounds are known that require elaborate arguments.

We consider p-Faulty Search (FSp), a probabilistic version of the classic linear-search problem in which
the hidden item lies in a half-line (or 1-ray), and the item is detected with constant probability p (with
independent Bernoulli trials) every time the robot walks over the item. This is a special case of a problem
first proposed by Gal [28], where the search-domain is the line (or 2-rays). Natural solutions to the problem
are so-called cyclic and monotone search patterns; that is, trajectories that process each direction periodically
and where the searched space in each direction expands monotonically. In [3], Alpern and Gal proposed
such a solution for searching 2-rays and they conjectured that an optimal trajectory must be cyclic and
monotone. Angelopoulos in [5] extended the upper bound results using cyclic and monotone trajectories for
searching m-rays. We prove that monotone trajectories are sub-optimal for searching a 1-ray. We do so first
by establishing a lower bound for all monotone algorithms to the problem (which we also match with an
upper bound), and second by designing a sequence of non-monotone trajectories inducing increasingly better
performance (and deviating increasingly from being monotone).

1.1 Related Work

Search-type problems are concerned with finding a specific type of information placed within a well specified
discrete or continuous domain. As a topic, it spans various sub-fields of Theoretical Computer Science and
has given rise to a number of book-length treatments [1, 3, 20, 40]. Applications range from data structures
and mobile agent computing, to foraging and evolution, among others, for example, see [2, 15, 33, 35, 39].

The problem of searching for a hidden item in one-dimensional domains was first proposed more than 50
years ago by Beck [8] and Bellman [9] in a Bayesian context. In the 1990’s, solutions to basic problem’s
variations were rediscovered, for example, see [7, 34]. Since then, several studies of various search-type
problems have resulted in an extensive literature. Below we give representative and selective examples, with
an attempt to cite relatively recent results. Variations of search-type problems that share many similarities
range from the type of search domain (for example, 1 or 2-dimensional [26, 32], d-dimensional grid [17],
cycle [37], polygons [22], graphs [6], grid [14], m-rays [12]), to the number of searchers (1 or more [36]), to
the criterion for termination (for example, search, evacuation [13], priority evacuation [19], fetching [30])
to the communication model (for example, wireless or face-to-face [18]) to the type of the objective (for
example, minimize worst case or average case [16]) to cost specs (for example, turning costs [25], cost for
revisiting [10]), to the measure of efficiency (for example, time, energy [23]) to the knowledge of the input
(none or partial [11]) and to other robots’ specs (for example, speeds [21], faults [31], memory [38]), just
to name a few. More recently, Fraigniaud et al. considered in [27] a Bayesian search problem in a discrete
space, where a set of searchers are trying to locate a treasure placed, according to some distribution, in one of
the boxes indexed by positive integers. Since it is outside the scope of this work to provide a comprehensive
list of the large related literature, we further refer the interested reader to [3, 4, 24, 29].

The version of linear search that we study, where the searcher is probabilistically faulty, was presented as
an open problem by Gal in [28]. Later in [3] (see chapter 8.6.2), Alpern and Gal provided a search strategy
when the search domain is a line. In particular, they considered cyclic search trajectories where the robot
alternates between searching each of the two directions, and each time monotonically increasing the searched
space. Among the same family of algorithms that moreover expand the searched space in each direction
geometrically, the authors provided the optimal trajectory. In addition, they conjectured that cyclic and
monotone trajectories are in fact optimal. Along the same lines, [5] studied cyclic and monotone trajectories
for searching m-rays. In a variation of the problem where the hidden item detections are not Bernoulli
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trials, [5] showed also that cyclic trajectories are in fact sub-optimal. For this and many other variations of
probabilistically searching, where the probability of success is not known, optimal strategies remain open.

1.2 Main Contributions & Paper Organization

We introduce and study p-Faulty Search (FSp), a variation of the classic linear-search (cow-path) problem,
in which the search space is the half-line, and detection of the hidden item (treasure) happens with known
probability p. We are interested in designing search strategies that induce small competitive ratio, as a
function of p; that is, that minimize the worst case expected detection time of the hidden item, with respect to
its placement d, relative to the optimal performance of an algorithm that knows in advance the location of the
item (so we normalize the expected performance both by d and p).

We focus on two families of search algorithms, which indicate that optimal solutions to FSp may be
particularly challenging to find. First, we study a natural family of algorithms, that we call monotone
algorithms, which intuitively are determined by non-decreasing turning points xi where searcher returns to
the origin before expanding the searched space. Given that turning points increase geometrically; that is,
when xi = bi, relatively straightforward calculations determine the optimal expansion factor b = b(p). In
fact, a simplified argument shows that in the cow-path problem (that is, when the search space consists of
2-rays and p = 1) the optimal expansion factor is b = 2. A more tedious argument (and one of our technical
contributions), as in the cow-path problem, shows that the aforementioned choice of geometrically increasing
xi’s for FSp is in fact optimal among the family of monotone algorithms. Our main technical contribution
pertains to the design and analysis of a family of algorithms that we call t-sub-monotone, which provide a
sequence of refined search strategies which induce competitive ratios that strictly decrease with t, for every
p ∈ (0, 1). Somehow surprisingly, our findings show that plain-vanilla, and previously considered, algorithms
for FSp are sub-optimal.

The organization of our paper is as follows. In Section 2, we define problem FSp formally, we introduce
measures of efficiency and we complement with preliminary and important observations. Section 3 studies
the special family of monotone search algorithms. In particular, in Section 3 we propose and analyze a
specific monotone algorithm where turning points increase geometrically. Section 3.2 contains one of our
technical contributions, in which we prove that the monotone algorithm presented in the previous section
is in fact optimal within the family. Our main technical contribution is in Section 4, which introduces
and studies the family of t-sub-monotone algorithms. Performance analysis of the family of algorithms
is presented in Section 4.1. In Section 4.2, we propose a systematic method for choosing parameters for
the t-sub-monotone algorithm with the objective to minimize their competitive ratio. Our formal findings
are evaluated in Section 4.3, where we demonstrate the sequence of strictly improved competitive ratios by
t-sub-monotone algorithms when t ≤ 10. As our proposed parameters for the algorithms are obtained as the
roots to high degree (Θ(t)) polynomials, are results, for the most part, cannot be described by closed formulas.
However, in Section 4.4, we selectively discuss heuristic choices of the parameters that induce nearly optimal
search strategies and whose performance can be quantified by closed formulas. We also quantify formally the
boundaries of t-sub-monotone algorithms, and we show that the competitive ratio of our 10-sub-monotone is
off additively by at most 10−6 from the best performance we can achieve by letting t grow arbitrarily. In the
final section, we conclude with open problems.
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2 Problem Definition and Preliminary Observations

In p-Faulty Searching on a Halfline (FSp) a speed-1 searcher (or robot) is located at the origin of the infinite
half-line. At unknown distance d bounded away from the origin, which bound we set arbitrarily to 1, there is
an item (or treasure) which is located/detected by the robot with constant and known probability p every time
the robot passes over it (that is, detection trials are mutually independent and each has probability of success
p). Also, for the sake of simplifying the analysis, we assume that the probability of detection becomes 1 if
the treasure is placed exactly at a point where the robot changes direction. As we will see later, the worst
placements of the treasure will be proven to be arbitrarily close to the turning points.

Given a robot’s trajectory T , probability p and distance d, the termination time ET (d) is defined as the
expected time that the robot detects the treasure for the first time. Feasible solution to FSp are robot’s
trajectories that induce bounded termination time (as a function of p, d) for all p ∈ (0, 1) and for all d ≥ 1.

Note that p is part of the input to an algorithm for FSp, while d is unknown. Hence, trajectories may
depend on p but not on d. It is also evident that for a robot’s trajectory to induce bounded termination time for
all treasure placements, the robot needs to visit every point of the half-line, past point 1, infinitely many times.
As it is also common in competitive analysis, we measure the performance of a search strategy relative to the
optimal offline algorithm; that is, an algorithm that knows where the treasure is. Since such an algorithm
needs to travel for time d to reach the treasure, as well as one would need 1/p trials, in expectation, before
detecting it, we are motivated to introduce the following measure of efficiency for search trajectories.

Definition 2.1. The competitive ratio of search strategy T for FSp is defined as CTp := supd≥1

{
pET (d)
d

}
.

Trajectory solutions (or search strategies) to problem FSp are in correspondence with infinite sequences
{ti}i≥0 of turning points, satisfying t0 = 0, ti ≥ 0, t2i+1 > t2i and t2i < t2i−1, for all i ≥ 0. Indeed such a
sequence {ti}i≥0 corresponds to the trajectory in which robot moves from t2i to t2i+1 (moving away from
the origin), and from t2i−1 to t2i (moving toward the origin), each time changing direction of movement,
where i = 1, 2, . . ..

For search strategy T and treasure location d (except from the turning points of T ), let fi denote the time
till the robot passes over the treasure for the i’th time. Since the probability of successfully detecting the
treasure is p, we have ET (d) =

∑∞
i=1 p(1− p)i−1fi. In what follows, we express the expected termination

time with respect to the additional time between two visitations of the treasure.

Lemma 2.2. Let f0 = 0, and let gi = fi − fi−1. We then have that ET (d) =
∑∞
i=1(1− p)i−1gi.
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Proof. Note that for each i we have fi =
∑i
j=1 gj . We then have that

ET (d) =
∞∑
i=1

p(1− p)i−1fi

=p
∞∑
i=1

(1− p)i−1
i∑

j=1
gj

=p
∞∑
j=1

gj

∞∑
i=j

(1− p)i−1

=p
∞∑
j=1

(1− p)j−1gj

∞∑
i=0

(1− p)i

=
∞∑
j=1

(1− p)j−1gj ,

and the proof follows.

3 Monotone Trajectories

We explore the simplest possible trajectories for FSp in which the searcher repeatedly returns to the origin
every time she changes direction during exploration and before exploring new points in the half-line. More
formally, monotone trajectories for FSp are search algorithms T = {ti}i≥1, defined as∗ t2i = 0, t2i+1 =
xi, i = 1, 2, . . . , where {xi}i≥1 is a strictly increasing sequence with xi →∞. Note that, in particular, we
allow xi = xi(p). The present section is devoted into determining the best monotone algorithm for FSp.
More specifically, we prove the following.

Theorem 3.1. The optimal monotone algorithm for FSp has competitive ratio 4+4
√

1−p
2−p − p.

The proof of Theorem 3.1 is given in the next two sections. In Section 3.1 we propose a specific monotone
algorithm with the aforementioned performance (see Lemma 3.3), while in Section 3.2 we show that no
monotone algorithm performs better (see Lemma 3.4). Somewhat surprisingly we show in Section 4 that the
upper bound of Theorem 3.1 is in fact sub-optimal.

3.1 An Upper Bound Using Monotone Trajectories

In this section we propose a specific monotone algorithm with the performance promised by Theorem 3.1. In
particular, we consider “restricted” trajectories determined by increasing sequences {xi}i≥1, where xi = bi

and b = b(p) > 1. Within this sub-family, we determine the optimal choice of b that induces the smallest
competitive ratio. For this, we first determine the placements of the treasure that induce the worst competitive
ratio, given a search trajectory. As stated before, in the following analysis we make the assumption that the
treasure is not placed at any turning point.

∗Alternatively, we could have defined monotone trajectories so as to return to location 1, instead of the origin, since we know that
d ≥ 1. Our analysis next shows that such a modification would not improve the competitive ratio.
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Lemma 3.2. Consider a monotone algorithm T , determined by the strictly increasing sequence {xi}i≥1. If
the treasure appears in interval (xr, xr+1), then the competitive ratio is no more than

2 p
xr

r∑
i=1

xi + 2 p
xr

∑
i≥1

(1− p)2i−1xr+i + p2

2− p.

Proof. Suppose that the treasure is located at point d = xr+y ∈ (xr, xr+1), where 0 < y < xr+1−xr. With
that notation in mind (see also Figure 1), we compute the time intervals gi between consecutive visitations, as
they were defined in Lemma 2.2. We have that

g1 = 2
r∑
i=1

xi + xr + y = 2
r∑
i=1

xi + d

g2i = 2(xr+i − xr − y) = 2(xr+i − d), i = 1, . . . ,∞
g2i+1 = 2xr + 2y = 2d, i = 1, . . . ,∞.

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑟𝑟 𝑥𝑥𝑟𝑟+1 𝑥𝑥𝑟𝑟+2 𝑥𝑥𝑟𝑟+3
𝑦𝑦

⋮

⋯

1
2
3
4
5

⋯� � � � � � �

Figure 1: Monotone algorithm {xi}i≥1. Figure also depicts the first 5 visitations of the treasure that is placed
at xr + y.

Therefore, by Lemma 2.2 the expected termination time ET (d) for algorithm T is

∞∑
i=1

(1− p)i−1gi = g1 +
∑
i≥1

(1− p)2i−1g2i +
∑
i≥1

(1− p)2ig2i+1

=
(

2
r∑
i=1

xi + d

)
+ 2

∑
i≥1

(1− p)2i−1(xr+i − d)

+ 2d

∑
i≥1

(1− p)2i


= 2

r∑
i=1

xi + 2
∑
i≥1

(1− p)2i−1xr+i + d

1− 2p
∑
i≥1

(1− p)2i−1


= 2

r∑
i=1

xi + 2
∑
i≥1

(1− p)2i−1xr+i + d
p

2− p.

Recall that the competitive ratio of this algorithm is pET (d)/d, and hence, in the worst case, d approaches xr
from the right.

We are now ready to prove the promised upper bound.

Lemma 3.3. The monotone trajectory T = {xi}≥1, where xi = bi and b := 1√
1−p(2−p−

√
1−p) has competi-

tive ratio 4+4
√

1−p
2−p − p.
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Proof. We study the restricted family of monotone trajectories T = {xi}≥1, where xi = bi, for some
b = b(p). By Lemma 3.2, the competitive ratio of search strategy T is at most

sup
r

2 p
br

r∑
i=1

bi + 2 p
br

∑
i≥1

(1− p)2i−1br+i + p2

2− p

 = sup
r

{
p

2b (br − 1)
br(b− 1) + p

2b(1− p)
1− b(1− p)2 + p2

2− p

}

= lim
r→∞

{
p

2b (br − 1)
br(b− 1) + p

2b(1− p)
1− b(1− p)2 + p2

2− p

}

=p 2b
b− 1 + p

2b(1− p)
1− b(1− p)2 + p2

2− p. (1)

Calculations above assume that b < 1/(1− p)2, as otherwise, the second summation is divergent. We will
make sure later that our choice of b complies with this condition. Note also that for xi to be increasing, we
need b > 1. Now, denote expression (1) by f(b). We will determine the choice of b that minimizes f(b),
given that 1 < b < 1/(1− p)2.

It is straightforward to see that d2

db2 f(b) = 4p
(

(1−p)3

1−(b(p−1)2)3 + 1
(b−1)3

)
, and hence, f(b) is convex when

b ∈
(
1, 1/(1− p)2). Hence, if d

dbf(b) has a root in
(
1, 1/(1− p)2), that would be a minimizer. Indeed,

d

db
f(b) = 2p

(
1− p

(1− b(1− p)2)2 −
1

(b− 1)2

)
has two roots 1√

1−p(±(2−p)−
√

1−p) , one being positive and one negative (for all values of p ∈ (0, 1)). We

choose the positive root, that we call bp, and it is elementary to see that 1 < bp < 1/(1 − p)2, for all
p ∈ (0, 1), as wanted. Substituting b = bp in (1) gives the competitive ratio promised by the statement of the
lemma.

3.2 Lower Bounds for Monotone Trajectories

This section is devoted to proving the following lemma.

Lemma 3.4. Every monotone trajectory has competitive ratio at least 4+4
√

1−p
2−p − p.

Consider an arbitrary monotone algorithm T = {fi}i≥0, where fi is a monotone sequence tending to
infinity, and which determines the turning points of the algorithm. Without loss of generality, we set f0 = 1,
as otherwise we may scale all turning points by f0. Our lower bound will be obtained by restricting the
placement of the treasure arbitrary close to (and ε > 0 away after) turning points fk (this may only result in a
weaker lower bound). Taking ε→ 0, we obtain that

gk1 = 2
k∑
i=0

fi + fk,

gk2i = 2(fk+i − fk),
gk2i+1 = 2fk,

where the superscript k of gki indicates exactly the placement of the treasure at fk. In what follows, and for a
fixed integer `, we define

α := 1
2 + 1

2− p −
c

2p, βi,k := (1− p)2(i−k)−1, for k + 1 ≤ i ≤ `, γ`,k := (1− p)2(`−k)+1

p(2− p) .
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We have the following lemma.

Lemma 3.5. Let c be the optimal competitive ratio that can be achieved by monotone trajectory T . For every
integer ` and for every 0 ≤ k ≤ ` we have that

k−1∑
i=0

fi + αfk +
∑̀
i=k+1

βi,kfi + γ`,kf` ≤ 0. (2)

Proof. If the treasure is placed arbitrarily close to turning point fk, then by Lemma 2.2, a lower bound to the
best possible competitive ratio c satisfies the following (infinitely many) constraints:

c ≥ p

fk

∞∑
i=1

(1− p)i−1gki , k = 0, . . . ,∞.

We next restrict our attention to the first `+ 1 such constraints, where ` is an arbitrary integer. Hence, we
require that

c ≥ p

fk

∞∑
i=1

(1− p)i−1gki , k = 0, . . . , `.

Now, multiply both hand-sides of the inequalities by fk/p to obtain

fk
c

p
≥
∞∑
i=1

(1− p)i−1gki = 2
k∑
i=1

fi + fk + 2
∞∑
i=1

(1− p)2i−1(fk+i − fk) + 2
∞∑
i=1

(1− p)2ifk

≥ 2
k∑
i=1

fi + fk + 2
`−k∑
i=1

(1− p)2i−1(fk+i − fk)

+ 2
∞∑

i=`−k+1
(1− p)2i−1(f` − fk) + 2fk

∞∑
i=1

(1− p)2i

= 2
k−1∑
i=1

fi + fk

(
3− 2

∞∑
i=1

(1− p)2i−1 + 2
∞∑
i=1

(1− p)2i
)

+ 2
∑̀
i=k+1

(1− p)2(i−k)−1fi + 2f`
(1− p)2(`−k)+1

p(2− p) .

We conclude that fkc/p is at least the last term above, so after rearranging the terms of the inequality, bringing
them all on one side, and factoring out the fi terms, we have that

k−1∑
i=0

fi +
(1

2 + 1
2− p −

c

2p

)
fk +

∑̀
i=k+1

(1− p)2(i−k)−1fi + (1− p)2(`−k)+1

p(2− p) f` ≤ 0,

as desired.

Recall that f0 = 1. Our lower bound derived in the proof of Lemma 3.4 is obtained by finding the
smallest c satisfying constraints (2), and in particular, inducing a strictly increasing sequence of fi in i. Note
that minimizing c subject to constraints (2) in variables f1, . . . , f`, c is a non-linear program. To obtain a
lower bound for c, we observe that the only negative coefficients of variables fi are those on the diagonal;
that is, the coefficient of fk in the k’th constraint. This allows us to apply repeatedly back substitution to
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obtain a lower bound for all fi and hence, c as well, assuming that the visiting points fi are increasing in i.
Equivalently, for the optimal c that an algorithm can achieve, we may treat (for the sake of the analysis) all
inequalities (2) as being tight, giving rise to the linear system

A`f = a, (3)

in variables fT = (f1, . . . , f`), where

A` :=



β1,0 β2,0 β3,0 . . . γ`,0 + β`,0
α β2,1 β3,1 . . . γ`,1 + β`,1
1 α β3,2 . . . γ`,2 + β`,2
1 1 α . . . γ`,3 + β`,3
...

...
... . . .

...
1 1 1 . . . γ`,`−1 + β`,`−1


, a :=



−α
−1
−1
−1
...
−1


.

Constraints (3) may be thought as the defining linear system on fi’s that give the optimal turning strategies,
assuming that the treasure can only be placed arbitrarily close and after any of the ` first turning points of
a search trajectory. In other words, given that any monotone algorithm is defined by a sequence of turning
points, these points can be chosen so as to minimize the competitive ratio with the assumption that the hidden
item will be nearly missed after each turning point. Having the competitive ratio be independent of the
treasure’s placement gives a lower bound to the competitive ratio of the algorithm. The proof of Lemma 3.4
follows directly from the following technical lemma.

Lemma 3.6. Linear system (3), in variables fi, defines a monotone sequence of turning points only if
c ≥ 4+4

√
1−p

2−p − p.

Proof. We proceed by finding a closed formula for f`−1 and then imposing monotonicity. Our first observation
is that for all 0 ≤ k ≤ ` − 1 we have that γ`,k + β`,k = (1−p)2(`−k)−1

(2−p)p . Setting r := 1
(2−p)p allows us to

rewrite the matrix of system (3) as

A` =



(1− p) (1− p)3 (1− p)5 . . . r(1− p)2`−1

α (1− p) (1− p)3 . . . r(1− p)2`−3

1 α (1− p) . . . r(1− p)2`−5

1 1 α . . . r(1− p)2`−7

...
...

... . . .
...

1 1 1 . . . r(1− p)


.

We proceed by applying elementary row operations to the system. From each row of A` (except the last one)
we subtract a (1− p)2 multiple of the following row to obtain linear system Ā`f = b̄, where

Ā` =



1− p− α(1− p)2 0 0 . . . 0 0
α− (1− p)2 1− p− α(1− p)2 0 . . . 0 0
1− (1− p)2 α− (1− p)2 1− p− α(1− p)2 . . . 0 0
1− (1− p)2 1− (1− p)2 α− (1− p)2 . . . 0 0

...
...

... . . .
...

...
1− (1− p)2 1− (1− p)2 1− (1− p)2 . . . 1− p− α(1− p)2 0

1 1 1 . . . α r(1− p)
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and b̄T = (−α+ (1− p)2,−1 + (1− p)2,−1 + (1− p)2,−1 + (1− p)2, . . . ,−1 + (1− p)2,−1). Now set

s := 1− p− α(1− p)2, t := α− (1− p)2, w := 1− (1− p)2,

and define `× ` matrix

C` :=



s 0 0 . . . 0 −t 0
t s 0 . . . 0 −w 0
w t s . . . 0 −w 0
w w t . . . 0 −w 0
...

...
... . . .

...
...

...
w w w . . . s −w 0
w w w . . . t −w 0
1 1 1 . . . 1 −1 r(1− p)


.

By Cramer’s rule we have that

f`−1 = det(C`)
det(A`)

.

Note that det(A`) =
(
1− p− α(1− p)2)`−1

r(1− p).
Next we compute det(C`). We denote the (`− 1)× (`− 1) principal minor of C` as B`−1. The last row

of B`−1 is (w,w, . . . , w, t,−w). We further denote by L`−1 the matrix we obtain from B`−1 by scaling its
last row by w so that it reads (1, 1, . . . , 1, t/w,−1). Finally, we denote by K`−1 the matrix we obtain by
replacing the last row of B`−1 by (1, 1, . . . , 1, 1,−1); that is, the all-1 row except from the last entry which
is -1. With this notation in mind, we note that

det(C`) = −r(1− p) det(B`−1) = −r(1− p)
w

det(L`−1).

Now expanding the determinants of K`−1, L`−1 with respect to their first rows we obtain the system of
recurrence equations

det(K`−1) = sdet(K`−2)− w det(L`−2),
det(L`−1) = sdet(K`−2)− tdet(L`−2).

We solve the first one with respect to det(L`−2) and we substitute to the second one to obtain the following
recurrence exclusively on K`

det(K`) + (t− s) det(K`−1) + s(w − t) det(K`−2) = 0.

The characteristic polynomial of the latter degree-2 linear recurrence has discriminant equal to

(t− s)2 − 4s(w − t) = 1
4
(
(2− p)2c2 + 2((p− 2)p+ 4)(p− 2)c+ p2((p− 4)p+ 12)

)
,

which in particular is a degree-2 polynomial g(c) in the competitive ratio c and has discriminant 4(2−p)2(1−
p).Since g(c) is convex, we conclude that the discriminant of the characteristic polynomial is non-negative
when c is larger than the largest root of g(c), that is when

c ≥ (4− (2− p)p)(2− p) + 4(2− p)
√

1− p
(2− p)2 = 4 + 4

√
1− p

2− p − p,

and the proof follows.
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4 Sub-Monotone Trajectories

For a fixed integer t, we consider a t-sub-monotone trajectory that is defined by a strictly increasing
sequence {xi}i≥1, where xi = βi for some β = β(p) > 1, and {γi}i=1,...,t (where γi = γi(p)) satisfying
1 < γ1 < γ2 < . . . < γt < β. For convenience, we introduce abbreviations γ0 = 1 and γt+1 = β. For
the formal description of the trajectory, we introduce the notion of a t-hop between consecutive points
xr, xr+1, see Algorithm 1, which is a sub-trajectory of the robot starting from xr and finishing at xr+1.
Given parameters γi and β, the t-suborigin trajectory is defined in Algorithm 2. The trajectory of the robot

1: for j = 1, . . . , t do
2: Move from γj−1xr to γjxr
3: Move from γjxr to γj−1xr
4: Move from γj−1xr to γjxr
5: end for
6: Move from γtxr to xr+1

Algorithm 1: t-Hop between xr, xr+1

1: Move from the origin to x1, then to the origin and then to x1.
2: for r = 1, . . . ,∞ do
3: Perform a t-hop between xr, xr+1.
4: Move from xr+1 to the origin
5: Move from the origin to xr+1
6: end for

Algorithm 2: t-Sub-Monotone Trajectory

performing a t-sub-monotone search is depicted in Figure 2 that shows a t-hop between points xr and xr+1.

𝛾𝛾1𝑥𝑥𝑟𝑟 𝛾𝛾2𝑥𝑥𝑟𝑟 𝛾𝛾3𝑥𝑥𝑟𝑟 𝛾𝛾𝑡𝑡−1𝑥𝑥𝑟𝑟 𝛾𝛾𝑡𝑡𝑥𝑥𝑟𝑟 𝑥𝑥𝑟𝑟+1

⋮

⋯ ⋯� � � � � � �⋯ 𝑥𝑥𝑟𝑟 𝛾𝛾𝑡𝑡−2𝑥𝑥𝑟𝑟

𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 𝐴𝐴𝑡𝑡−1 𝐴𝐴𝑡𝑡 𝐴𝐴𝑡𝑡+1

⋯

𝑦𝑦 𝑦𝑦 𝑦𝑦 𝑦𝑦 𝑦𝑦 𝑦𝑦

1
2
3

4
5

4
5

4
5

1
2
3 1

2
3 1

2
3

4
5

4
5

1
2
3 1

2
3

0 �

Figure 2: t-sub-monotone algorithm determined by turning points {xi}i≥1 and intermediate turning points
within hops γ1, . . . , γt. The figure also depicts all possible intervals Ai, i = 1, . . . , t+ 1 that the treasure can
lie within a t-hop between xr andxr+1. Possible placements of the treasure are depicted in every interval Ai,
along with the first five visitations of the treasure, except the last interval At+1 for which there are only three
visitations before the searcher returns to the origin.

Lemma 4.1. For any j, the time hj required for the t-hop xj → xj+1 is

hj := βj (β + 2γt − 3) =
(
βj+1 − βj

) β + 2γt − 3
β − 1 .
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Proof. The reader may consult Figure 2. The interval is traversed exactly three times, except from the interval
[γtβr, βr] which is traversed once. Hence, the time for a robot to move from βj to βj+1 is

3
(
βj+1 − βj

)
− 2

(
βj+1 − γtβj

)
= βj (β + 2γt − 3) .

The alternative expression is obtained by factoring out
(
βj+1 − βj

)
and is given for convenience.

Using the above, we compute the total time the robot needs to progress from the origin to βr + ε.

Lemma 4.2. For any sufficiently small ε > 0, the time needed for the robot to reach βr + ε for the first time
is equal to

βr
3β + 2γt − 3

β − 1 − 2βγt
β − 1 + ε.

Proof. The algorithm will perform a number of hops before returning to the origin after each hop. According
to Lemma 4.1, the total time for this trajectory is

3β +
r−1∑
j=1

hj + 2
r−1∑
j=1

βj+1 = 3β + (βr − β) β + 2γt − 3
β − 1 + 2

r−1∑
j=1

βj+1

= 3β + (βr − β) β + 2γt − 3
β − 1 + 2β (βr − β)

β − 1

= βr
3β + 2γt − 3

β − 1 − 2βγt
β − 1 ,

and the proof follows.

4.1 Performance Analysis of t-Sub-Monotone Trajectories

For the remainder of the paper, we introduce the following expressions:

A = 2(1− p), (4)

B = 2
β − 1 + 2(1− p)3

1− β(1− p)2 , (5)

C = 2p(1− p)3(2− p)β
1− β(1− p)2 , (6)

D = −2p4 + 12p3 − 26p2 + 23p− 4
2− p , (7)

E = 2p(1− p)(2− p)β
1− β(1− p)2 , (8)

F = p

(
2
(

β(1− p) + 1
(β − 1)(1− β(p− 1)2)

)
+ 5− 2p

2− p

)
, (9)

where, in particular, A = A(p), B = B(β, p), C = C(β, p), D = D(p), E = E(β, p), F = F (β, p). The
purpose of this section is to prove the following theorem.
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Theorem 4.3. For any i = 1, . . . , t+ 1 and given that the treasure lies in interval Ai := (γi−1xr, γixr), the
worst case induced competitive ratio Ri is given by the formula

Ri =

 p
(
Aγi+Bγt+C

γi−1
+D

)
, if i = 1, . . . , t

p
(
E
γt

+ F
)
, if i = t

An immediate consequence of Theorem 4.3 is that the best t-sub-monotone algorithm with expansion
factor β within consecutive t-hops and intermediate turning points γ1, γ2, . . . , γt is the solution (if it exists)
to optimization problem

min
β,γ1,...,γt

max {R1, R2, . . . , Rt, Rt+1} (10)

s.t. 1 < γ1 < . . . < γt < β < 1
(1−p)2 .

Alternatively, any solution β, γ1, . . . , γt which is feasible to (10) has competitive ratio maxi=1,...,t+1Ri.
The proof of Theorem 4.3 is given by Lemmas 4.6, 4.7 at the end of the current section. Towards

establishing the lemmas, we need to calculate the time between consecutive visitations of the treasure in
order to eventually apply Lemma 2.2 and compute the performance of a t-sub-monotone algorithm.

As we did previously and for the sake of simplifying the analysis, we assume that the treasure will
never coincide with a turning point γixj . Moreover, we assume that the treasure is placed at distance
di = γi−1xr + y from the origin, where 0 < y < (γi − γi−1)xr, for some i that we allow for the moment to
vary.

Since the treasure can be in any of these intervals, there are t+ 1 cases to consider when computing the
performance of the algorithm. Lemmas 4.4 and 4.5 concern different cases as to where the treasure is with
respect to internal turning points associated with γi.

Lemma 4.4. For any i = 1, . . . , t, suppose that the treasure is placed at distance di = γi−1β
r + y from the

origin, where 0 < y < (γi − γi−1)xr. We then have that

gs =



βr
(

2γt

β−1 − γi + 3γi−1
)
− 2βγt

β−1 + di, if s = 1
2γiβr − 2di, if s = 2
2y, if s = 3
2βr (β + γt)− 4di, if s = 4
2di, if s = 2j + 3 for some j ≥ 1
2βr+j (β + γt − 1)− 2di, if s = 2j + 4 for some j ≥ 1

Proof. For computing each of the gj’s we consult Figure 2.

g1 = βr
3β + 2γt − 3

β − 1 − 2βγt
β − 1 + 3(γi−1 − 1)βr + y (By Lemma 4.2)

= βr
(3β + 2γt − 3

β − 1 + 3(γi−1 − 1)
)
− 2βγt
β − 1 + y

= βr
( 2γt
β − 1 + 3γi−1

)
− 2βγt
β − 1 + y.

We derive that g2 = 2γiβr − 2di, that g3 = 2y, and that

g4 = 4 (γtβr − di) + 2
(
βr+1 − γtβr

)
= 2γtβr + 2βr+1 − 4di
= 2βr (β + γt)− 4di.
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After the fourth visitation of the treasure, an odd indexed visitation takes time 2di; that is, g2j+3 = 2di, for
all j ≥ 1. Finally, for every even indexed visitation after the 4th one we have, for each j ≥ 1, that

g2j+4 =
(
βr+j − di

)
+ hr+j +

(
βr+j+1 − di

)
= βr+j + βr+j+1 + βr+j (β + 2γt − 3)− 2di (by Lemma 4.1)

= 2βr+j (β + γt − 1)− 2di,

and the proof follows.

Lemma 4.5. Suppose that the treasure is placed at distance dt+1 = γtβ
r + y from the origin, where

0 < y < (β − γt)xr. We then have that

gs =


βr
(

2γt

β−1 + 3γt
)
− 2βγt

β−1 + y, if s = 1
2βr+1 − 2dt+1, if s = 2
2dt+1, if s = 2j + 1 for some j ≥ 1
2βr+j (β + γt − 1)− 2dt+1, if s = 2j + 2 for some j ≥ 1

Proof. For the first two visitations, the time elapsed is identical to the case where the treasure is in any of the
intervals Ai (see Figure 2). We only need to set i = t+ 1, in which case, by Lemma 4.4 we obtain g1, g2 as
claimed (recall that γt+1 = β). Any odd visitation thereafter will take additional time 2dt+1. Finally, every
even visitation thereafter is identical to the (large indexed) even visitations of Lemma 4.4, only that in the
currently examined case, the index of the visitations starts from four, instead of six.

We are now ready to prove Theorem 4.3 by proposing and proving Lemmas 4.6, 4.7, each of them
describing the worst case competitive ratio over all possible placements of the treasure.

Lemma 4.6. For any i = 1, . . . , t, and given that the treasure lies in interval Ai, the worst case induced
competitive ratio Ri is given by the formula Ri = p

(
Aγi+Bγt+C

γi−1
+D

)
.

Proof. Suppose that the treasure is placed at distance di = γi−1β
r + y from the origin, where 0 <

y < (γi − γi−1)xr. Let Ci denote the expected termination time in this case. As per Lemma 2.2, we
have that Ci =

∑∞
j=1(1 − p)i−1gj , and recall that the competitive ratio in this case will be given by

p supy,r Ci
di

= p supy,r Ci
γi−1xr+y . From the above and Lemma 4.4 it is immediate that the largest competitive

ratio is induced when y → 0 (and as it will be clear momentarily, when r →∞). Therefore, in what follows
we use di = γi−1β

r. We then have that
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Ci
di

= 1
di

g1 + (1− p)g2 + (1− p)3g4 +
∑
j≥1

(1− p)2j+2g2j+3 +
∑
j≥1

(1− p)2j+3g2j+4


= 1
γi−1

( 2γt
β − 1 + 3γi−1

)
− 2βγt
γi−1βr(β − 1) + 2(1− p)

(
γi
γi−1

− 1
)

+ 2(1− p)3
(
β + γt
γi−1

− 2
)

+ 2
∑
j≥1

(1− p)2j+2

+ 2
γi−1

(β + γt − 1)
∑
j≥1

(1− p)2j+3βj − 2
∑
j≥1

(1− p)2j+3

(r→∞)
≤ 2

γi−1

(
(1− p)γi + +

(
1

β − 1 + (1− p)3

1− β(1− p)2

)
γt + p(1− p)3(2− p)β

1− β(1− p)2

)

+ −2p4 + 12p3 − 26p2 + 23p− 4
2− p ,

and the proof follows.

Lemma 4.7. Given that the treasure lies in interval At+1, the worst case induced competitive ratio Rt+1 is
given by the formula Rt+1 = p

(
E
γt

+ F
)

.

Proof. We invoke Lemma 2.2, which together with Lemma 4.5 allows us to compute the expected termination
time Ct+1. Calculations are similar to the proof of Lemma 4.6, and in particular, the worst competitive ratio
Rt+1 is induced when y → 0; that is, when dt+1 → γtβ

r, and when r →∞. More specifically,

sup
r,y

Ct+1
dt+1

= sup
r,y

1
dt+1

g1 + (1− p)g2 +
∑
j≥1

(1− p)2jg2j+1 +
∑
j≥1

(1− p)2j+1g2j+2


=
( 2
β − 1 + 3

)
+ 2(1− p)

(
β

γt
− 1

)
+ 2

∑
j≥1

(1− p)2j + 2β + γt − 1
γt

∑
j≥1

(1− p)2j+1βj − 2
∑
j≥1

(1− p)2j+1

= 2
γt

p(1− p)(2− p)β
1− β(1− p)2 + p

(
2 β(1− p) + 1

(β − 1) (1− β(1− p)2) + 5− 2p
2− p

)
,

and the proof follows.

4.2 Choosing Efficient t-Sub-Monotone Trajectories

The purpose of this section is to propose a method for choosing parameters β, γ1, . . . , γt of a t-sub-monotone
algorithm which are feasible to (10), hence, inducing competitive ratio maxi=1,...,t+1Ri. The main idea of our
approach is to treat the induced competitive ratio as an unknown R, and then impose, for all i = 1, . . . , t+ 1,
that Ri = R. The choices of γi are solutions to a recurrence relation. From numerical calculations, we know
that our method proposes optimal solutions to (10), where in particular, all strict inequality constraints are
satisfied with slack. However, a proof of optimality is not evident.
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For the values of A(p), B(p, β), C(p, β), D(p), E(p, β), F (p, β) as defined in (4)-(9), we provide a way
of obtaining t-sub-monotone algorithms by solving one non-linear equation. To this end, we also introduce
abbreviations:

x := R/p−D
A

, y :=
B E

R/p−F + C

A
,

where in particular x = x(p,R) and y = (p, β,R) (the fact that x is independent of β will be used later).
Moreover, we introduce the concept of the t-characteristic polynomial of a pair (p,R), which is the degree-2
polynomial q0 + q1β + q2β

2 where q0 = q0(p,R, t), q1 = q1(p,R, t), q2 = q2(p,R, t) are defined as

q0 =
(
p2(2p((p− 6)p+ 12)− 17)− (p− 2)R

) (
p2 + (p− 2)R

)
xt (11)

q1 =2(p− 2)4(p− 1)p3(R− p) + xt× (12)(
(p(p(2p(p(2p− 19) + 74)− 297) + 308)− 134)p4

−2(p− 2)(p(p((p− 8)p+ 25)− 35) + 20)p2R− (p− 2)2((p− 2)p+ 2)R2
)

q2 =(p− 1)
(
2(p− 2)4p3(3p−R) (13)

−(p− 1)
(
p2(2p− 5)− (p− 2)R

) (
(2(p− 4)p+ 9)p2 + (p− 2)R

)
xt
)

Note that the discriminant of the t-characteristic polynomial of a pair (p,R) is a rational function of p,R
(where the numerator and denominator are polynomials of degree Θ(t)), and hence, a function exclusively of
R, for every fixed p.

Given p ∈ (0, 1), we say that pair (β,R) is feasible if

x− y − 1 > 0, (14)

β − E

R/p− F
> 0. (15)

As we shall see, constraints above guarantee that β is a valid expansion factor, and that the last turning point
of a sub-monotone algorithm happens before a t-hop is completed. We will also require that(

1− y

x− 1

)
xt + y

x− 1 −
E

R/p− F
= 0. (16)

As the treasure could be located in any of the t+ 1 sub-intervals associated with a t-hop, constraint (16) will
guarantee that the competitive ratio is independent of that placement. Our main theorem is the following.

Theorem 4.8. Fix p ∈ (0, 1), and let R ≥ 3 be such that the discriminant of the t-characteristic polynomial
of pair (p,R) is equal to 0. Let β = −q1/2q2 and suppose that pair (β,R) is feasible. We also set
γi =

(
1− y

x−1

)
xi + y

x−1 , i = 1 . . . , t. We then have that β, γ1, . . . , γt is a t-sub-monotone algorithm with
competitive ratio R for problem FSp.

The main ingredient for proving Theorem 4.8 is the following lemma.

Lemma 4.9. For some p ∈ (0, 1), consider values of t, R, β satisfying constraint (16). If additionally,
the pair (β,R) is feasible, then R is the competitive ratio of a t-sub-monotone trajectory with parameters
β, γ1, . . . , γt for problem FSp, where γi =

(
1− y

x−1

)
xi + y

x−1 , i = 1 . . . , t.
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Proof. By Theorem 4.3, the best t-sub-monotone algorithm is determined by parameters γ1, γ2, . . . , γt, β
that minimize max {R1, R2, . . . , Rt, Rt+1}, subject to that 1 < γ1 < . . . < γt < β < 1

(1−p)2 . The bound on
β guarantees convergence of the expected termination time. We attempt to find a solution to the optimization
problem above by requiring that

R1 = R2 = . . . = Rt = Rt+1.

Denote the value of the optimal solution by R, and suppose that it is realized by parameters γ1, γ2, . . . , γt, β.
By Lemma 4.7, we have that

γt = E

R/p− F
(17)

We then have that by Lemma 4.6 and solving for γi we obtain that for each i = 1, . . . , t

γi = R/p−D
A

γi−1 −
Bγt + C

A

(17)= R/p−D
A

γi−1 −
B E

R/p−F + C

A
,

with the understanding that γ0 = 1. Hence, the recurrence relation for γi gives

γi =
(

1− y

x− 1

)
xi + y

x− 1 , i = 1 . . . , t.

The last expression for γi, when i = t should agree with (17). It is straightforward to see that since R ≥ 3,
we obtain that x > 1 > 0. So condition γi > γi−1 translates into that x− y > 1, which also guarantees that
γ1 > 1. Finally, the last condition asserts that γt < β.

Theorem 4.8 suggests that in order to obtain an efficient t-sub-monotone algorithm with parameters
β, γ1, . . . , γt, we need to minimize R subject to constraint (16) (and to the associated strict inequality
constraints). Ideally, we would like to find all roots to the associated (at least) degree-t polynomial in R, and
identify the minimum root that complies with the remaining feasibility conditions. The task is particularly
challenging (from a numerical perspective), since that polynomial’s coefficients depend also on the unknown
value β. To bypass this difficulty, and for fixed p, t, we define intuitive values of R, β that always satisfy
the constraint, for which we need to check separately that they induce valid search trajectories (which is
established by checking the two strict inequalities). Numerical calculations suggest that this heuristic choice
of R, β is the optimal one, but a proof is eluding us. Nevertheless, the choice of R, β is valid, which is
summarized by the statement of Theorem 4.8 and which we are ready to prove next.

Proof of Theorem 4.8. Expression (16) is a rational function on β. Tedious (and software assisted symbolic
calculations) show that the numerator of that rational function is the t-characteristic polynomial q0+q1β+q2β

2

of pair (p,R). If R is such that the discriminant of that polynomial is equal to 0, then −q1/2q2 is a root to the
polynomial, and hence, constraint (16) is satisfied for the values of p,R, β, t. Since pair (β,R) is feasible,
all preconditions of Lemma 4.9 are satisfied, and hence, β, γ1, . . . , γt is a t-sub-monotone algorithm with
competitive ratio R for problem FSp.

We observe that Theorem 4.8 computes exactly the best monotone algorithm of Lemma 3.3. In other
words, the 0-sub-monotone we propose above is the optimal monotone algorithm we have already studied.
Indeed, the discriminant of the 0-characteristic polynomial of (p,R) equals

(p− 2)2p2(p(p(17− 2p((p− 6)p+ 12)) +R)− 2R)2
(
(p+R)

(
(p− 2)2R+ p((p− 4)p+ 12)

)
− 16R

)
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The two roots of the right-hand-side factor above is a degree-2 polynomial in R with roots 4±4
√

1−p
2−p − p,

one of which (the only one which is at least 3) being exactly the competitive ratio calculated by Lemma 3.3.
Moreover, setting β = −q1/2q2 gives the same value of the expansion factor, which is denoted by b in
Lemma 3.3.

4.3 Numerical Computation of t-Sub-Monotone Trajectories, t ≤ 10

We summarize the numerical results we obtain by invoking Theorem 4.8 for t = 1, . . . , 10, obtaining
t-sub-monotone algorithms that induce better and better competitive ratios. For each t and (enough many)
p ∈ (0, 1) we compute the smallest root R = R(p, t) at least 3 of the t-characteristic polynomial, and the
associated value of the expansion factor β = β(p, t). For every pair (β,R) we verify that the induced values
of γi do define a feasible search trajectory by showing that pair (β,R) is feasible. Note that constraints (14)
and (15) guarantee that β is a valid expansion factor, and that the intermediate turning points of a t-hop are
well defined, assuming that the worst case competitive ratio is the same in all subintervals of a t-hop, as
required by constraint (16).

The improvement in the competitive ratio, when t = 1, . . . , 4 is apparent from a plot of the competitive
ratio as a function of p, see Figure 3. Figure 4 displays the behavior of the expansion factors β. Finally,
Figures 5 and 6 confirm that the proposed solution is valid (by checking constraints (14) and (15)), or in
other words that the reported competitive ratio of Figure 3 is correct. The horizontal axis in all figures is
probability p. The vertical axis is explained in detail in each of the captions.

0.2 0.4 0.6 0.8 1.0
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3.4

3.6

3.8

4.0

Figure 3: The vertical axis shows the behavior
of the achieved competitive ratio Rt = Rt(p)
of various t-sub-monotone algorithms. Purple
line corresponds to the monotone algorithm of
Lemma 3.3; that is, when t = 0. The subsequent
improvements for t = 1, 2, 3, 4 are shown in col-
ors blue, yellow, green and red, respectively.
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Figure 4: Figure depicts the behavior of the pro-
posed expansion factors βt = βt(p) for various
values of t, as a function of p ∈ (0, 1) (horizon-
tal axis), that induce the competitive ratios Rt
depicted in Figure 3. For the sake of better com-
parison, the vertical axis is βt(1− p)2 − (1− p),
which also shows that each expansion factor is
more than 1 and less that 1/(1 − p)2. Colors
blue, yellow, green and red correspond to t-sub-
monotone algorithms t = 1, 2, 3 and 4, respec-
tively.
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Figure 5: This figure shows why the choices
of βt(p) of Figure 4, that induce the competitive
ratios Rt(p) of Figure 3, satisfy constraint (14)
as required by Theorem 4.8. Recall that x, y
are functions of p,Rt, βt. For the sake of better
comparison, the vertical axis corresponds to (x−
y − 1)p(1 − p). Colors blue, yellow, green and
red correspond to t-sub-monotone algorithms t =
1, 2, 3 and 4, respectively.
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Figure 6: This figure shows why the choices
of βt(p) of Figure 4, that induce the competitive
ratios Rt(p) of Figure 3, satisfy constraint (15),
as required by Theorem 4.8. Recall that E,F
are functions of p,Rt, βt. For the sake of bet-
ter comparison, the vertical axis corresponds to(
βt − E

Rt/p−F

)
(1 − p)2. Colors blue, yellow,

green and red correspond to t-sub-monotone al-
gorithms t = 1, 2, 3 and 4, respectively.

For values t = 5, . . . , 10 we need to deploy heuristic comparisons in order to display the behavior of the
achieved competitive ratio, along with the corresponding expansion factor (this is due to that improvements
are negligible, even though strictly positive). Figure 7-left compares the achieved competitive ratios. Figure 7-
middle displays the relative behavior of the expansion factors. Finally, Figure 7-right shows why the proposed
solution satisfies constraint (14) of Theorem 4.8. As for constraint (15), numerical calculations suggest that
expression β − E

R/p−F remains nearly invariant for t ≥ 5, and hence, showing the behavior for t = 5, . . . , 10
results in a degenerate figure where all curves nearly coincide (see also Figure 6, where expressions for
t = 3, 4, green and red respectively, are already very close to each other). The horizontal axis is always
probability p ∈ (0, 1), while different t-sub-monotone algorithms are displayed with different colors. The
values of the vertical axes are described in the corresponding captions.

4.4 Some Closed Formulae & the Case t→∞

As already discussed, we conjecture that the t-sub-monotone algorithms derived by Theorem 4.8 are optimal
solutions to optimization problem (10), even though our conjecture does not compromise the correctness
of our algorithms for problem FSp. Nevertheless, a disadvantage of our approach, and in general of t-sub-
monotone algorithms, is that our choices of parameters β, γ1, . . . , γt do not admit closed form descriptions
as functions of p. In this section, we deviate from our goal to determine the best possible t-sub-monotone
algorithms, and we present specific choices of parameters β, γ1, . . . , γt with closed formulas which induce
nearly optimal competitive ratios.

Apart from our monotone trajectories, all our positive results were summarized in Section 4.3 and were
based on numerical, and computer assisted, calculations. In light of Theorem 4.8, it is immediate that closed
formulas for the achieved competitive ratios of t-sub-monotone algorithms do not exist. An exception, apart
from the degenerate case t = 0, is the case t = 1. In particular, the discriminant of the 1-characteristic
polynomial of pair (p,R) can be factored in two polynomials in R of degree 4 and of degree 2. One of
the roots to the degree-4 polynomial is the competitive ratio of the 1-sub-monotone algorithm (as also per
Theorem 4.8). Hence, the achieved competitive ratio R of the 1-sub-monotone algorithm, along with the
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Figure 7: The figures summarize the behavior of t-sub-monotone algorithms for t = 5, 6, 7, 8, 9, 10, see
colors blue, yellow, green, red, purple and brown, respectively. All the horizontal axes correspond to
p ∈ (0, 1). - Left figure displays the behavior of the achieved competitive ratio Rt. For each t = 5, . . . , 10,
the vertical axis corresponds to the scaled marginal improvements 4t−5(Rt−1−Rt) between two consecutive
values of t, which show that the competitive ratio does improve with t, still the improvement is increasingly
negligible. The scalar was introduced so that the competitive ratios can be displayed together. - Middle
figure displays the behavior of the expansion factors βt that give rise to competitive ratios Rt. For each
t = 5, . . . , 10, the vertical axis is the scaled relative change (1 − p)11−t(βt − βt−1)/βt, where the scalar
was introduced to improve comparison. - Right figure shows that the values of βt, Rt chosen, as per the left
and middle figures, do indeed satisfy constraint (14) of Theorem 4.8. The horizontal axis corresponds to
(x− y − 1)p(1− p)4t−5, where the scalars were introduced so that plots are comparable.

corresponding expansion factor β (depicted in Figures 3,4, respectively) admit closed formulas, even though
they are enormous. Nevertheless, we show in the next theorem how to obtain an 1-sub-monotone and nearly
optimal algorithm with performance and expansion factor that admit elegant closed formulas (see Figure 8-left
for comparison to the 1-sub-monotone algorithm of Theorem 4.8). Note that Theorem 3.1 combined with
Theorem 4.10 below show provably, and not (computer-assisted and) numerically, that monotone algorithms
are strictly sub-optimal for FSp, for all p ∈ (0, 1).
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Figure 8: Figures depict the performance of t-sub-monotone algorithms (t = 1, 2) with expansion factors
β = 1/(1 − p), as a function of p ∈ (0, 1). - Left Figure shows the difference between the competitive
ratio achieved by Theorem 4.10 and the competitive ratio of the 1-sub-monotone algorithm induced by
Theorem 4.8. - Middle Figure shows the behavior of the intermediate turning point γ1 of the 1-Hop of
1-sub-monotone algorithm, compared to expansion factor β. The vertical axis equals γ1/β = γ1(1 − p),
which is shown to be at most 1, as wanted. - Right Figure shows the difference between the competitive
ratio achieved by a heuristic 2-sub-monotone algorithm using β = 1/(1− p) and the competitive ratio of the
1-sub-monotone algorithm induced by Theorem 4.8.

Theorem 4.10. There is a 1-sub-monotone algorithm for FSp with competitive ratio

R =
√

(p− 2)(p− 1)(p(p(4p− 3) + 5) + 2) + 4
2− p − (2− p)p,
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and expansion factor β = 1/(1− p).

Proof. We fix β = 1/(1− p) and invoke constraint (16), so as to force that the competitive ratio does not
depend on which subinterval the treasure is placed within a 1-Hop of the 1-sub-monotone-algorithm. The
constraint then becomes

1
2

(
R

p− p2 + p− 4
p2 − 3p+ 2 −

4((p− 1)p+ 2)(p− 2)2

p(p(2p− 9)−R+ 12) + 2(R− 4)

)
= 0,

which, solved for R, gives the promised competitive ratio.
As for the turning point γ1 of the 1-Hop, it can be computed as E

R/p−F and in order to be valid, it has to
be positive and at most β = 1/(1− p). This is verified in Figure 8-middle.

Similar to Theorem 4.10, it is possible to identify a 2-sub-monotone algorithm with nearly optimal
solution. Indeed, choosing again β = 1/(1− p) and for t = 2, constraint (16) becomes

1
4

(
R2

(p− 1)2p2 −
8
(
(p((p− 5)p+ 10)− 7)p2 + 4

)
(p− 2)2

p(p(p(2p− 9)−R+ 12) + 2(R− 4))

−4p2 + p(p(−4(p− 7)p− 71) + 72)− 16
(p2 − 3p+ 2)2 − 2(p((p− 6)p+ 13)− 11)R

(p− 2)(p− 1)2 + 10p− 16
p

)
= 0,

which can be converted into a degree-3 polynomial equation in R. The real root of that polynomial is the
competitive ratio of a 2-sub-monotone algorithm, whose performance compared to the competitive ratio
induced by Theorem 4.8 is shown in Figure 8-right.

We now turn our attention to the best competitive ratio we can achieve by t-sub-monotone algorithms
if we allow t to grow. By Section 4.3, and in particular Figure 7, we know that the additive improvement
in the competitive ratio, at least when t ≤ 10, reduces almost by a factor of 4 between consecutive values
of t. Interestingly, we can determine the limit Rt as t → ∞. The key observation is that if for some p,R
we have that x(p,R) is bounded away from 1, then xt would be dominant in constraint (16). Equivalently,
the t-characteristic polynomial of pair (p,R) (see also (11), (12), (13)) would converge, as t grows, to the
polynomial xt

(
q̄0 + q̄1β + q̄2β

2), where

q̄0 =
(
p2(2p((p− 6)p+ 12)− 17)− (p− 2)R

) (
p2 + (p− 2)R

)
q̄1 =

(
(p(p(2p(p(2p− 19) + 74)− 297) + 308)− 134)p4

−2(p− 2)(p(p((p− 8)p+ 25)− 35) + 20)p2R− (p− 2)2((p− 2)p+ 2)R2
)

q̄2 =− (p− 1)2
(
p2(2p− 5)− (p− 2)R

) (
(2(p− 4)p+ 9)p2 + (p− 2)R

)
The discriminant of the polynomial would then become q̄2

1 − 4q̄0q̄2 which is a degree 4 polynomial in
R. Therefore, its four roots can be computed by closed formulas. Numerical calculations show that the
polynomial in R has two imaginary roots (for every p ∈ (0, 1)), one real root less than 1 and one root at least
3, which we denote by R̄ = R̄(p). By Theorem 4.8, R̄ would be the limit of the competitive ratios achieved
by t-sub-monotone algorithms, assuming that the sequence of (βt, Rt) is feasible.

In Figure 9-left we compare R̄ against the 10-sub-monotone algorithm we established before, showing
this way that the improvement we can achieve against monotone algorithms is well illustrated in Figure 3.
Indeed, Figure 9-left shows that already when t = 10 the achieved competitive ratio is within less that
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10−6 additively off from the best competitive ratio we can achieve if we let t grow, for every p ∈ (0, 1).
Next, Figure 9-middle shows that x(p, R̄) is bounded away from 1 for all p ∈ (0, 1) and for the computed
value R̄, therefore, R̄ is the limit of values Rt that makes the discriminant of the t-characteristic polynomial
equal to 0. Finally, Figure 9-right shows that pair (β̄, R̄), where β̄ = −q̄1/2q̄2 satisfies constraint (15). As
for constraint (14), we have that x(p,Rt) − y(p, βt, Rt) → 1 as t → ∞, which was implied by that the
discriminant of q̄0 + q̄1β + q̄2β

2 is 0.
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Figure 9: Figures summarize properties of the limit of pair (βt, Rt), as defined by Theorem 4.8, and as
t tends to infinity. All the horizontal axes correspond to p ∈ (0, 1). - Left figure displays the behavior of
R10 − R̄, that is the difference between the achieved competitive ratio of the 10-sub-monotone algorithm
of Theorem 4.8 and the ratio R̄ one can achieve for arbitrary large values of t. - Middle figure displays
the behavior x(p, R̄), as a function of p, according to which x(p, R̄) > 4 for all p ∈ (0, 1), and hence, it
is bounded away from 1 as wanted. - Right figure shows that the pair (β̄, R̄) satisfies constraint (15). The
vertical axis corresponds to

(
β̄ − E

R̄/p−F

)
(1− p)2.

5 Discussion and Open Problems

We studied p-Faulty Search (FSp), a search problem on a 1-ray, where the searcher is probabilistically faulty
with known probability 1− p. Our main contribution pertains to the disproof of a conjecture that optimal
trajectories for such problems are monotone. Whether the same conjecture is wrong for searching m-rays,
and in particular, the line (m = 2) remains an open problem. When it comes to searching the half-line, all
our algorithms have competitive ratio at least 4 when p→ 0 and at least 3 when p→ 1. The value of 3 is
provably a lower bound to any search strategy since the searcher has to return at least once close to the origin
before attempting for a second time an expansion of the searched space. No other general lower bound is
known for the problem, whereas all our algorithms have competitive ratio at least 4 − p. Is 4 − p a lower
bound to any algorithm for FSp, and if yes can this be matched by an upper bound? We conjecture that the
lower bound is valid, as well as that our t-sub-monotone algorithms are sub-optimal.
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