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Abstract

In this paper, we study the clustering properties of the Spatial Preferential Attachment (SPA)

model introduced by Aiello et al. in 2009. This model naturally combines geometry and preferential

attachment using the notion of spheres of influence. It was previously shown in several research

papers that graphs generated by the SPA model are similar to real-world networks in many aspects.

Also, this model was successfully used for several practical applications. However, the clustering

properties of the SPA model were not fully analyzed. The clustering coefficient is an important

characteristic of complex networks which is tightly connected with its community structure. In

the current paper, we study the behaviour of C(d), which is the average local clustering coefficient

for the vertices of degree d. It was empirically shown that in real-world networks C(d) usually

decreases as d−a for some a > 0 and it was often observed that a = 1. We prove that in the SPA

model C(d) decreases as 1/d. Furthermore, we are also able to prove that not only the average

but the individual local clustering coefficient of a vertex v of degree d behaves as 1/d if d is large

enough. The obtained results further confirm the suitability of the SPA model for fitting various

real-world complex networks.

Keywords: graph theory; complex networks; spatial preferential attachment; local clustering

coefficient

1 Introduction

The evolution of complex networks attracted a lot of attention in recent years. Empirical studies

of different real-world networks have shown that such networks have some typical properties: small

diameter, power-law degree distribution, clustering structure, and others (Costa et al. 2007; Newman

2003b). Therefore, numerous random graph models have been proposed to reflect and predict such
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quantitative and topological aspects of growing real-world networks (Boccaletti et al. 2006; Bollobás

and Riordan 2003).

The most well studied property of complex networks is their vertex degree distribution. For the

majority of studied real-world networks, the degree distribution follows a power law with a parameter

γ which usually belongs to (2, 3) (Barabási and Albert 1999; Faloutsos et al. 1999; Newman 2005).

Another important property of real-world networks is their clustering (or community) structure.

The presence of such structure highly affects many processes occurring in networks like promotion of

products via viral marketing or the spreading of computer viruses and infection diseases. One way

to characterize the presence of clustering structure is to measure the clustering coefficient, which is,

roughly speaking, the probability that two neighbours of a vertex are connected. There are two well-

known formal definitions: the global clustering coefficient and the average local clustering coefficient

(see Section 3 for definitions). At some point, it was believed that for many real-world networks both

the average local and the global clustering coefficients tend to non-zero limit as the network becomes

large; for example, some numerical values can be found in Newman (2003b); however, this statement

for the global clustering coefficient is questionable and recently some contradicting theoretical results

were presented in Ostroumova Prokhorenkova (2016).

In this paper, we mostly focus on the behaviour of C(d), which is the average local clustering

coefficient for the vertices of degree d. The function C(d) gives a better insight into the network

structure than just the average clustering coefficient. It was empirically shown that in real-world

networks C(d) usually decreases as d−ψ for some ψ > 0 (Csányi and Szendrői 2004; Leskovec 2008;

Serrano and Boguná 2006a; Vázquez et al. 2002). In particular, for many studied networks, C(d)

scales as d−1 (Ravasz and Barabási 2003). Moreover, it was shown in Serrano and Boguná (2006a,b)

that the behaviour of C(d) is tightly connected to the notion of weak and strong transitivity, which,

in turn, affects percolation properties of a network.

We study the clustering properties of the Spatial Preferential Attachment (SPA) model introduced

in Aiello et al. (2009). This model combines geometry and preferential attachment; the formal defi-

nition is given in Section 2.1. It was previously shown that graphs generated by the SPA model are

similar to real-world networks in many aspects. For example, it was proven in Aiello et al. (2009) that

the vertex degree distribution follows a power law. Also, this model was successfully used for several

practical applications like the analysis of a duopoly market (Kamiński et al. 2017). More details on

the properties and applications of the SPA model are given in Section 2.2. However, the clustering

coefficient C(d), which is an extremely important characteristic, was not previously analyzed for this

model. Some basic clustering properties of the closely related model were analyzed: it is proved in

Jacob and Mörters (2013) and Jacob et al. (2015) that the average local clustering coefficient con-

verges in probability to a strictly positive limit; also, the global clustering coefficient converges to

a nonnegative limit, which is nonzero if and only if the power-law degree distribution has a finite

variance.

A short version of this article was published as a conference proceeding (Iskhakov et al. 2018) and

was mostly focused on the behaviour of the clustering coefficient on simulated graphs. In the current
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paper we provide a thorough theoretical analysis of the asymptotic properties of the SPA model.

However, we also include some empirical results from (Iskhakov et al. 2018) to illustrate the obtained

theoretical counterparts.

The rest of the paper is organized as follows. In the next section we define the SPA model and

discuss its properties. Then, in Section 3, we define the local clustering coefficient. The obtained

theoretical results are discussed in Section 4 and illustrated on simulated graphs in Section 5. All

proofs are given in Section 6. Section 7 concludes the paper.

2 Spatial Preferential Attachment model

2.1 Definition

This paper focuses on the Spatial Preferential Attachment (SPA) model, which was first introduced

by Aiello et al. (2009). This model combines preferential attachment with geometry by introducing

“spheres of influence” whose volume grows with the degree of a vertex. The parameters of the model

are the link probability p ∈ [0, 1] and two constants A1, A2 such that 0 < A1 <
1
p , A2 > 0. All vertices

are placed in the m-dimensional unit hypercube S = [0, 1]m equipped with the torus metric derived

from any of the Lk norms, i.e.,

d(x, y) = min
{
||x− y + u||k : u ∈ {−1, 0, 1}m

}
∀x, y ∈ S .

The SPA model generates a sequences random directed graphs {Gt}, where Gt = (Vt, Et), Vt ⊆ S.

Let deg−(v, t) be the in-degree of the vertex v in Gt, and deg+(v, t) its out-degree. Then, the sphere

of influence S(v, t) of the vertex v at time t ≥ 1 is the ball centered at v with the following volume:

|S(v, t)| = min

{
A1deg−(v, t) +A2

t
, 1

}
.

In order to construct a sequence of graphs we start at t = 0 with G0 being the null graph. At

each time step t we construct Gt from Gt−1 by, first, choosing a new vertex vt uniformly at random

from S and adding it to Vt−1 to create Vt. Then, independently, for each vertex u ∈ Vt−1 such that

vt ∈ S(u, t− 1), a directed link (vt, u) is created with probability p. Thus, the probability that a link

(vt, u) is added in time-step t equals p |S(u, t− 1)|. See Figure 2.1 for a drawing of a simulation of the

SPA model (Aiello et al. 2009).

2.2 Properties and applications of the model

In this section, we briefly discuss previous studies on properties and applications of the SPA model.

This model is known to produce scale-free networks, which exhibit many of the characteristics of real-

life networks (see Aiello et al. 2009; Cooper et al. 2014). Specifically, Aiello et al. (2009) (Theorem 1.1)

proved that the SPA model generates graphs with a power law in-degree distribution with coefficient

1+1/(pA1). On the other hand, the average out-degree is asymptotic to pA2/(1−pA1) (see Theorem 1.3

in Aiello et al. 2009). In Janssen et al. (2013b), some properties of common neighbours were used
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Figure 1: A simulation on the unit square with t = 5000, p = 1, and A1 = A2 = 1.

to explore the underlying geometry of the SPA model and quantify vertex similarity based on the

distance in the space. Usually, the distribution of vertices in S is assumed to be uniform (Janssen

et al. 2013b), but Janssen et al. (2016) also investigated non-uniform distributions, which is clearly a

more realistic setting.

Let us briefly discuss the parameters of the model: p,A1, and A2. The parameter p is usually

highly influenced by the application; for example, if one wants to model the citation network, p would

correspond to the ratio of the average number of papers cited and the number of papers a typical

author is aware of (presumably larger for, say, computer science papers; lower for mathematics, etc.).

Then, A1 controls the degree distribution and A2 can be used to tune the average degree.

Importantly, in Janssen et al. (2013a), it was shown that the SPA model gave the best fit, in terms

of graph structure, for a series of social networks derived from Facebook. This means that this model is

a good synthetic approximation for some real-world networks and can be suitable for various practical

applications. For instance, the SPA model was used to analyze a duopoly market on which there is

uncertainty of a product quality (Kamiński et al. 2017) and to model the interpersonal network of top

managers (Morgan et al. 2018). Fitting the SPA model to real-world networks can also potentially

be used for link prediction problems. The model is especially useful when some underlying structure

that affects the network is not easily measurable but is important for the application. Consider, for

example, a citation network in which vertices correspond to papers and directed edges correspond

to citations between them. Clearly, the content of the paper (that is, location of the corresponding

vertex in S) affects edges between vertices but very often the content is not provided. Assuming that

the citation network is similar to the SPA model (and after a careful tuning of parameters), one can

use the model and results from Janssen et al. (2013b, 2016) to predict the similarity between papers

and then use some clustering algorithm to extract papers on a similar topic. The same methodology
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applies to a more sophisticated scenarios such as predicting people’s taste/hobbies/believes based on

social networks they are part of.

As we already mentioned, one of the most important properties of real-world networks is their

clustering structure: it highly affects many processes occurring in networks. Therefore, to understand

the suitability of the SPA model for various applications, it is crucial to analyze its clustering structure.

The first step in this direction was made in Ostroumova Prokhorenkova et al. (2017), where modularity

of the SPA model was investigated, which is a global criterion to define communities and a way to

measure the presence of community structure in a network. In the current paper we analyze the

clustering structure using another characteristic — the average local clustering coefficient C(d).

3 Clustering coefficient

Clustering coefficient measures how likely two neighbours of a vertex are connected by an edge. There

are several definitions of clustering coefficient proposed in the literature (see, e.g., Bollobás and Riordan

(2003)).

The global clustering coefficient Cglob(G) of a graph G is the ratio of three times the number of

triangles to the number of pairs of adjacent edges in G. In other worlds, if we sample a random pair

of adjacent vertices in G, then Cglob(G) is the probability that these three vertices form a triangle.

The global clustering coefficient in the SPA model was previously studied in (Jacob and Mörters 2013;

Jacob et al. 2015) and it was proven that Cglob(Gn) converges to a limit, which is positive if and only

if the power-law degree distribution has a finite variance.

In this paper, we focus on the local clustering coefficient. Let us first define it for an undirected

graph G = (V,E). Let N(v) be the set of neighbours of a vertex v, |N(v)| = deg(v). For any B ⊆ V ,

let E(B) be the set of edges in the graph induced by the vertex set B; that is,

E(B) = {{u,w} ∈ E : u,w ∈ B}.

Finally, clustering coefficient of a vertex v is defined as follows:

c(v) = |E(N(v))|
/(deg(v)

2

)
.

Clearly, 0 ≤ c(v) ≤ 1.

Note that the local clustering c(v) is defined individually for each vertex and it can be noisy, espe-

cially for the vertices of not too large degrees. Therefore, the following characteristic was extensively

studied in the literature. Let C(d) be the local clustering coefficient averaged over the vertices of

degree d; that is,

C(d) =

∑
v:deg(v)=d c(v)

|{v : deg(v) = d}|
.

Further in the paper we will also use the notation c(v, t) and C(d, t) referring to graphs on t vertices.

The local clustering C(d) was extensively studied both theoretically and empirically. For example,

it was observed in a series of papers that in real-world networks C(d) ∝ d−ϕ for some ϕ > 0. In
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particular, Ravasz and Barabási (2003) shows that C(d) can be well approximated by d−1 for four

large networks, Vázquez et al. (2002) obtains power-law in a real network with parameter 0.75, while

Csányi and Szendrői (2004) obtain ϕ = 0.33. The local clustering coefficient was also studied in several

random graph models of complex networks. For instance, it was shown in Dorogovtsev et al. (2002);

Krot and Ostroumova Prokhorenkova (2015); Newman (2003a) that some models have C(d) ∝ d−1.

As we prove in this paper, similar behaviour is observed in the SPA model.

Recall that the graph Gt constructed according to the SPA model is directed. Therefore, we first

analyze the directed version of the local clustering coefficient and then, as a corollary, we obtain the

corresponding results for the undirected version. Let us now define the directed clustering coefficient.

By N−(v, t) ⊆ Vt we denote the set of in-neighbours of a vertex v at time t; deg−(v, t) = |N−(v, t)|.
So, the directed clustering coefficient of vertex v at time t is defined as

c−(v, t) = |E(N−(v, t))|
/(deg−(v, t)

2

)
,

where this time E(B) = {(u,w) ∈ E : u,w ∈ B} for any B ⊆ Vt. Similarly to the undirected case, we

define

C−(d, t) =

∑
v:deg−(v,t)=d c

−(v, t)

|{v : deg−(v, t) = d}|
.

4 Results

Let us start with introducing some notation. As typical in random graph theory, all results in this

paper are asymptotic in nature; that is, we aim to investigate properties of Gn for n tending to infinity.

We say that an event holds asymptotically almost surely (a.a.s.) if it holds with probability tending

to one as n → ∞. Also, given a set S we say that almost all elements of S have some property P if

the number of elements of S that do not have P is o(|S|). Finally, we emphasize that the notations

o(·) and O(·) refer to functions of n, not necessarily positive, whose growth is bounded. We use the

notations f � g for f = o(g) and f � g for g = o(f). We also write f(n) ∼ g(n) if f(n)/g(n)→ 1 as

n→∞ (that is, when f(n) = (1 + o(1))g(n)).

Let us first consider the directed clustering coefficient. It turns out that for the SPA model we are

able not only to prove the asymptotics for C−(d, n), which is the average clustering over all vertices of

in-degree d, but also analyze the individual clustering coefficients c−(v, n), which is a much stronger

result. However, in order to do this, we need to assume that deg−(v, n) is large enough.

From technical point of view, it will be convenient to partition the set of contributing edges,

E(N−(v, n)), and independently consider edges to “old” and to “young” neighbours of v. Formally,

let us take any function ω(n) that tends to infinity (arbitrarily slowly) as n → ∞; for example,

ω(n) = log log log n or even ω(n) could be the inverse Ackermann function that is less than 5 for any

practical input size n. The function ω(n) will remain fixed throughout the rest of the paper. Let

T̂v be the smallest integer t such that deg−(v, t) exceeds ω log n (or T̂v = n if deg−(v, n) < ω log n).

The reason for introducing T̂v is that the behaviour of vertices is chaotic and unpredictable at first

but it stabilizes once they accumulate enough neighbours; the threshold happens to be around log n.
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Vertices in N−(v, T̂v) are called old neighbours of v; N−(v, n)\N−(v, T̂v) are new neighbours of v. So,

we can partition E(N−(v, n)) into Eold(N
−(v, n)) and Enew(N−(v, n)), the first contains the edges

going from neighbours of v to its old neighbours, the second contains the remaining edges, i.e., ones

connecting only new neighbours. Again, the reason for partitioning E(N−(v, n)) is that old neighbours

of v are unpredictable (but, fortunately, there are few of them); on the other hand, the behaviour of

young neighbours can be well understood. Formally,

Eold(N
−(v, n)) = {(u,w) ∈ En : u ∈ N−(v, n), w ∈ N−(v, T̂v)},

Enew(N−(v, n)) = E(N−(v, n)) \ Eold(N−(v, n)) ;

and

c−(v, n) = cold(v, n) + cnew(v, n), (1)

where

cold(v, n) = |Eold(N−(v, n))|
/(deg−(v, n)

2

)
,

cnew(v, n) = |Enew(N−(v, n))|
/(deg−(v, n)

2

)
.

Let us start with the following theorem which is extensively used in our reasonings and is interesting

and important on its own. Variants of this results were proved in (Janssen et al. 2013b, 2016); here,

we present a slightly modified statement from (Janssen et al. 2016), adjusted to our current needs.

We provide the proof in Section 6.1 for completeness.

Theorem 4.1. Let ω = ω(n) be any function tending to infinity together with n. The following holds

with probability 1− o(n−4). For any vertex v with

deg−(v, n) = k = k(n) ≥ ω log n

and for all values of t such that

n

(
ω log n

k

) 1
pA1

=: Tv ≤ t ≤ n,

we have

deg−(v, t) ∼ k
(
t

n

)pA1

.

The expression for Tv = Tv(n) is chosen so that at time Tv vertex v has (1 + o(1))ω log n neigh-

bours a.a.s. The implication of this theorem is that once a vertex accumulates ω log n neighbours, its

behaviour can be predicted with high probability until the end of the process (that is, till time n)

when its degree reaches k. In other words the following property holds. For a fixed value of n, let

M = M(n) and m = m(n) be the maximum and, respectively, the minimum ratio between deg−(v, t)

and the deterministic function k(t/n)pA1 (taken over the interval Tv ≤ t ≤ n). Then, a.a.s. both M

and m tend to one as n→∞.

This property can be used to show that the contribution to c−(v, n) coming from edges to new

neighbours of v is well concentrated.
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Theorem 4.2. Let ω = ω(n) be any function tending to infinity together with n. Then, with probability

1− o(n−1) for any vertex v with

deg−(v, n) = k = k(n) ≥ (ω log n)4+(4pA1+2)/(pA1(1−pA1))

we have

cnew(v, n) = Θ(1/k).

Unfortunately, if a vertex v lands in a densely populated region of S, it might happen that cold(v, b)

is much larger than 1/k. We show the following ‘negative’ result (without trying to aim for the

strongest statement) that shows that there is no hope for extending Theorem 4.2 to c−(v, n).

Theorem 4.3. Let C = 5 log (1/p) and ξ = ξ(n) = 1/(ω(log log n)2(log log log n)) = o(1) for some

ω = ω(n) tending to infinity as n→∞. Suppose that k = k(n) is such that 2 ≤ k ≤ nξ. Then, a.a.s.,

there exists a vertex v such that deg−(v, n) ∼ k and

(i) c−(v, n) = 1, provided that 2 ≤ k ≤
√

log n/C,

(ii) c−(v, n) = Ω(1)� 1/k, provided that
√

log n/C ≤ k ≤ log n/ log logn,

(iii) c−(v, n)� (log log n)2(log log log n)/k � 1/k, provided that log n/ log logn ≤ k ≤ nξ.

On the other hand, Theorem 4.2 implies immediately the following corollary.

Corollary 4.4. Let ω = ω(n) be any function tending to infinity together with n. The following holds

with probability 1− o(n−1). For any vertex v for which

deg−(v, n) = k = k(n) ≥ (ω log n)4+(4pA1+2)/(pA1(1−pA1))

it holds that

c−(v, n) ≥ cnew(v, n) = Ω(1/k)

c−(v, n) = cold(v, n) + cnew(v, n) = O(ω log n/k) +O(1/k) = O(ω log n/k).

This corollary states that for all vertices with large enough degree k we have the desired lower

bound Ω(1/k) for the clustering coefficient c−(v, n). On the other hand, the upper bound, which

is O(ω log n/k), grows faster than desired due to the presence of cold(v, n). However, despite the

‘negative’ result (stated in Theorem 4.3), almost all vertices (of large enough degrees) have clustering

coefficients of order 1/k. Below is a precise statement. The conclusions in cases (i)’ and (ii)’ follow

immediately from Theorem 4.2.

Theorem 4.5. Let ε, δ ∈ (0, 1/2) be any two constants, and let k = k(n) ≤ npA1−ε be any function

of n. Let Xk be the set of vertices of Gn of in-degree between (1− δ)k and (1 + δ)k. Then, a.a.s., the

following holds.
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(i) Almost all vertices in Xk have cold(v, n) = O(1/k), provided that k � logC1 n, where C1 =

(1 + (2 + ε)pA1)/(1− pA1).

(i)’ As a result, almost all vertices in Xk have c−(v, n) = Θ(1/k), provided that k � logC n, where

C = 4 + (4pA1 + 2)/(pA1(1− pA1)).

(ii) The average clustering coefficient cold(v, n) of vertices in Xk is O(1/k); that is,

1

|Xk|
∑
v∈Xk

cold(v, n) = O(1/k),

provided that k � logC2 n, where C2 = (1 + (2 + pA1 + ε)pA1)/(1− pA1).

(ii)’ As a result, the average clustering coefficient c−(v, n) of vertices in Xk is Θ(1/k); that is,

1

|Xk|
∑
v∈Xk

c−(v, n) = Θ(1/k),

provided that k � logC n, where C = 4 + (4pA1 + 2)/(pA1(1− pA1)).

Finally, let us discuss the undirected case. The following corollary holds.

Corollary 4.6. Let c(v, n) be the clustering coefficient defined for the undirected graph Ĝn obtained

from Gn by considering all edges as undirected. Then Corollary 4.4 and Theorem 4.5 hold with

replacing c−(v, n) by c(v, n).

Indeed, according to Lemma 6.6 (see Section 6.2) a.a.s. the out-degrees of all vertices do not exceed

ω log n. Therefore, even if out-neighbours of a vertex form a complete graph, the contribution from

them is at most
(
ω logn

2

)
, which is much smaller than the required lower bound for k.

Finally, let us discuss the connection between the obtained results and the empirical observations

discussed in Section 3. Recall that it was observed that in real-world networks C(d) ∝ d−ϕ for some

ϕ > 0 and it is often the case that ϕ = 1. Basically, the results discussed in this section mean that in

SPA model we have ϕ = 1 and other constants cannot be modeled. Indeed, Theorem 4.5 (ii)’ (and the

corresponding Corollary 4.6) state slightly weaker results than the asymptotics for C(d), since instead

of averaging over the vertices of degree d we average over the set Xd of vertices with degree close to

d. On the other hand, Theorem 4.5 (i)’ states a stronger result for individual vertices.

5 Simulations

In this section, we illustrate the theoretical, asymptotic, results presented in the previous section by

analyzing the local clustering coefficient for graphs of various orders generated according to the SPA

model. An efficient algorithm used to generate the SPA graphs is described in the proceeding version

of this paper (Iskhakov et al. 2018).

It is proven in Theorem 4.5 that 1
|Xd|

∑
v∈Xd c

−(v, n) = Θ(1/d) for d � logC n, where C =

4 + (4pA1 + 2)/(pA1(1 − pA1)). In order to illustrate this result, we generated 10 graphs for each
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Figure 2: Average local clustering coefficient for directed (left) and undirected (right) graphs.

p ∈ {0.1, 0.2, . . . , 0.9}, A1 = 1, A2 = 10(1− p)/p (A2 is chosen to fix the expected asymptotic degree

equal 10) and computed the average value of C−(d, n) for n = 106, see Figure 2 (left). Similarly,

Figure 2 (right) presents the same measurements for the undirected average local clustering C(d, n).

Note that in both cases figures agree with our theoretical results: both C−(d, n) and C(d, n) decrease

as c/d with some c for large enough d (we added a function 10/d for comparison). Note that for small

p the maximum degree is small, therefore the sizes of the generated graphs are not large enough to

observe a straight line in log-log scale.

Note that for all p ∈ (0, 1) we have C = 4 + 4p+2
p(1−p) > 18, so, our theoretical results are expected

to hold for d � logC n > 1020 which is irrelevant as the order of the graph is only 106. However, we

observe the desired behaviour for much smaller values of d; that is, in some sense, our bound is too

pessimistic.

Also, note that the statement C−(d, n) = Θ(1/d) is stronger than the statement of Theorem 4.5,

since in the theorem we averaged c−(v, n) over the set Xd of vertices of in-degree between (1 − δ)d
and (1 + δ)d. In order to illustrate the difference, on Figure 3 we present the smoothed curves for the

directed (left) and undirected (right) local clustering coefficients averaged over Xd for δ = 0.1. Note

that this smoothing substantially reduce the noise observed on Figure 2.

Next, let us illustrate the fact that the number of edges between “new” neighbours of a vertex is

more predictable than the number of edges going from some neighbours to “old” ones. We extensively

used this difference in Section 4, where we analyzed new and old edges separately. In our experiments,

we split c−(v, n) into “old” and “new” parts as in Equation (1), but now we take T̂v be the smallest

integer t such that deg−(v, t) exceeds deg−(v, n)/2. As a result, we compute the average local clustering

coefficients C−old(d) and C−new(d). Figure 4 shows that C−new(d) can almost perfectly be fitted by c/d

with some c, while most of the noise comes from C−old(d).

Finally, Figure 5 shows the distribution of the individual local clustering coefficients for one graph

generated with p = 0.7. Theorem 4.3 states that a.a.s. there exist a vertex v of degree d with

c−(v, n) � 1/d. Also, according to this theorem, the situation is much worse for smaller values of d.
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Figure 3: Local clustering coefficient for directed (left) and undirected (right) graphs averaged over

Xd.
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Figure 5: The distribution of individual local clustering coefficients.

Indeed, one can see on Figure 5 that for small d the scatter of points is much larger. On the other

hand, in Theorem 4.5 we present bounds for c−(v, n) for almost all vertices, provided that d is large

enough. One can see it on the figure too and, similarly to the previously discussed figures, we observe

the expected behaviour even for relatively small n despite the bound logC n that is bigger than n in

our case.

6 Proofs

6.1 Proof of Theorem 4.1

We will use the following version of the Chernoff bound that can be found, for example, in (Janson

et al. 2000, p. 27, Corollary 2.3).

Lemma 6.1. Let X be a random variable that can be expressed as a sum of independent random

indicator variables, X =
∑n

i=1Xi, where Xi ∈ Ber(pi) with (possibly) different pi = P(Xi = 1) = EXi.

If ε ≤ 3/2, then

P(|X − EX| ≥ εEX) ≤ 2 exp

(
−ε

2EX
3

)
. (2)

Let us start with the following key lemma.

Lemma 6.2. Let ω = ω(n) be any function tending to infinity together with n. For a given vertex

v, suppose that deg−(v, T ) = d ≥ ω log n. Then, with probability 1 − o(n−6), for every value of t,

12



T ≤ t ≤ 2T , ∣∣∣∣∣deg−(v, t)− d ·
(
t

T

)pA1

∣∣∣∣∣ ≤ 5

pA1
· t
T

√
d log n.

Of course, we will be applying the lemma to the graph generated by the SPA model. However, the

statement is much more general; that is, one can apply it to any (deterministic) graph on T vertices as

long as the in-degree of v in this graph is at least ω log n and the next T vertices are added according to

the rules of the SPA model. After that, the desired bounds for the in-degree of v hold with probability

1− o(n−6).

Proof. Our goal is to estimate deg−(v, t) − d · (t/T )pA1 . We will show that the upper bound holds;

the lower bound can be obtained by using an analogous, symmetric, argument.

Let XT , XT+1, . . . , X2T−1 be a sequence of independent Bernoulli random variables (with various

parameters):

P(Xt = 1) = p
A1

(
d
(
t
T

)pA1 + 5
pA1
· tT
√
d log n

)
+A2

t
.

We will use the following standard coupling. Let ZT = deg−(v, T ) = d. For each T < t ≤ 2T we

define Zt = deg−(v, t) if

deg−(v, t′) ≤ d ·
(
t′

T

)pA1

+
5

pA1
· t
′

T

√
d log n

for every T ≤ t′ < t; otherwise, Zt = Zt−1 + Xt−1. It follows that Zt − d can be (stochastically)

bounded from above by the sum X ′t =
∑t−1

i=T Xi of independent indicator random variables. Note that

if T0 is the smallest t for which deg−(v, t) > d ·
(
t
T

)pA1 + 5
pA1
· tT
√
d log n, then deg−(v, t) = Zt ≤ d+X ′t

for all t ≤ T0. Hence, the lemma will follow once we show that with the desired probability

d+X ′t ≤ d ·
(
t

T

)pA1

+
5

pA1
· t
T

√
d log n (3)

for all T ≤ t ≤ 2T .

Clearly, since pA1 < 1,

EX ′t =
t−1∑
i=T

EXi

= pA1dT
−pA1

(
t−1∑
i=T

ipA1−1

)
+
t− T
T

5
√
d log n+O(1)

= d

(
t

T

)pA1

− d
(
T

T

)pA1

+
t− T
T

5
√
d log n+O(1)

= d

(
t

T

)pA1

− d+
t− T
T

5
√
d log n+O(1).
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If (3) fails, then

X ′t ≥

(
d ·
(
t

T

)pA1

+
5

pA1
· t
T

√
d log n

)
− d

= EX ′t +
5

pA1
· t
T

√
d log n− t− T

T
5
√
d log n+O(1)

≥ EX ′t + 5
√
d log n,

using again that it is assumed that pA1 < 1. It follows from the Chernoff bound (2) that

P(|X ′t − EX ′t| ≥ 5
√
d log n) ≤ 2 exp

(
− (5ε/3)

√
d log n

)
,

where ε = 5
√
d log n/EX ′t. The maximum value of EX ′t corresponds to t = 2T and so

EX ≤ d

(
2T

T

)pA1

− d+
2T − T
T

5
√
d log n+O(1)

∼ d(2pA1 − 1) ≤ d.

So ε ≥ 5
√
d−1 log n. Therefore, the probability that (3) fails for a given T ≤ t ≤ 2T is at most

2 exp(−(25/3) log n) = o(n−7). Hence, (3) fails for some T ≤ t ≤ 2T with probability o(n−6) and the

proof is finished.

Now, with Lemma 6.2 in hand we can get Theorem 4.1.

Proof of Theorem 4.1. Let ω = ω(n) be a function going to infinity with n. Let v be a vertex with

final degree k ≥ ω log n. Let T be the first time that the in-degree of v exceeds (ω/2) log n. Finally,

let d = deg−(v, T ). We obtain from Lemma 6.2 that, with probability 1− o(n−6),

d

(
t

T

)pA1
(

1− 5

pA1

√
d−1 log n

)
≤ deg−(v, t) ≤ d

(
t

T

)pA1
(

1 +
5

pA1

√
d−1 log n

)
for T ≤ t ≤ 2T . It follows that the degree tends to grow but the sphere of influence tends to shrink

between T and 2T , and thus that the conditions of Lemma 6.2 again hold at time 2T . We can now

keep applying the same lemma for times 2T , 4T , 8T , 16T, . . . , using the final value as the initial

one for the next period, to get the statement for all values of t from T up to and including time n.

Precisely, for 1 ≤ i < imax = blog2 nc + 1, let di = deg−(v, 2iT ). Then by Lemma 6.2, we have for

i > 1 that di ≤ di−12pA1(1+εi), where εi = 5
pA1

√
d−1i−1 log n. Since we apply the lemma O(log n) times

(for a given vertex v), the following statement holds with probability 1− o(n−5) from time T on: for

any 2i−1T ≤ t < 2iT , we have that

deg−(v, t) ≤ d
(
t

T

)pA1 i∏
j=0

(1 + εi).

14



It remains to make sure that the accumulated multiplicative error term is still only (1 + o(1)). For

that, let us note that

i∏
j=0

(1 + εi) =
i∏

j=1

(
1 +

5

pA1

√
d−12−pA1j log n

)

∼ exp

 5

pA1

√
d−1 log n

i∑
j=1

2−pA1j/2


= exp

(
O(
√
d−1 log n)

)
∼ 1,

since d grows faster than log n. A symmetric argument can be used to show a lower bound for the

error term and so the result holds.

It follows that we have the desired behaviour from time T . Precisely, for times T ≤ t ≤ n, we have

that

deg−(v, t) ∼ d
(
t

T

)pA1

,

where d = deg−(v, T ) ∼ (ω/2) log n. Setting t = n and deg−(v, n) = k, we obtain that

T ∼
(
d

k

)1/pA1

n ∼
(
ω log n

2k

)1/pA1

n ∼
(

1

2

)1/pA1

Tv.

Therefore, for large enough n, we have that T < Tv. As a result, we obtain that, for Tv ≤ t ≤ n,

deg−(v, t) ∼ k
(
t

n

)pA1

.

Finally, since the statement holds for any vertex v with probability 1 − o(n−5), with probability

1− o(n−4) the statement holds for all vertices. The proof of the theorem is finished.

Let us note that Theorem 4.1 immediately implies the following two corollaries.

Corollary 6.3. Let ω = ω(n) be any function tending to infinity together with n. The following holds

with probability 1− o(n−4). For every vertex v, and for every time T so that deg−(v, T ) ≥ ω log n, for

all times t, T ≤ t ≤ n,

deg−(v, t) ∼ deg−(v, T )

(
t

T

)pA1

.

Corollary 6.4. Let ω = ω(n) be any function tending to infinity together with n. The following holds

with probability 1− o(n−4). For any vertex vi born at time i ≥ 1, and i ≤ t ≤ n we have that

deg−(vi, t) ≤ ω log n

(
t

i

)pA1

. (4)

6.2 Proof of Theorem 4.2

Let B be a ball of volume b = b(n) and t = t(n) ∈ N be any function of n such that bt→∞ as n→∞.

It will be crucial for the argument to understand the behaviour of the random variables Ni,t = Ni,t(b)

counting the number of vertices in B that are of in-degree i at time t; that is,

Ni,t = |{w ∈ B : deg−(w, t) = i}|.
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The arguments presented below are similar to the ones in (Aiello et al. 2009) showing that the degree

distribution of Gn follows a power-law.

The equations relating the random variables Ni,t are described as follows. As G0 is the null graph,

Ni,0 = 0 for i ≥ 0. For all t ∈ N ∪ {0}, we derive that

E(N0,t+1 −N0,t | Gt) = b−N0,tp
A2

t
, (5)

E(Ni,t+1 −Ni,t | Gt) = Ni−1,tp
A1(i− 1) +A2

t
−Ni,tp

A1i+A2

t
. (6)

Recurrence relations for the expected values of Ni,t can be derived by taking the expectation of

the above equations. To solve these relations, we use the following lemma on real sequences, which is

Lemma 3.1 from Chung and Lu (2006).

Lemma 6.5. If (αt), (βt) and (γt) are real sequences satisfying the relation

αt+1 =

(
1− βt

t

)
αt + γt,

and limt→∞ βt = β > 0 and limt→∞ γt = γ, then limt→∞
αt
t exists and equals γ

1+β .

Applying this lemma with αt = E(N0,t)/b, βt = pA2, and γt = 1 gives that E(N0,t) ∼ c0bt with

c0 =
1

1 + pA2
.

For i ≥ 1, the lemma can be inductively applied with αt = E(Ni,t)/b, βt = p(A1i + A2), and γt =

E(Ni−1,t)p(A1(i− 1) +A2)/(bt) to show that E(Ni,t) ∼ cibt, where

ci = ci−1p
A1(i− 1) +A2

1 + p(A1i+A2)
.

It is straightforward to verify that

ci =
pi

1 + pA2 + ipA1

i−1∏
j=0

jA1 +A2

1 + pA2 + jpA1
.

The above formula implies that ci = (1 + o(1))ci−(1+1/(pA1)) (as i → ∞) for some constant c, so the

expected proportion Ni,t/(bt) asymptotically follows a power-law with exponent 1 + 1/(pA1).

We prove concentration for Ni,t when i ≤ if (for some function if = if (n)) by using a relaxation

of Azuma-Hoeffding martingale techniques. The random variables Ni,t do not a priori satisfy the

c-Lipschitz condition: indeed, a new vertex may fall into many overlapping regions of influence and so

it can potentially change degrees of many vertices. Nevertheless, we will prove that deviations from

the c-Lipschitz condition occur with very small probability. The following lemma gives a deterministic

bound for |Ni,t+1−Ni,t| which holds with high probability. Indeed, it is obvious that |Ni,t+1−Ni,t| ≤
max{deg+(vt+1, t + 1), 1}. Note that a weaker bound of log2 n was proved in Aiello et al. (2009);

with Corollary 6.4 in hand, we can get slightly better bound but the argument remains the same. We

present the proof for completeness.
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Lemma 6.6. Let ω = ω(n) be any function tending to infinity together with n. The following holds

with probability 1− o(n−3). For every vertex vi,

deg+(vi, i) = deg+(vi, n) ≤ ω log n.

Proof. Let us focus on any 1 ≤ i ≤ n. Since vi is chosen uniformly at random from the unit hypercube

(note that the history of the process does not affect this distribution) with the torus metric, without

loss of generality, we may assume that vi lies in the centre of the hypercube. For 1 ≤ j < i, let Xj

denote the indicator random variable of the event that vj lies in the ball around vi (or vice versa) with

volume

αj = j−pA1ipA1−1ω2/3 log n.

By Corollary 6.4 (applied with ω1/3 instead of ω), we may assume that

deg−(vj , i) ≤ (i/j)pA1ω1/3 log n,

for all j ∈ [i− 1]. Note that (A1 deg−(vj , i) +A2)/i = o(αj). Hence, for all j ∈ [i− 1], Xj = 0 implies

that vi is not in the influence region of vj and so there is no directed edge from vi to vj . Therefore,

we have that

deg+(vi, i) ≤
i−1∑
j=1

Xj .

Since

E

 i−1∑
j=1

Xj

 =
i−1∑
j=1

αj = ipA1−1ω2/3 log n
i−1∑
j=1

j−pA1 = O(ω2/3 log n) = o(ω log n),

the assertion follows easily from the Chernoff bound.

Now, we are ready to prove concentration for the random variables Ni,t. In order to explain

the technique, we investigate N0,t, the number of vertices of in-degree zero. The argument easily

generalizes to other values of i and we explain it afterwards. We will use the supermartingale method

of Pittel et al. Pittel et al. (1996), as described in Wormald (1999).

Lemma 6.7. Let G0, G1, . . . , Gn be a random graph process and Xt a random variable determined by

G0, G1, . . . , Gt, 0 ≤ t ≤ n. Suppose that for some real constants βt and constants γt,

E(Xt −Xt−1 | G0, G1, . . . , Gt−1) < βt

and

|Xt −Xt−1 − βt| ≤ γt

for 1 ≤ t ≤ n. Then for all α > 0,

P

(
For some s with 0 ≤ s ≤ n : Xs −X0 ≥

s∑
t=1

βt + α

)
≤ exp

(
− α2

2
∑
γ2t

)
.
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Now, we are ready to prove the concentration for N0,t.

Theorem 6.8. Let B be a ball of volume b = b(n) and t = t(n) ∈ N be any function of n such that

bt → ∞ as n → ∞. Let ω = ω(n) be any function tending to infinity together with n. The following

holds with probability 1− o(n−3).

N0,t = N0,t(B) =
bt

1 +A2p
+O((bt)1/2(ω log n)3/2) = c0bt+O((bt)1/2(ω log n)3/2).

In particular, if bt� log3 n, then N0,t ∼ c0bt.

Proof. We first need to transform N0,s (1 ≤ s ≤ t) into something close to a martingale. It provides

some insight if we define real function f(x) to model the behaviour of the scaled random variable

N0,xt/t. If we presume that the changes in the function correspond to the expected changes of the

random variable (see (5)), we obtain the following differential equation

f ′(x) = b− f(x)
pA2

x

with the initial condition f(0) = 0. The general solution of this equation can be put in the form

f(x)xpA2 − bx1+pA2

1 + pA2
= C.

Consider the following real-valued function

H(x, y) = xpA2y − bx1+pA2

1 + pA2
(7)

(note that we expect H(s,N0,s) to be close to zero). Let ws = (s,N0,s), and consider the sequence of

random variables (H(ws) : 1 ≤ s ≤ t). The second-order partial derivatives of H evaluated at ws are

all O(spA2−1). Moreover, it follows from Lemma 6.6 that we may assume that

|N0,s+1 −N0,s| ≤ ω log n. (8)

Therefore, we have

H(ws+1)−H(ws) = (ws+1 −ws) · grad H(ws) +O(spA2−1ω2 log2 n), (9)

where “·” denotes the inner product and grad H(ws) = (Hx(ws), Hy(ws)).

Observe that from our choice of H, we have that

E(ws+1 −ws | Gs) · grad H(ws) = 0.

Hence, taking the expectation of (9) conditional on Gs, we obtain that

βs+1 = E(H(ws+1)−H(ws) | Gs) = O(spA2−1ω2 log2 n).

From (9) and (8), noting that

grad H(ws) =
(
pA2s

pA2−1N0,s − bspA2 , spA2
)
,
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we have that

γs+1 = |H(ws+1)−H(ws)| ≤ O(spA2ω log n).

Our goal is to apply Lemma 6.7 to the sequence (H(ws) : 1 ≤ s ≤ t) to get an upper bound

for H(ws). A symmetric argument applied to (−H(ws) : 1 ≤ s ≤ t) will give us the desired lower

bound so let us concentrate on the upper bound. The bounds for βs+1 and γs+1 we derived above

are universal; however, typically vertex vs lies far away from the ball B so that N0,s is not affected.

This certainly happens if the distance from the ball B to vs is more than the radius of the ball of

volume A2/s, and so this situation occurs with probability 1−O(b+ s−1). Moreover, if this happens

and H(ws) ≥ 0, then H(ws) decreases (it can be viewed as some kind of “self-correcting” behaviour);

hence, since we aim for an upper bound, we may assume that H(ws) does not change. It follows that

t∑
s=1

βs = O

(
t∑

s=1

spA2−1ω2 log2 n · (b+ s−1)

)
(10)

= O

(
b ω2 log2 n

t∑
s=1

spA2−1

)
+O

(
ω2 log2 n

t∑
s=1

spA2−2

)
= O

(
b tpA2ω2 log2 n

)
+O

(
tpA2−1ω2 log2 n

)
= O

(
b tpA2ω2 log2 n

)
,

since it is assumed that bt→∞. Similarly, we get that

t∑
s=1

γ2s = O

(
t∑

s=1

(spA2ω log n)2 · (b+ s−1)

)
= O

(
b t1+2pA2ω2 log2 n

)
. (11)

Finally, we are ready to apply Lemma 6.7 with α = b1/2t1/2+pA2(ω log n)3/2 to obtain that with

probability 1− o(n−3),

|H(wt)−H(w0)| = O(α) = O(b1/2t1/2+pA2(ω log n)3/2).

As H(w0) = 0, it follows from the definition (7) of the function H, that with the desired probability

N0,t =
bt

1 + pA2
+O((bt)1/2(ω log n)3/2),

which finishes the proof of the theorem.

We may repeat (recursively) the argument as in the proof of Theorem 6.8 for Ni,t with i ≥ 1. Since

the expected change for Ni,t is slightly different now (see (6)), we obtain our result by considering the

following function:

H(x, y) = xp(A1i+A2)y − ci−1
p(A1(i− 1) +A2)

1 + p(A1i+A2)
x1+p(A1i+A2).

Moreover, in bounding
∑
βs and

∑
γ2s (see (10) and (11)) we need b to be of order at least (A1i+A2)/t;

say, bt� i. Other than these minor adjustments, the argument is similar as in the case i = 0, and we

get the following result. Note that the conclusion (the last claim) follows as

cibt = Θ(i−1−1/(pA1)bt) = Θ(i(bt)1/2i−2−1/(pA1)(bt)1/2)� i(bt)1/2(log n)3/2,

provided bt� i4+2/(pA1) log3 n.

19



Theorem 6.9. Let B be a ball of volume b = b(n), t = t(n) ∈ N, and if = if (n) ∈ N be any functions

of n such that bt� if . Let ω = ω(n) be any function tending to infinity together with n. The following

holds with probability 1− o(n−2). For any 0 ≤ i ≤ if ,

Ni,t = Ni,t(B) = cibt+O(i(bt)1/2(ω log n)3/2).

In particular, if bt� i4+2/(pA1) log3 n, then Ni,t ∼ cibt.

Finally, we can move to the proof of Theorem 4.2.

Proof of Theorem 4.2. Let us fix any vertex v for which

deg−(v, n) = k = k(n) ≥ (ω log n)4+(4pA1+2)/(pA1(1−pA1)).

Based on Theorem 4.1, we may assume that for all values of t such that

n

(
ω log n

k

) 1
pA1

=: Tv ≤ t ≤ n,

we have

deg−(v, t) ∼ k
(
t

n

)pA1

.

For any ` ∈ N ∪ {0}, let

t` = 2`Tv, b` = A1kt
pA1−1
` n−pA1 ,

B` be the ball around v of volume b`, and L be the smallest integer ` such that t` ≥ n. In fact, we

will assume that tL = n, as we may adjust ω (that is, multiply by a constant in (1/2, 1)), if needed.

Let tv := n(ω log n)−1/(pA1); since k ≥ (ω log n)2, we have Tv ≤ tv ≤ n. Let L′ be the smallest integer

` such that t` ≥ tv.
Times t0 = Tv, tL′ = Θ(tv), and tL = n are important stages of the process; vertex v has,

respectively, degree (1 + o(1))ω log n, Θ(k/(ω log n)), and k. Note that at time t` (for any 0 ≤ ` ≤ L)

the sphere of influence of v has volume (1 + o(1))b`. Moreover, based on Corollary 6.4 (applied with,

say,
√
ω instead of ω) we may assume that any vertex vi born after time Tv satisfies (for any Tv ≤ t ≤ n)

deg(vi, t) ≤
√
ω log n

(
t

i

)pA1

= o

(
ω log n

(
t

i

)pA1
)

= o(deg(v, t)); (12)

as a result, the sphere of influence of w has negligible volume comparing to the one of v.

We will independently prove an upper bound and a lower bound of cnew(v, n). In order to do it,

we need to estimate |Enew(N−(v, n))|, the number of directed edges from u to w, where both u and

w are neighbours of v born after time Tv.

Proof of cnew(v, n) = O(1/k): Suppose that a neighbour w of v lies in B`−1 \B` for some `. An easy

but an important observation is that at any time t ≥ t`+1, the sphere of influence of v is completely
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disjoint from the one of w. Hence, the number of edges to w that contribute to cnew(v, n) can be

upper bounded by deg−(w, t`+1). It follows that

|Enew(N−(v, n))| ≤
L−2∑
`=0

∑
w∈B`−1\B`

deg−(w, t`+1) +
∑

w∈BL−2

deg−(w, tL)

≤
L−1∑
`=0

∑
w∈B`−1

deg−(w, t`+1).

Let if = (ω log n)1/(1−pA1). We will independently deal with the largest balls, namely B` for ` < L′; for

the remaining ones, we will deal with vertices of degree more than if before analyzing the contribution

from low degree ones. In other words, we are going to show that each of the following three functions

is of order at most k:

α =

L′−1∑
`=0

∑
w∈B`−1

deg−(w, t`+1),

β =

L−1∑
`=L′

∑
w∈B`−1

deg−(w,t`+1)≤if

deg−(w, t`+1),

γ =

L−1∑
`=L′

∑
w∈B`−1

deg−(w,t`+1)>if

deg−(w, t`+1).

The conclusion will follow immediately as |Enew(N−(v, n))| ≤ α+ β + γ.

In order to bound α, we only need to use (12) to get that

E(α) =

L′−1∑
`=0

b`−1

t`+1∑
i=1

deg−(vi, t`+1) ≤
L′−1∑
`=0

b`−1

t`+1∑
i=1

√
ω log n

(
t`+1

i

)pA1

=

L′−1∑
`=0

√
ω log n b`−1 t

pA1

`+1

t`+1∑
i=1

i−pA1 =

L′−1∑
`=0

Θ
(√
ω log n b`−1 t`+1

)
=

L′−1∑
`=0

Θ

(
√
ω log n k

(
t`+1

n

)pA1
)

= Θ

(
√
ω log n k

(
tL′

n

)pA1
)
L′−1∑
`=0

2−`pA1

= Θ

(
√
ω log n k

(
tL′

n

)pA1
)

= o(k).

The fact that, with the desired probability, α = O(k) follows from a standard martingale argument

(for example, one could use Lemma 6.7).

Similarly, we can deal with γ. It follows from (12) that no vertex born after time(√
ω log n

if

)1/(pA1)

t`+1 ≤ (
√
ω log n)(1−1/(1−pA1))/(pA1) t`+1 = (

√
ω log n)−1/(1−pA1) t`+1
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can satisfy deg−(w, t`+1) > if . Hence,

E(γ) =
L−1∑
`=L′

b`−1

(
√
ω logn)−1/(1−pA1)t`+1∑

i=1

deg−(vi, t`+1) ≤
L−1∑
`=L′

Θ (b`−1 t`+1)

=

L−1∑
`=L′

Θ

(
k

(
t`+1

n

)pA1
)

= Θ (k)

L′−1∑
`=0

2−`pA1 = O(k).

Finally, we need to deal with β. This time, we need to use Theorem 6.9 to count (independently)

the number of vertices in B`−1 of a certain degree. We may apply this theorem as for any L′ ≤ ` ≤ L−1,

we have

b`−1t`+1 ≥ bL′−1tL′+1 = Θ

(
k

(
tv
n

)pA1
)

= Θ

(
k

ω log n

)
= Ω

(
(ω log n)3+(4pA1+2)/(pA1(1−pA1))

)
= Ω

(
(ω log n)3 i

(4pA1+2)/(pA1)
f

)
� i

4+2/(pA1)
f log3 n,

since k ≥ (ω log n)4+(4pA1+2)/(pA1(1−pA1)). (In fact, this is the main bottleneck that forces us to assume

that k is large enough.) We get the following:

β =
L−1∑
`=L′

if∑
i=1

iNi,t`+1
(B`−1) = (1 + o(1))

L−1∑
`=L′

if∑
i=1

icib`−1t`+1

= Θ

L−1∑
`=L′

b`−1t`+1

if∑
i=1

i−1/(pA1)

 = Θ

(
L−1∑
`=L′

b`−1t`+1

)
= O(k),

as argued before.

Proof of cnew(v, n) = Ω(1/k): The lower bound is straightforward. Clearly, BL+1 is contained in the

sphere of influence of vertex v not only at time n but, in fact, at any point of the process. It follows

from Theorem 6.9 that the number of vertices of in-degree 1 that lie in BL+1 is Θ(bL+1n) = Θ(k).

Moreover, their in-neighbours are also contained in the sphere of influence of v and, with the desired

probability, say, half of them are born after time Tv. In order to avoid complications with events not

being independent, we can select a family of Θ(k) directed edges such that no endpoint belongs to

more than one edge. Now, each of these selected edges have both endpoints in the in-neighbourhood

of v with probability p2, independently on the other edges. Hence, the expected number of edges in

|Enew(N−(v, n))| is Ω(1/k) and the conclusion follows easily from the Chernoff bound.

6.3 Proof of Theorem 4.3

We move immediately to the proof.

Proof of Theorem 4.3. Let 1 ≤ α = α(n) = no(1) and 2 ≤ β = β(n) = O(log n) be any functions of n.

We will tune these functions at the end of the proof for a specific value of k, depending on the case
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(i), (ii), or (iii) we deal with. Pick any point s in S and consider two balls, B1 and B2, centered at s;

the first one of volume C1 and the second one of volume C2, where

C1 =
A2

10n
, and C2 =

2(A1 +A2)β

n/(2α)
.

Let v be the first vertex that lands in B1. We independently consider three phases.

Phase 1: Up to time T1 = n/α when deg−(v, T1) = Θ(β).

Consider the time interval between n/(2α) and n/α. We are interested in the following event D:

during the time interval under consideration, β vertices land in B1 but no vertex lands in B2 \ B1.

Clearly,

P(D) =

(
n/(2α)

β

)
Cβ1 (1− C2)

n/(2α)−β ≥
(
nC1

3αβ

)β
exp

(
−C2n

α

)
.

Straightforward but important observations are that every vertex in B1 is inside a ball around any other

vertex in B1 (balls have volumes at least A2/(n/α) ≥ A2/n, deterministically); moreover, conditioning

on D, during the whole time interval all balls around β vertices in B1 are contained in B2 (balls have

volumes at most (A1β +A2)/(n/(2α))).

We condition on event D and consider two scenarios that will be applied for two different ranges

of k.

Event F1: vertices inB1 form a (directed) complete graph on β vertices; in particular, deg−(v, n/α) =

β − 1 and c−(v, n/α) = 1. It follows that

P(F1|D) = p(
β
2),

and so

P(D ∧ F1) ≥
(
nC1

3αβ

)β
exp

(
−C2n

α

)
p(
β
2)

= exp

(
−β log (30αβ/A2)− 4(A1 +A2)β −

(
β

2

)
log (1/p)

)
≥ exp

(
−β logα− 2β log log n− β2 log (1/p)

)
≥ n−1/5−o(1)−1/5 ≥ n−1/2,

provided that

max
{
β logα, β2 log (1/p)

}
≤ 1

5
log n. (13)

Event F2: the first βp/8 − 1 vertices that landed in B1 right after v connected to v but the

remaining β(1−p/8) vertices did not do this; moreover, each of βp/8−1 neighbours of v got connected

to at least βp/4 other vertices. In particular, deg−(v, n/α) = βp/8−1 and all neighbours w of v satisfy

deg−(w, n/α) ≥ βp/4. It follows that

P(F2|D) = pβp/8−1(1− p)β(1−p/8)
βp/8∏
i=1

P
(

Bin(β − i, p) ≥ βp/4
)

≥ [p(1− p)]β P
(

Bin(β(1− p/8), p) ≥ βp/4
)βp/8

≥
[
p(1− p)

2

]β
,
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since E(Bin(β(1− p/8), p)) = β(1− p/8)p ≥ βp/2. This time we get

P(D ∧ F2) ≥
(
nC1

3αβ

)β
exp

(
−C2n

α

)[
p(1− p)

2

]β
= exp

(
−β log (30αβ/A2)− 4(A1 +A2)β − β log

(
2

p(1− p)

))
≥ exp (−β logα− β log β −O(β))

≥ n−1/5−1/5−o(1) ≥ n−1/2,

provided that

max {β logα, β log β} ≤ 1

5
log n. (14)

Phase 2: Between time T1 = n/α and time T2 when deg−(v, T2) ≥ ω log n for some ω = ω(n) ≤
log log n tending to infinity as n→∞.

We assume that events D and F2 hold. Let W be the set of the first βp/8−1 neighbours of v considered

in the previous phase. Using the same argument as in Lemma 6.2, we are going to show that with

probability at least 1/2 for any t in the time interval under consideration and any vertex w ∈W ∪{v},

deg−(w, t) ∼ deg−(w, n/α)

(
t

n/α

)pA1

.

Let ε = 1/(ω log logn) and suppose that

deg−(v, T ) = d ≥ βp/8− 1.

Then, with ‘failing’ probability exp(−Ω(ε2d)), for some value of t, T ≤ t ≤ 2T ,∣∣∣∣∣deg−(v, t)− d ·
(
t

T

)pA1

∣∣∣∣∣ > 5

pA1
· t
T
ε.

We will apply this bound for T = 2in/α for 0 ≤ i = O(log log n). Hence, the probability that we fail

for some vertex (at some time t between T1 and T2) is at most

βp

8
O(log log n) exp(−Ω(ε2d)) = O(β log log n) exp

(
−Ω

(
β

(ω log log n)2

))
≤ 1

2
,

provided that

β ≥ ω3 (log log n)2(log log log n). (15)

The claim holds as the cumulative error term is

(1 +O(ε))O(log logn) = 1 +O(ε log log n) ∼ 1.

Phase 3: Between time T2 and time n.
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We assume that events D and F2 hold, and Phase 2 finished successfully (that is, concentration holds

for all vertices in W ). It follows immediately from Corollary 6.3 that with probability 1− o(n−1β) for

any t in the time interval between T2 and n, and any vertex w ∈W ∪ {v},

deg−(w, t) ∼ deg−(w, n/α)

(
t

n/α

)pA1

.

The conclusion is that with probability at least n−1/2/3, for a given point s in S, there exists vertex

v in B1 that has Θ(β) in-neighbours in B1. Moreover, between time n/α and n, the degree of these

neighbours of v are larger by a factor of at least 2 + o(1) than the degree of v. It follows that in this

time interval, the ball around v is contained in all the balls of early neighbours of v. Conditioning on

this event and assuming that, say, α ≥ 2, with probability at least 1− β exp(−Ω(ω log n)) ≥ 1− n−1,
each early neighbour has a positive fraction of neighbours of v as its neighbours at time n. (Note that

this time events are not independent but the failing probability is small enough for the union bound

to be applied.) It follows that with probability at least n−1/2/4, we have c−(v, n) = Ω(β/k).

Finally, tessellate S into n1−o(1) squares of volumes, say,

C3 =
ω2 log n

n/(2α)
= n−1+o(1),

as it is assumed that α = no(1), and take various s to be the centers of the corresponding squares. Note

that conditioning of all the phases to end up with success, balls of all vertices under consideration are

contained in the square. Moreover, in order to decide if a given square is successful does not require to

expose vertices outside of this square. Hence, the events associated with different squares are almost

independent. Formally, one would need to use (in a straightforward way) the second moment method

to show this claim. It follows that a.a.s. there is at least one square that is successful.

Now, we are ready to tune α and β for a specific function k. For case (i), we take α = 1 (that is,

no phase 2 and 3) and β = k. It is straightforward to see that conditions (13) are satisfied. For case

(ii), we take

β =
k

5
≤ log n

5 log log n
and α =

(
k

β

)1/(pA1)

= 51/(pA1) ≥ 5.

(This time, there is no phase 3.) Again, it is straightforward to see that conditions (14) and (15) are

satisfied. For case (iii), we take

β =
pA1

5
ω(log log n)2(log log log n) and α =

(
k

β

)1/(pA1)

≤ k1/(pA1) ≤ nξ/(pA1).

(Clearly, α� 1.) As usual, it is straightforward to see that conditions (14) and (15) are satisfied, and

the proof is finished.

6.4 Proof of Theorem 4.5

We move immediately to the proof.
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Proof of Theorem 4.5. Let ω = ω(n) = logo(1) n be any function tending to infinity as n → ∞ (arbi-

trarily slowly). First, note that a.a.s.

|Xk| =
(1+δ)k∑
i=(1−δ)k

Θ(i−1−1/(pA1)n) = Θδ(nk
−1/(pA1)),

as the degree distribution of Gn follows power law with exponent 1 + 1/(pA1) (Aiello et al. 2009). Let

rT = T (n) := n

(
2ω log n

k

)1/(pA1)

.

Note that T ≥ nε/(pA1), as k ≤ npA1−ε. It follows from Theorem 4.1 that a.a.s., for each v ∈ Xk,

(1 + o(1))(1− δ)(2ω log n) ≤ deg−(v, T ) ≤ (1 + o(1))(1 + δ)(2ω log n).

In particular, for n large enough,

deg−(v, T ) > ω log n (16)

(as δ < 1/2) and so all old neighbours of v are born before time T .

We start from part (i). As we aim for the statement that holds for almost all vertices in Xk,

we may concentrate on any vertex v ∈ Xk that is born after time nk−1/(pA1)/ω = o(nk−1/(pA1)) and

simply ignore the remaining ones (as the number of them is negligible comparing to |Xk|). Since

each in-neighbour vu of v is also born after time nk−1/(pA1)/ω, we can use Corollary 6.4 to be able to

assume that for any u ≤ t ≤ n,

deg(vu, t) ≤ ω log n

(
t

u

)pA1

≤ ω log n

(
t

nk−1/(pA1)/ω

)pA1

.

As a result, for any T ≤ t ≤ n,

|S(vu, t)|
|S(v, t)|

≤ (1 + o(1))
ω log n

(
t

nk−1/(pA1)/ω

)pA1

deg−(v, T )(t/T )pA1
≤ (1 + o(1))

(
T

nk−1/(pA1)/ω

)pA1

∼ 2ωpA1+1 log n ≤ ω2 log n.

(Here we used Theorem 4.1 and (16).) Moreover, we may ignore all vertices that have too many

vertices that are too close to them at time T . Formally, we ignore all vertices v that have at least

C = d8/(εpA1)e > e vertices in the ball of volume B = 1/(T logε/2 n) around v at time T . Indeed,

suppose that T points are placed independently and uniformly at random in S (without generating

the graph). The probability that a given point v has too many points around is at most(
T

C

)
BC ≤

(
eTB

C

)C
≤ (TB)C = log−εC/2 n = log−4/(pA1) n.

Since the expected number of such points is at most

T log−4/(pA1) n = nk−1/(pA1)(2ω log n)1/(pA1) log−4/(pA1) n

≤ nk−1/(pA1) log−2/(pA1) n,
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it follows from Markov’s inequality that a.a.s. there are at most nk−1/(pA1) log−1/(pA1) n = o(|Xk|) of

them, as claimed. (In fact, nk−1/(pA1) log−1/(pA1) n = O(|Xk|/(ω2 log n)), which will be needed for

part (ii).)

Our goal is to show that cold(v, n) = O(1/k). Since there are at most C = O(1) close in-neighbours

of v, their contribution to cold(v, n) is only O(1/k) and so we need to concentrate on far in-neighbours

of v. Let

T̂ := T log(2+ε)/(1−pA1) n,

and note that

T̂ = n

(
2ω log n

k

)1/(pA1)

log(2+ε)/(1−pA1) n = o(n),

assuming that k ≥ ω2 log1+(2+ε)pA1/(1−pA1) n, which we may by taking ω small enough. Let u be any

(far) in-neighbour of v that is outside of the ball of volume B around v at time T . Note that

|S(u, T̂ )| ≤ (ω2 log n)|S(v, T̂ )|

∼ (ω2 log n)(A1 deg−(v, T̂ ))/T̂

≤ (ω2 log n)(4A1ω log n)(T̂ /T )pA1/T̂

≤ (ω4 log2 n)T̂ pA1−1T−pA1

= (ω4 log2 n)(log−(2+ε) n)/T

= 1/(T log−ε+o(1) n) = o(B)

and so also |S(v, T̂ )| = o(B), which implies that at time T̂ spheres of influence of u and v are disjoint

and will continue to shrink. As a result, the number of common neighbours of v and u is at most

deg−(v, T̂ ) = k(T̂ /n)pA1 = o(k),

and so the number of common neighbours of v and its far neighbours is negligible. Part (i) holds.

The proof of part (ii) is almost the same so we only point out small adjustments that need to

be implemented. It follows from Corollary 4.4 that we may assume that c−(v, n) = O(ω log n/k)

for any vertex v ∈ Xk. Hence, it is enough to show that all but at most O(|Xk|/(ω2 log n)) =

O(nk−1/(pA1)/(ω2 log n)) vertices in Xk have c−(v, n) = O(1/k). This time we can only ignore vertices

born before time nk−1/(pA1)/(ω2 log n) which gives slightly weaker bound for the ratio of the volumes

of influence of a neighbour of v and v itself:

|S(u, t)|
|S(v, t)|

≤ ω3 log1+pA1 n.

As a result, we need to define T̄ as a counterpart of T̂ as follows:

T̄ := T log(2+pA1+ε)/(1−pA1) n,

and note that T̄ = o(n), assuming the stronger lower bound for k. The rest of the proof is not

affected.
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7 Conclusion and future directions

In this paper, we analyzed the clustering properties of the SPA model. Namely, we proved that the

average local clustering coefficient C(d) asymptotically behaves as d−1. Moreover, we were able to

prove that not only the average but the individual local clustering coefficient of a vertex of degree d

behaves as 1/d if d is large enough.

The behaviour C(d) ∝ d−1 is often observed in real-world networks. However, in some cases d−ϕ

with ϕ 6= 1 is claimed. In random graph models of complex networks, it is usually the case that

C(d) ∝ d−1. For example, such decay is proved in Krot and Ostroumova Prokhorenkova (2015) for a

variety of networks based on preferential attachment.

As a future work, it would be interesting to obtain a precise constant C in the expression C(d) ∼
Cd−1. We believe that the value C is defined by the parameters p and A1 of the model, similarly

to what was previously observed for the general class of preferential attachment models (Krot and

Ostroumova Prokhorenkova 2015). This would provide an insight into percolation properties of the

network. Namely, it was shown in Serrano and Boguná (2006b) that percolation properties of a

network are defined by the type (weak or strong) of its connectivity and the type of connectivity is

defined by the constant C (whether it is greater or smaller than one). Another interesting direction

for future research is to analyze the nature of usually obtained value ϕ = 1 and try to modify the SPA

model in order to make it more flexible and allowing to generate graphs with ϕ 6= 1. Similar results

with ϕ 6= 1 were recently obtained for affiliation networks (Bloznelis and Petuchovas 2017).
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