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Abstract

Tutte conjectured in 1972 that every 4-edge connected graph has a nowhere-zero 3-flow. This
has long been known to be equivalent to the conjecture that every 5-regular 4-edge-connected
graph has an edge orientation in which every in-degree is either 1 or 4. We show that the
assertion of the conjecture holds asymptotically almost surely for random 5-regular graphs. It
follows that the conjecture holds for almost all 4-edge connected 5-regular graphs.

1 Introduction

A nowhere-zero 3-flow (sometimes simply called a 3-flow) in an undirected graph G = (V,E) is an
orientation of its edge set E together with a function f assigning a number f(e) ∈ {1, 2} to every
e ∈ E such that the following is satisfied. For every vertex v ∈ V ,∑

e∈D+(v)

f(e)−
∑

e∈D−(v)

f(e) = 0,

where D+(v) is the set of all edges oriented away from v, and D−(v) is the set of all edges oriented
towards v.

A well known conjecture of Tutte from 1972 (see e.g. Bondy and Murty [4] (Open Problem 48)
and Jensen and Toft [6, Section 13.3]) asserts that every 4-edge-connected graph admits a nowhere-
zero 3-flow. This conjecture is still open. For long, it was not even known whether or not there is
a fixed k such that every k-edge connected graph has a nowhere-zero 3-flow (known as the weak
3-flow conjecture of Jaeger). Weaker versions, for k ≥ c log2 n for n-vertex graphs, have been proved
by Alon, Linial and Meshulam [1] and Lai and Zhang [7]. Recently, the weak 3-flow conjecture was
settled by Thomassen [12], who proved that every 8-edge-connected graph admits a nowhere-zero
3-flow. This was subsequently improved to k = 6 by Lovász, Thomassen, Wu, and Zhang [8].

It is known (see, e.g., Seymour [10]) that a graph admits a nowhere-zero 3-flow if and only
if it has a nowhere-zero flow over Z3, or equivalently, an edge orientation in which the difference
between the out-degree and the in-degree of every vertex is divisible by 3. It has also long been
known (see [4] and [6]) that it is enough to prove the conjecture for 5-regular graphs. Thus, Tutte’s
conjecture has the following equivalent form.

Conjecture 1.1 (Tutte) Every 4-edge-connected 5-regular graph has an edge orientation in which
every in-degree is either 1 or 4.
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In this paper, we show that Tutte’s conjecture holds for almost all 5-regular graphs. To state this
precisely, we say that a property of a probability space indexed by n holds a.a.s. (asymptotically
almost surely) if the probability that it holds tends to 1 as n tends to∞ (with n restricted to being
even for odd-degree regular graphs). Using the small subgraph conditioning method of Robinson
and Wormald [9] (see [13]) we show the following.

Theorem 1.2 A random 5-regular graph Gn on n vertices a.a.s. admits a nowhere-zero 3-flow,
that is, an edge orientation in which every in-degree is either 1 or 4.

Since it is well known that almost all 5-regular graphs are 5-edge-connected (see e.g. [13]), it
follows that almost all 4-edge-connected 5-regular graphs have a nowhere-zero 3-flow.

Sudakov [11] concentrated on binomial random graphs but he also proved that a random 11-
regular graph a.a.s. has a 3-flow. Jaeger [5] generalised Conjecture 1.1 by conjecturing that for any
integer p ≥ 1, the edges of every 4p-edge-connected graph can be oriented so that the difference
between the out-degree and the in-degree of every vertex is divisible by 2p + 1. Similar to Tutte’s
conjecture, it is known that the general case can be reduced to the (4p + 1)-regular case. Alon
and Pra lat [2] showed that the assertion of Jaeger’s conjecture holds for almost all (4p+ 1)-regular
graphs, provided that p is large enough. (The lower bound for p was not optimized, but it could
not be reduced to p = 1.) The proof used methods quite different from the present paper, involving
an application of the Expander Mixing Lemma to an equivalent version of the conjecture.

2 Proof of Theorem 1.2

The pairing model for investigating properties of random regular graphs was introduced by Bol-
lobás [3]. This consists of dn points that are arranged in n groups (called vertices) of d each,
arranged in pairs uniformly at random. The pairs induce a multigraph in the obvious way, and we
refer to pairs as edges. This pairing model, called Pn,d, is useful because simple graphs occur with
equal probabilities, and the probability that it is simple for fixed d is bounded away from 0. Hence,
to show that the random regular graph has a property a.a.s., it is enough to show that the random
member of the multigraph corresponding to Pn,d a.a.s. has the same property or is non-simple.
(See [13] for more information on this and other claims we make about Pn,d.) We will work with
orientations of (the pairs of) a pairing in Pn,5 in which each vertex has in-degree 1 or 4. We call such
orientations valid. Given an orientation, vertices of in-degree 1 will be called in-vertices, and those
of out-degree 1 out-vertices, and each point contained in an edge oriented towards an in-vertex, or
away from an out-vertex, is called special. Moreover, a point is an in-point if the edge containing it
is oriented towards it, and an out-point otherwise.

Let Y = Y (n) be the number of valid orientations of a random element of Pn,5. It is easy to see
that

EY =

(
n
n/2

)
5n(5n/2)!

M(5n)
,

where

M(s) =
s!

(s/2)!2s/2

is the number of perfect matchings of s points. Indeed, there are
(
n
n/2

)
ways to select in-vertices

(since exactly half of the vertices must be such), 5n ways to select one special point in each vertex,
which determines each point to be either in or out, (5n/2)! ways to pair up the points so that each
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“in” is paired with an “out”, and M(5n) pairings in total. Using Stirling’s formula s! ∼
√

2πs(s/e)s,
we get

EY =
n!5n(5n/2)!225n/2

(n/2)!2(5n)!
∼
(

25

8

)n/2√
5. (1)

This tells us that there are plenty of valid orientations per pairing, on average. To show that
pairings a.a.s. have at least one valid orientation, i.e. that P(Y > 0) ∼ 1, a common method
would be to estimate EY (Y − 1), show that it is asymptotic to (EY )2, and then apply Chebyshev’s
inequality. As we shall see, this fails in the present case, but only just, as there is a constant
factor discrepancy in the asymptotics. Under such circumstances, we can hope to apply the small
subgraph conditioning method [13]. This consists of checking the following properties of a random
variable Y and sequence of random variables Xi, all indexed by n with asymptotics as n→∞.

(a) For each k ≥ 1, Xi (i ∈ {1, 2, . . . , k}) are asymptotically independent Poisson random variables
with E[Xi] ∼ λi;

(b) For every finite sequence j1, j2, . . . , jk of non-negative integers,

E(Y [X1]j1 · · · [Xk]jk)

EY
∼

k∏
i=1

µjii =
k∏
i=1

(
λi(1 + δi)

)ji
([x]k is the falling factorial);

(c)
∑

i λiδ
2
i <∞;

(d)

E[Y 2]

(E[Y ])2
≤ exp

(∑
i

λiδ
2
i

)
+ o(1).

The conclusion of the method is that, if properties (a)–(d) hold, then

P (Y > 0) = exp

− ∑
δi=−1

λi

+ o(1).

We will apply this with with Y as we have already defined, and with Xk (k ≥ 1) being (as usual
for this method) the number of cycles of length k in Pn,5.

We deal first with (d), the most difficult part, and approach it by estimating EY (Y −1). Consider
any two orientations of the same 5-regular graph. Suppose that precisely k vertices are in-vertices in
both orientations, and that, of these, precisely k11 have the same special point in both orientations.
Since the first orientation induces n/2 in-vertices, exactly n/2 − k vertices are in-vertices in the
first orientation but out-vertices in the second one. Of these, suppose that k10 (k10 ≤ n/2 − k)
have the two special points coinciding. Similarly, there are k vertices that are out-vertices in both
orientations; suppose that k00 of them (k00 ≤ k) have the two special points coinciding. Finally,
there are n/2− k vertices that are out- in the first and in- in the second orientation; suppose that
k01 of them (k01 ≤ n/2− k) have coinciding special points.

It turns out that there are no additional restrictions on these parameters, other than integrality
and non-negativity. We define

I = I(n) =
{

(k, k00, k01, k10, k11) ∈ N5
0 : k ≤ n

2
, max{k00, k11} ≤ k, max{k01, k10} ≤

n

2
− k
}
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where N0 = N ∪ {0}. Fix k = (k, k00, k01, k10, k11) ∈ I. We next calculate the number of configura-
tions, i.e. pairings with two given orientations, corresponding to this vector. There are

n!

k00!k01!k10!k11!(k − k00)!(k − k11)!(n/2− k − k01)!(n/2− k − k10)!
(2)

ways to partition the vertices into the eight groups. There are then

5k00+k01+k10+k11(5 · 4)(k−k00)+(k−k11)+(n/2−k−k01)+(n/2−k−k10) = 5n · 4n−k00−k01−k10−k11 (3)

ways to assign special points in the two orientations. Next, we need to pair (in,in)-points with
(out,out)-points (where the first “in” refers to the first orientation, and so on), and (in,out)- with
(out,in)-points. The number of (in,in)-points is equal to

k11 + 4k00 + 3(k − k00) + (n/2− k − k01) + (n/2− k − k10) = n+ k + k00 + k11 − k01 − k10,

and the same applies for (out,out). These two sets must be paired with each other. Half of the
remaining points, or

5n/2− (n+ k + k00 + k11 − k01 − k10),

will be in-out, and an equal number will be out-in. Hence, there are

(n+ k + k00 + k11 − k01 − k10)!(3n/2− (k + k00 + k11 − k01 − k10))! (4)

ways to legally pair the points. The number of configurations is the product of the expressions
in (2), (3) and (4). To obtain the expected number of pairs of orientations, we must divide this
product by the number M(5n) of pairings. Putting z = z(k) = k/n and applying Stirling’s formula
again, we can write

EY (Y − 1) =
∑
k∈I

r(z)g(z) exp
(
nf(z)

)
, (5)

where the various factors are defined as follows. The function r, which is the error factor in the
applications of Stirling’s formula, has the property that r = O(1) for all z, and r ∼ 1 if z is bounded
away from the boundary of

J :=

{
(z, z00, z01, z10, z11) ∈ R5

0 : z ≤ 1

2
, max{z00, z11} ≤ z, max{z01, z10} ≤

1

2
− z
}

where R0 is the set of non-negative reals. With b = z+ 1 + z00 − z01 − z10 + z11 and h(x) = x log x,

g =
1√

32(πn)5/2

(
b(5− 2b)

z00z01z10z11(z − z00)(z − z11)(1− 2z − 2z10)(1− 2z − 2z01)

)1/2

from the polynomial factors in Stirling’s formula, and

f =
(

9/4− z00 − z01 − z10 − z11

)
log 4 + log 5− h(5) + h(5/2) + h(b) + h(5/2− b)− h(z00)

−h(z01)− h(z10)− h(z11)− h(z − z00)− h(z − z11)− h(1/2− z − z01)− h(1/2− z − z10)

from the rest.
Note that we can extend the definition of f continuously to the boundary of J by defining

x log x = 0 at x = 0. Then f achieves its maximum on J . Our next goal is to show that z̃ =
(1/4, 1/20, 1/20, 1/20, 1/20) is the unique global maximum point of f on J , since we can easily
argue then that points far away from z̃ give negligible contribution to (5).
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We first investigate stationary points in the interior of J . An algebraic manipulation package,
such as the Maple we used, makes this easy. We find

∂f

∂z00
= log

(z − z00)(z + 1 + z00 − z01 − z10 + z11)

2z00(3− 2z − 2z00 + 2z01 + 2z10 − 2z11)
. (6)

Setting this equal to 0 gives P00 = 0 where

P00 = (z − z00)(z + 1 + z00 − z01 − z10 + z11)− 2z00(3− 2z − 2z00 + 2z01 + 2z10 − 2z11).

Defining P01 etc. similarly, and P from ∂f/∂z, we obtain five polynomials such that any local
maximum must be a common zero of all five polynomials. Write R(X,Y, x) for the resultant of two
polynomials X and Y with respect to x. When X = Y = 0, it is necessary that R(X,Y, x)=0. We
find that

P6 := R(P00, P01, z10) = 5z − 5z00 − 10z2 + 10zz00 − 10z01z − 150z01z00,

P6 −R(P00, P10, z01) = 10(z10 − z01)(z + 15z00).

On the interior of J , we have z > 0 and z00 > 0, so we may assume that z01 = z10. Also,

R
(
P6,R(P01, P11, z10), z01

)
= −800z(z00 − z11)(−1 + 2z).

On the interior z < 1/2, so we may assume that z00 = z11.
For any polynomial X, let X∗ be the result of setting z11 = z00 and z10 = z01. We find

P7 := R(P ∗00, P
∗
01, z01) = −60z3 − 480z2z00 − 120zz00 − 1500zz2

00 + 2040z2
00 − 1800z3

00,

R
(
P7,R(P ∗, P ∗00, z01), z00

)
= 573308928× 1011 × z8(4z − 1)(13068z2 − 6534z − 109)(1− 2z)2.

Neither root of the quadratic factor is in [0, 1/2], so at any interior stationary point we must have
z = 1/4. Substituting z = 1/4 into P7 = 0 gives

(20z00 − 1)(96z2
00 − 84z00 − 1) = 0.

Again, the roots of the quadratic factor are out of range, and hence z00 = 1/20 at any interior
stationary point. Thus z11 = 1/20 also. Substituting the known values into P ∗01 gives

1

20
(20z01 − 1)(24z01 − 23)

and hence the unique stationary point of f in the interior of J is z̃.
We turn next to the boundary of J . First consider any point on the boundary at which 0 <

z < 1/2. Then z01 + z10 ≤ 1 − 2z and z00 + z11 ≤ 1 < 3/2 − z. Hence, for z00 tending towards 0
or z, ∂f/∂z00 is dominated by the terms − log z00 and + log(z − z00), which tend to +∞ and −∞
respectively in the two cases. This shows that for 0 < z < 1/2, the boundary points where z00 = 0
or z00 = z cannot contain a global maximum of f on J . A similar observation applies also to show
that z11, z10 and z01 cannot be at the extreme ends of their ranges. Hence, no such boundary point
is a maximum of f .

We are left with considering the boundary points where z = 0 or z = 1/2.

Case 1. z = 0.
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Membership of z in J then forces z00 = z11 = 0. Substituting z = z00 = z11 = 0 into f gives a
function f̄(z01, z10) with domain [0, 1/2]2. Setting its partial derivatives to 0 give two polynomials
equal to 0. Their difference is

−2(6z01 − 11 + 6z10)(−z10 + z01).

Since z01 + z10 ≤ 1, this is only 0 at z01 = z10. We find df̄(z10, z10)/dz10 = (3 + 4z01)2/256z2
01,

which is never 0. So no interior point can be maximum for f̄ . This leaves the boundary of its
domain, where z01 or z10 is 0 or 1/2. If z01 = 0, then ∂f̄∂z01 is large and positive, so there is
no maximum there. By symmetry, it is a similar conclusion if z10 = 0. On the other hand, along
the boundary z01 = 1/2, df̄(1/2, z10)/dz10 = log((2 + z10)/4z10), which is always positive, and
similarly for z10 = 1/2. So the only possible local maximum on the boundary in this case is at
(0, 0, 1/2, 1/2, 0). Here f = log(5/8), whereas f(z̃) = log(25/8).

Case 2. z = 1/2.

Membership of z in J then forces z01 = z10 = 0. It turns out that substituting z = 1/2 and
z01 = z10 = 0 into f produces exactly the function f̄(z00, z11), with the same domain. Hence Case 1
shows that the only local maximum of f here is log(5/8).

In conclusion, f has (at most) three local maxima, at z̃, (0, 0, 1/2, 1/2, 0) and (0, 1/2, 0, 0, 1/2),
and the first of these is the global maximum on J .

The next part of the proof consists of a routine computation and argument. Set z = 1/4+y and
zij = 1/20 + yij for each of the other four variables. Then expand f(z) about the global maximum
point z̃, to obtain

f = log(25/8) + yTBy +O(x3) (7)

where y = (y, y00, y01, y10, y11), yT denotes the transpose of y,

B =
1

10


−92 33 −33 −33 33

33 −117 −8 −8 8
−33 −8 −117 8 −8
−33 −8 8 −117 −8

33 8 −8 −8 −117

 ,

and x = x(z) = ||y||, with || · || denoting the L2 norm (say). The error term in this expansion is
valid by Taylor’s theorem provided that x = o(1).

A standard argument (with details given below) now allows us to estimate the summation in (5),
and we obtain

EY (Y − 1) ∼
(

25

8

)n g(z̃)(πn)5/2√
|detB|

, (8)

where g(z̃) = (55/2)(πn)−5/2 and detB = −3 · 56 · 7/4. This gives EY (Y − 1) ∼ 25√
21

(25/8)n.

Combining this with (1), we have
EY 2

(EY )2
∼ 5√

21
. (9)

We now justify (8). Let J0 := {z : x = o(n−2/5)}. For z ∈ J0, we have r(z)g(z) ∼ g(z̃) and
x3 = o(n−6/5). Thus

∑
k:k/n∈J0

r(z)g(z) exp
(
nf(z)

)
∼
(

25

8

)n
g(z̃)

∑
k:k/n∈J0

eny
TBy.
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The eigenvalues of B are (−37±
√

697)/4, each with multiplicity 1, and −25/2 with multiplicity 3.
These are all less than −2.6. Hence B is negative definite, and we have∑

k:k/n∈J0

eny
TBy ∼ n5

∫
J0

eny
TByd5y.

Here the factor n5 arises from the change of variable from k to z = k/n, and the replacement of the
summation by the integral can be justified by various elementary means. (One way is to rescale to
w =

√
ny and observe that the summations for various n amount to different Riemann sums for

the integral of the fixed function ew
TBw. The regions of integration are different for different n but

the tails of the summation and the integral outside the regions are easily seen to be negligible.) A
simple argument, using the bound |yTBy| ≥ λ1||y||2, where λ1 is the maximum eigenvalue of B,
shows that the latter integral can be extended to all of R5 with no significant change, that is∫

J0

eny
TByd5y ∼

∫
R5

eny
TByd5y =

π5/2

n5/2
√
|detB|

.

Combining the last few conclusions gives∑
k:k/n∈J0

r(z)g(z) exp
(
nf(z)

)
∼
(

25

8

)n g(z̃)(πn)5/2√
|detB|

. (10)

Recalling that B is negative definite, and we conclude from (7) that on the boundary of J0,
the value of f is f(z̃) − Ω(n−4/5). Since f is a fixed function independent of n, and z̃ is its global
maximum,

max
z∈J\J0

f(z) = f(z̃)− Ω(n−4/5) = log(25/8)− Ω(n−4/5).

Considering that r and g are polynomially bounded, it follows that each term in the summation
in (5) (where f is multiplied by n) for which k/n ∈ J\J0 is (25/8)ne−Ω(n1/5). There are a polynomial

number of such terms, so their sum is likewise (25/8)ne−Ω(n1/5). Thus the terms in (10) dominate
the summation in (5), and we have (8) as claimed.

We use (9) for property (d) defined above. For property (a), we use the well known fact that
for each k ≥ 1, X1, X2, . . . , Xk are asymptotically independent Poisson random variables with

EXk → λk :=
4k

2k
. (11)

For property (b), we are required to show, for each k ≥ 1, that there is a constant µk such that

E(Y Xk)

EY
→ µk (12)

and, more generally, such that the joint factorial moments satisfy

E(Y [X1]j1 · · · [Xk]jk)

EY
→

k∏
i=1

µjii (13)

for any fixed j1, . . . , jk. (Recall that here [x]k is the falling factorial.) We will derive a value of µk
satisfying (12) and will observe that essentially the same argument generalises easily to give (13).

To evaluate E(Y Xk), we find the number of triples (P,C,O) where P is a pairing, C is a k-cycle
of P and O is an orientation of P , and then divide by |Pn,5| = M(5n).
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The number of ways to choose the pairs of (i.e. inducing the edges of) the cycle is 20k[n]k/2k.
The easiest way to see this is to choose the vertices of the cycle in one direction, starting at a
canonical one ([n]k), and then an ordered pair of points in each vertex (5k4k), and divide by the
multiplicity of counting due to the canonical start and direction (2k).

We will count the triples (P,C,O) which have i vertices on C with in-degree 2 in C. These must
be out-vertices in the orientation O. The number of vertices with out-degree 2 in C must also equal
i, and these must be in-vertices. The remaining k− 2i cycle vertices have in-degree and out-degree
in C both equal to 1. These can be either in- or out-vertices. We now select the rest of the oriented
pairing. There are

(
n−2i
n/2−i

)
ways to select the remaining in- and out-vertices, and 32i ways to choose

the special points of the vertices of C. (Note that the latter only needs to be done for vertices of
in-degree 0 or 2 in C; vertices of in-degree 1 in the cycle have their special point already determined
by the orientation of the edges of the cycle.) Finally, there are 5n−k ways to choose the special
points of vertices outside C, and then (5n/2− k)! ways to pair up the points of appropriate types.
Let ai denote the number of orientations of C with i vertices of in-degree 2. Dividing the number
of triples by M(5n)EY , and summing over all i, we obtain

E(Y Xk)

EY
∼

∑
0≤i≤k/2

ai
20k[n]k

(
n−2i
n/2−i

)
32i5n−k(5n/2− k)!

2k
(
n
n/2

)
5n(5n/2)!

∼
∑

0≤i≤k/2

ai
2k

(
8

5

)k (3

2

)2i

.

This gives (12) with

µk =
1

2k
·
(

8

5

)k ∑
0≤i≤k/2

ai

(
3

2

)2i

.

To find ai, one can select the 2i vertices of C that are to have out-degree 0 or 2 in C, and after
this there are exactly two ways to orient C. Hence ai = 2

(
k
2i

)
, and this is the coefficient of x2i in

q(x) := 2 (1 + x)k . It follows that

∑
0≤i≤k/2

ai

(
3

2

)2i

=
1

2

(
q(3/2) + q(−3/2)

)
=

(
5

2

)k
+

(
−1

2

)k
,

and thus

µk =
1

2k

(
4k + (−4/5)k

)
.

As mentioned above, the derivation of (12) is a straightforward generalisation of this and, as a
result, property (b) holds. One starts with a set of cycles instead of one cycle, and following the
same argument, the effects of those cycles lead to multiplicative factors in the counting that turn
out to be asymptotically independent. We omit the details.

Finally, for property (c) we need to compute (see (11))

δk =
µk
λk
− 1 =

(
−1

5

)k
and then, using − log(1− x) =

∑
k≥1 x

k/k,

exp

(∑
k≥1

λkδ
2
k

)
= exp

(
1

2

∑
k≥1

1

k

(
4

25

)k )
= exp

(
−1

2
log

(
1− 4

25

))
=

5√
21
.

This verifies property (c). Moreover, the fact that this coincides with the right hand side of (9)
verifies the final thing for the small subgraph conditioning method, property (d). We now get,
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by [13, Theorem 4.1], that P(Y > 0) ∼ 1. That is, a random multigraph in Pn,d a.a.s. has a
nowhere-zero flow over Z3. Theorem 1.2 now follows, in view of the comments at the start of this
section.
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