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Abstract. In Zombies and Survivors, a set of zombies attempts to eat a lone survivor
loose on a given graph. The zombies randomly choose their initial location, and during the
course of the game, move directly toward the survivor. At each round, they move to the
neighbouring vertex that minimizes the distance to the survivor; if there is more than one
such vertex, then they choose one uniformly at random. The survivor attempts to escape
from the zombies by moving to a neighbouring vertex or staying on his current vertex. The
zombies win if eventually one of them eats the survivor by landing on their vertex; otherwise,
the survivor wins. The zombie number of a graph is the minimum number of zombies needed
to play such that the probability that they win is at least 1/2.

This variant of the game was recently investigated for several graph families, such as
cycles, hypercubes, incidence graphs of projective planes, and grids Pn�Pn. However, un-
fortunately, still very little is known for toroidal grids Cn�Cn: the zombie number of Cn�Cn

is at least
√
n/(ω log n), where ω = ω(n) is any function going to infinity as n → ∞, and

no upper bound is known except a trivial bound of O(n2 log n). In this note, we provide an
approach that gives an embarrassing bound of O(n2) but it is possible that (with more care-
ful, deterministic, argument) it might actually give a bound of O(n3/2). On the other hand,
by analyzing a specific strategy for the survivor, it seems that one could slightly improve
the lower bound to

√
n/ω. In any case, we are far away from understanding this intriguing

question.

1. Introduction

For a given connected graph G and given k ∈ N, we consider the following probabilistic
variant of Cops and Robbers, which is played over a series of discrete time-steps. In the
game of Zombies and Survivors, suppose that k zombies (akin to the cops) start the game
on random vertices of G; each zombie, independently, selects a vertex uniformly at random
to start with. Then the survivor (akin to the robber) occupies some vertex of G. As zombies
have limited intelligence, in each round, a given zombie moves towards the survivor along
a shortest path connecting them. In particular, the zombie decreases the distance from its
vertex to the survivor’s. If there is more than one neighbour of a given zombie that is closer
to the survivor than the zombie is, then they move to one of these chosen uniformly at
random. Each zombie moves independently of all other zombies. As in Cops and Robbers,
the survivor may move to another neighbouring vertex, or pass and not move. The zombies
win if one or more of them eat the survivor; that is, land on the vertex which the survivor
currently occupies. The survivor, as survivors should do in the event of a zombie attack,
attempts to survive by applying an optimal strategy; that is, a strategy that minimizes the
probability of being captured. Note that there is no strategy for the zombies; they merely

2000 Mathematics Subject Classification. 05C57, 05C80.
Key words and phrases. Zombies and Survivors, Cops and Robbers.
The author gratefully acknowledges support from NSERC.

1



2 PAWE L PRA LAT

move on geodesics towards the survivor in each round. Note that since zombies always move
toward the survivor, he can pass at most D times, where D is a diameter of G, before being
eaten by some zombie. We note also that our probabilistic version of Zombies and Survivors
was inspired by a deterministic version of this game (with similar rules, but the zombies may
choose their initial positions, and also choose which shortest path to the survivor they will
move on) first considered in [2].

Let sk(G) be the probability that the survivor wins the game, provided that he follows
the optimal strategy. Clearly, sk(G) = 1 for k < c(G), where c(G) is the cop number of
G. On the other hand, sk(G) < 1 provided that there is a strategy for k ≥ c(G) cops in
which the cops always try to get closer to the robber, since with positive probability the
zombies may follow such a strategy. Usually, sk(G) > 0 for any k ≥ c(G); however, there
are some examples of graphs for which sk(G) = 0 for every k ≥ c(G) (consider, for example,
trees). Further, note that sk(G) is a non-decreasing function of k (that is, for every k ≥ 1,
sk+1(G) ≤ sk(G)), and sk(G) → 0 as k → ∞. The latter limit follows since the probability
that each vertex is initially occupied by at least one zombie tends to 1 as k →∞.

Define the zombie number of a graph G by

z(G) = min{k ≥ c(G) : sk(G) ≤ 1/2}.
This parameter is well defined since limk→∞ sk(G) = 0. In other words, z(G) is the minimum
number of zombies such that the probability that they eat the survivor is at least 1/2. The
ratio Z(G) = z(G)/c(G) ≥ 1 is the cost of being undead. Note that there are examples of
families of graphs for which there is no cost of being undead; that is, Z(G) = 1 (as is the
case if G is a tree), and, as argued in [1], there are examples of graphs with Z(G) = Θ(n).

This variant of the game was recently introduced in [1], where several graph families
were investigated, such as cycles, hypercubes, incidence graphs of projective planes, and
Cartesian grids. In particular, the zombie number of the incidence graphs of projective
planes is about two times larger than the corresponding cop number; for hypercubes, this
ratio is asymptotically 4/3.

It seems that the main question for this game is to investigate the zombie number for
grids formed by products of cycles, Tn = Cn�Cn (so called toroidal grids). In [1], it was
proved that the zombie number of Tn is at least

√
n/(ω log n), where ω = ω(n) is any

function going to infinity as n → ∞. The proof relies on the careful analysis of a strategy
for the survivor. On the other hand, trivially, z(Tn) = O(n2 log n). Suppose that the
game is played against k = 3n2 log n zombies. It is easy to see that a.a.s. every vertex
is initially occupied by at least one zombie and if so the survivor is eaten immediately.
Indeed, the probability that at at least one vertex is not not occupied by a zombie is at most
n2(1− 1/n2)k ≤ n2 exp(−k/n2) = 1/n = o(1).

In this paper, we provide a general approach that gives immediately a tiny improvement,
an upper bound of O(n2). We investigate this technique by analyzing a few natural strategies
and show that this approach has no hope of giving an upper bound better than O(n3/2).
However, it is quite possible that (with more careful, deterministic, argument) it might
actually give that bound. It is left for a further investigation. On the other hand, by
analyzing a specific strategy for the survivor, it seems that one could slightly improve the
lower bound to

√
n/ω. In any case, we are far away from understanding this intriguing

question.
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2. Results

2.1. Definitions. Let us start with a formal definition of the class of graphs we investigate
in this paper. For graphs G and H, define the Cartesian product of G and H, written G�H,
to have vertices V (G)×V (H), and vertices (a, b) and (c, d) are joined if a = c and bd ∈ E(H)
or ac ∈ E(G) and b = d. In this note, we consider grids formed by products of cycles. Let Tn
be the toroidal grid n×n, which is isomorphic to Cn�Cn. For simplicity, we take the vertex
set of Tn to consist of Zn × Zn, where Zn denotes the ring of integers modulo n.

Results in the paper are asymptotic in nature as n→∞. We emphasize that the notations
o(·) and O(·) refer to functions of n, not necessarily positive, whose growth is bounded. We
say that an event in a probability space holds asymptotically almost surely (or a.a.s.) if the
probability that it holds tends to 1 as n goes to infinity. Finally, for simplicity we will write
f(n) ∼ g(n) if f(n)/g(n)→ 1 as n→∞; that is, when f(n) = (1 + o(1))g(n).

2.2. General upper bound. We are going to play the game on the toroidal grid Tn. Let
us consider the family F of strategies of the survivor for the first M = M(n) := bn/4c
moves of the game. Here, a strategy is simply a sequence of moves of the survivor which
is not affected neither by initial distribution of zombies nor by their behaviour during the
game. Moreover, we may assume that zombies do not eat the survivor immediately when
they catch him; instead, they walk with him to the end of this sequence of T moves and
then do their job. Hence, since there are n2 vertices to choose from for the starting position
of the survivor and 5 options in each round (“go west”, “go east”, “go north”, “go south”,
and “stay put”), the number of strategies in F is n25M = n25bn/4c. Finally, let F0 ⊆ F be a
subfamily of 5bn/4c strategies of the survivor that finish his walk at vertex (0, 0) of Tn.

Let us concentrate on a given strategy S ∈ F finishing at vertex (a, b) of Tn. For any
x, y ∈ Z such that |x| + |y| ≤ M , let pS(x, y) be the probability that a zombie starting at
vertex (a + x, b + y) eats the survivor using strategy S for the first M moves. Clearly, if
a zombie starts at vertex at distance larger than M from (a, b), then it is impossible for
her to catch the survivor (even intelligent player would not be able to reach (a, b) in M
moves!); hence, in this situation pS(x, y) = 0. Note also that restricting staring positions for
zombies to the subgraph around (a, b) guarantees that the survivor and zombies starting at
this subgraph do not leave it during the fist M rounds. As a result, the game during these
M rounds is played as if it was played on the square grid (Pn�Pn) centred at (a, b), not the
toroidal one. Moreover, since Tn is a vertex transitive graph, without loss of generality, we
may assume that the survivor finishes his walk at vertex (0, 0). These little observations will
simplify the analysis below. Finally, let

t(S) =
M∑

x=−M

M∑
y=−M

pS(x, y).

As mentioned earlier, due to the fact that Tn is vertex transitive, we have

tn := min
S∈F

t(S) = min
S∈F0

t(S).

Now, we are ready to state our first observation.

Theorem 2.1. A.a.s. k = n3/tn zombies catch the survivor on Tn. Hence, z(Tn) = O(n3/tn).

Proof. Let X1, X2, . . . be a sequence of independent random variables, each of them being the
Bernoulli random variable with parameter p = 1/2 (that is, Pr(Xi = 1) = Pr(Xi = 0) = 1/2
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for each i ∈ N). This (random) sequence will completely determine the behaviour of all the
zombies. Formally, let us first fix a permutation π of k zombies. Then, in each round, we
consider all zombies, one by one, using permutation π. If there is precisely one shortest path
between a given zombie and the survivor, the next move is determined; otherwise, the next
random variable Xi from the sequence guides it (for example, if Xi = 0, the zombie moves
horizontally; otherwise, she moves vertically).

Our goal is to show that a.a.s. the survivor is eaten during the fist M = bn/4c rounds,
regardless of the strategy he uses. In order to show it, let us pretend that the game is played
on a real board but, at the same time, there are n25M auxiliary boards where the game is
played against all strategies from F . An important assumption is that the same sequence
X1, X2, . . . is used for all the boards.

Since zombies select initial vertices uniformly at random, the probability that a given
zombie wins against a given strategy S ∈ F is at least

M∑
x=−M

M∑
y=−M

pS(x, y)

n2
≥ tn
n2
.

Since zombies play independently, the probability the survivor using strategy S is not eaten
during the first M rounds is at most(

1− tn
n2

)k

≤ exp

(
−tnk
n2

)
= exp(−n) = o

(
1

n25n/4

)
.

(Note that, in particular, if two zombies start at the same vertex (x, y), each of them catches
the survivor with probability pS(x, y) and the corresponding events are independent.) It
follows that the expected number of auxiliary games where the survivor is not eaten is o(1)
and so a.a.s. he loses on all auxiliary boards. As a result, a.a.s. zombies win the real game
too, regardless of the strategy used by the survivor. Clearly, the survivor should make
decisions based on the behaviour of the zombies (who make decisions at random and so very
often behave in a sub-optimal way); however, if the survivor wins the real game, at least
one auxiliary game is also won by some specific strategy which we showed cannot happen
a.a.s. That is why we needed the trick with the sequence X1, X2, . . . guiding all the games
considered. �

2.3. Deriving pS(x, y). In this subsection, we first derive a recursive formula for calculating
pS(x, y) for a given strategy S ∈ F . Consider any strategy S ∈ F : at the beginning of round
i (1 ≤ i ≤ M = bn/4c), the survivor occupies vertex (xi, yi), zombies make their moves
and then the survivor moves to (xi+1, yi+1); round i is finished and round i + 1 starts. As
before, since Tn is vertex transitive, without loss of generality we may restrict ourselves to
a subfamily F0 of strategies for the first M moves that bring the survivor to vertex (0, 0)
after M rounds; that is, (xM , yM) = (0, 0). We are interested in calculating piS(x, y), the
probability that a zombie occupying (x, y) at the beginning of round i catches the survivor
using strategy S by the end of round M . Note that pS(x, y) = p1S(x, y). Clearly,

pMS (0, 0) = pMS (1, 0) = pMS (−1, 0) = pMS (0, 1) = pMS (0,−1) = 1,

and pMS (x, y) = 0 if |x| + |y| > 1 (zombie must be at distance at most 1 from the survivor
at the beginning of round M). Moreover, for any round 1 ≤ i < M we have the following
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Figure 1. Getting pi−1S (x, y) from piS(x, y).
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→
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1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00

1.00

Table 1. The survivor does not move: pMS → pM−1S → pM−2S

recursive formula. If x 6= xi and y 6= yi, then

piS(x, y) =
pi+1
S (x± 1, y)

2
+
pi+1
S (x, y ± 1)

2
,

where “±” is “+” or “−” so that |xi− (x±1)| < |xi−x| and |yi− (y±1)| < |yi−y| (zombies
move towards the survivor, either horizontally or diagonally; the decision is made uniformly
at random). If x = xi and y 6= yi, then

piS(x, y) = pi+1
S (x, y ± 1)

(zombies move diagonally towards the survivor). Finally, if x 6= xi and y = yi, then

piS(x, y) = pi+1
S (x± 1, y)

(zombies move horizontally towards the survivor).
Reversing the direction, we get the following recursive relationship between piS(x, y) and

pi−1S (x, y). (See Figure 1 for an illustration.) If x 6= xi−1 and y 6= yi−1, then half of the weight
of piS(x, y) is moved horizontally and half of it is moved vertically to the two neighbours of
(x, y) that are further away from (xi−1, yi−1). If x 6= xi−1 but y = yi−1, then half of the
weight of piS(x, y) is moved vertically to both “vertical” neighbours of (x, y); in addition
to this, piS(x, y) is added to the “horizontal” neighbour of (x, y) that is further away from
(xi−1, yi−1). We proceed in a symmetric way if x = xi−1 and y 6= yi−1. Finally, we put

pi−1S (xi−1, yi−1) = piS(xi−1 + 1, yi−1) = piS(xi−1 − 1, yi−1)

= piS(xi−1, yi−1 + 1) = piS(xi−1, yi−1 − 1) = 1.
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1.00

1.00 1.00 1.00
1.00

→

1.00

1.00 1.00 1.00

0.50 0.50 1.00 0.50 0.50
1.00 1.00 1.00

1.00

→

1.00
1.00 1.00 1.00

0.75 0.75 1.00 0.75 0.75

0.25 0.25 1.00 1.00 1.00 0.25 0.25
0.50 0.50 1.00 0.50 0.50

1.00 1.00 1.00

1.00

Table 2. The survivor goes straight up: pMS → pM−1S → pM−2S

Table 1 presents the first two iterations for the strategy where the survivor does not move
at all. Of course, for this simple strategy there is no need to use recursive formula. Clearly,
p1S(x, y) = 1 if the distance from (x, y) to (0, 0) is at most M (that is, |x| + |y| ≤ M) and
p1S(x, y) = 0 otherwise. The next example, presented in Table 2 is more interesting; this
time the survivor goes straight up. In both cases, vertex (xi−1, yi−1) that is used to get pi−1S
from piS is coloured red.

2.4. Upper bound: z(Tn) = O(n2). Since not only all the weight contributing to
∑

x,y p
i
S(x, y)

is preserved in
∑

x,y p
i−1
S (x, y) but each time the total weight increases by at least 4, it triv-

ially follows that tn ≥ 4M = 4bn/4c ∼ n. As a result, from Theorem 2.1 we get the following
upper bound for z(Tn).

Corollary 2.2. z(Tn) = O(n2).

This improves the trivial upper bound of O(n2 log n) but it is embarrassing that this is
the best we can do. Is there an upper bound of O(n2−ε) for some ε > 0? This remains an
open question.

2.5. Examples of 8 strategies. In this subsection, we present a few natural strategies
from family F0: the survivor . . .

(a) . . .does not move.
(b) . . .performs a random walk.
(c) . . .goes straight down.
(d) . . .moves along the diagonal (that is, moves down and then immediately left in each

pair of the two consecutive rounds).
(e–h) . . .goes along edges of a square (k times): k = 1, 2, 3 or 8.

For each of them, we performed simulations with various values of n to estimate t(S). As
discussed earlier, pS(x, y) = 0 if |x|+ |y| > M = bn/4c so it makes sense to use the following
scaling: t(S)/(n2/8) (note that the number of vertices at distance at most M is asymptotic
to 4(M2/2) ∼ n2/8). In particular, for the worst strategy (from the perspective of the
survivor), strategy (a), we get t(S)/(n2/8) ∼ 1. However, for strategies (d) and (h), it seems
that different scaling is appropriate, namely, t(S)/n3/2. Strategy (d) is analyzed in one of
the following subsections and it will become clear why this scaling is more appropriate. We
present our results in Table 3. Finally, functions pS(x, y) are presented visually on Figures 2
and 3 (dark colours correspond to values of probabilities that are close to 1, light ones to
values close to 0).

2.6. Reduction to one dimensional problem. For a while, our conjecture was that
tn = Ω(n2) and, as a result, z(Tn) = O(n). In order to simplify the analysis, we may project
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(a) stay put (b) move randomly

(c) go down (d) go diagonally

Figure 2. Examples of 4 strategies for the first M moves

n (a) (b) (c) (d) (d)’ (e) (h) (h)’
1,000 1 0.699986 0.506009 0.124296 0.491322 0.244716 0.281038 1.110899
2,000 1 0.694902 0.503004 0.089770 0.501829 0.236672 0.172459 0.964076
4,000 1 0.692208 0.501504 0.064498 0.509900 0.229853 0.122445 0.968013
8,000 1 0.690806 0.500758 0.046374 0.518481 0.225787 0.089200 0.997286

Table 3. t(S)/(n2/8) and t(S)/n3/2 ((d)’ and (h)’) for various strategies

pS(x, y) onto x; that is, we may concentrate on

qiS(x) =
M∑

y=−M

piS(x, y).
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(e) one square (f) two squares

(g) three squares (h) eight squares

Figure 3. Examples of 4 more strategies for the first M moves

Clearly, no recursive formula for getting qi−1S (x) from qiS(x) exists but, by setting up a
simple coupling, we can get the following lower bound: qiS(x) ≥ wi(x), where wM(0) = 3,
wM(−1) = wM(1) = 1, and for each 2 ≤ i ≤M and 1 ≤ j ≤M

wi−1(xi−1) = wi(xi−1) + 2

wi−1(xi−1 ± j) =
wi(xi−1 ± (j − 1)) + wi(xi−1 ± j)

2
+ δj=1,

where δj=1 = 1 if j = 1 and 0 otherwise. (Revisiting Figure 1 might be helpful to see this
coupling.) Alternatively, one can apply a slightly weaker coupling to get: qiS(x) ≥ zi(x),
where zM(0) = 3, zM(−1) = zM(1) = 1, and for each 2 ≤ i ≤M and 1 ≤ j ≤M

zi−1(xi−1) = zi(xi−1) + 2

zi−1(xi−1 ± j) =
zi(xi−1 ± (j − 1)) + zi(xi−1 ± j)

2
.
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It is easy to show (by induction) that the difference between two consecutive terms, that is
|zi(x) − zi(x + 1)|, is always at most 4. Indeed, the property is clearly satisfied for i = M ;
for 2 ≤ i ≤M and 1 ≤ j ≤M we get

|zi−1(xi−1)− zi−1(xi−1 ± 1)| =

∣∣∣∣zi(xi−1) + 2− zi(xi−1) + zi(xi−1 ± 1)

2

∣∣∣∣
≤ 2 +

|zi(xi−1)− zi(xi−1 ± 1)|
2

≤ 4,

and

|zi−1(xi−1 ± j)− zi−1(xi−1 ± (j + 1))|

=

∣∣∣∣zi(xi−1 ± (j − 1)) + zi(xi−1 ± j)
2

− zi(xi−1 ± j) + zi(xi−1 ± (j + 1))

2

∣∣∣∣
=

∣∣∣∣zi(xi−1 ± (j − 1))− zi(xi−1 ± j)
2

+
zi(xi−1 ± j)− zi(xi−1 ± (j + 1))

2

∣∣∣∣
≤ |z

i(xi−1 ± (j − 1))− zi(xi−1 ± j)|
2

+
|zi(xi−1 ± j)− zi(xi−1 ± (j + 1))|

2
≤ 4.

In particular, it follows that the sequence (zi(xi))
1
i=M goes up by 2 if the survivor “pauses”

(with respect to this projection; that is, when xi = xi+1) and goes down by at most 2 if
he “moves” (that is, when xi 6= xi+1). Hence, if a strategy S has the property that at
some point t ≤ M/2 there were s more rounds when the survivor pauses than moves, then
t(S) = Ω(s2). Since, without loss of generality, we may assume that the survivor pauses at
for at least M/2 rounds (by projecting onto y instead of x if needed), this “almost” imply
some nontrivial bound for tn. For a while, we were hoping to be able to show that there
exists an ε > 0 such that z1(x1) ≥ εn which would imply tn = Θ(n2) and this in turn would
imply z(Tn) = O(n). Unfortunately, it is not true. Based on simulations, we were able
to identify that strategy (d) might create a problem and serve as a counterexample which
turned out to be the case. We will show in the next section that the conjecture was too
optimistic and, in fact, tn = O(n3/2). But there is still a possibility that tn = Θ(n3/2) and
so perhaps z(Tn) = O(n3/2).

2.7. t(S) = O(n3/2) for strategy (d). Consider strategy (d) discussed above; that is,
suppose that the survivor starts at vertex (bM/2c, dM/2e), where M = bn/4c, and goes to
(0, 0) along the diagonal (that is, moves “South” and then immediately “West” in each pair
of the two consecutive rounds). We will show the following result:

Theorem 2.3. t(S) = O(n3/2) for strategy (d).

Proof. In order to estimate t(S), we need to estimate pS(x, y) for each x, y ∈ Z such that
|x| + |y| ≤ M . Due to the symmetry, we may assume that x ≥ y. Suppose that a given
zombie starts the game at vertex (x, y). We will partition the part of the grid we investigate
into 4 regions and deal with each of them separately. See Figure 4. Let c ∈ R+ be some
fixed, large enough, constant.

Region R1: Suppose that x ≥ M/2 + c
√
n. The zombie moves randomly “North” or

“West” until her position and a position of the survivor match horizontally or vertically. If
they match horizontally, she will never be able to catch the survivor—the distance will be
preserved till the end of the game. On the other hand, if coordinates are matched vertically,
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Figure 4. Strategy (d) under microscope

then there is a chance. The probability of this event can be estimated (see discussion for
Region R3 below) but we do not need it here (we may use a trivial upper bound of 1 for
this conditional probability). It is enough to notice that if the vertical match occurs, then
at some point of the game a zombie moved x − bM/2c more often “West” than she moved
“North”. Hence,

pS(x, y) ≤ P
(
St ≥ t/2 + (x− bM/2c) for some t ≤M

)
,

where X1, X2, . . . is a sequence of independent random variables, each of them being the
Bernoulli random variable with parameter p = 1/2, and St =

∑t
i=1Xt. It follows that

pS(x, y) ≤ exp

(
−Ω

(
(x− bM/2c)2

M

))
.

(For example by converting St into a martingale and using Hoeffding-Azuma inequality.)
The contribution to t(S) from Region R1 is then at most∑

x≥M/2+c
√
n

O(n) exp

(
−Ω

(
(x− bM/2c)2

M

))
= O(n)

∑
x≥c
√
n

exp

(
−Ω

(
x2

n

))
= O(n3/2),

provided that c is large enough.

Region R2: Suppose now that y ≤ −M/2− c
√
n. The zombie moves “North” or “East”,

and it is expected that players match horizontally after r rounds at which point the zombie
occupies vertex (x̂, ŷ), where

x̂ =
M/2 + x

2
+O(1) =

M

4
+
x

2
+O(1)

r = 2(x̂− x) +O(1) = 2

(
M

4
− x

2

)
+O(1)

ŷ = y +
r

2
= y +

(
M

4
− x

2

)
+O(1) =

M

4
− x

2
+ y +O(1).
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The distance from (x̂, ŷ) to (0, 0) is d = x̂− ŷ = x−y+O(1) and so r+d = M/2−y+O(1) ≥
M + c

√
n+O(1). It follows that in order for the zombie to have a chance to win, horizontal

match has to occur much later than expected. Arguing as before, we can estimate the
probability of this event and show that the contribution to t(S) from Region R2 is O(n3/2),
provided that c is large enough.

Region R3: Suppose now that x ≥ y + c
√
n, y ≥ −M/2 + c

√
n, and x ≤ M/2 − c

√
n.

This case seems to be the most interesting. As for the previous region, it is expected that
players match horizontally when the zombie occupies vertex (x̂, ŷ) and the distance between
players is

k =

(
M

2
− y
)
−
(
M

2
− x
)

= x− y ≥ c
√
n.

Arguing as before, we can show that with probability 1 − exp(−Ω(−k2/M)) not only this
happens but at that time the distance between players, Y , is at least k/2.

Conditioning on Y = y ≥ k/2, we aim now to estimate the probability that the survivor
is eaten. Assume that y is even; the odd case can be dealt similarly. Consider a sequence of
two consecutive rounds. At the beginning of each pair of rounds, before the survivor goes
“South”, we measure the absolute difference between the corresponding x-coordinates of the
players, to get a sequence Z0, Z1, . . . , Zy/2 of random variables. Clearly, Z0 = 0 and the
survivor is eaten if and only if Zy/2 = 0. Indeed, if Zy/2 > 0, then the zombie ends up lined
up horizontally before getting close to the survivor and from that point on she will continue
keeping the distance. If Zt > 0, then,

Zt+1 =


Zt + 1 with probability 1/4 (zombie goes “North” twice)

Zt − 1 with probability 1/4 (zombie goes “West” twice)

Zt with probability 1/2 (zombie goes once “West” and once “North”).

On the other hand, if Zt = 0, then the first move of the zombie is forced (she goes “North”)
and so

Zt+1 =

{
1 with probability 1/2 (the second move is “North”)

0 with probability 1/2 (the second move is “West”).

We can couple this process with a lazy random walk and one can show that P(Zy/2 = 0) =

Θ(1/
√
y) = Θ(1/

√
k). The contribution to t(S) from Region R3 is

O(n)

O(n)∑
k=c
√
n

(
exp

(
−Ω

(
k2

n

))
+

1√
k

)
= O(n3/2) +O(n)

∫ O(n)

√
n

dx

x
= O(n3/2),

provided that c is large enough.

The number of vertices not included in the three Regions we considered is O(n3/2) and so
the total contribution is O(n3/2) and the proof is finished. �

2.8. Potential improvement on the lower bound: z(Tn) =
√
n/ω, where ω = ω(n) is

any function going to infinity as n→∞. Let ω = ω(n) be any function going to infinity
as n→∞. Suppose that the survivor uses strategy (d) (regardless what zombies are doing).
This time, he continues moving “diagonally” forever (of course, unless he is eaten earlier).
In the previous section, in order to avoid problems with a boundary effect, we restricted
ourselves to sub-graph around (0, 0). However, it is straightforward to extend the argument
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and show that if the survivor is not eaten for long enough, all the zombies will stay behind
him keeping their distances forever. We do not do it here as the improvement would be
minor anyway. One can show that, a.a.s. k =

√
n/ω zombies cannot catch the survivor on

Tn and so z(Tn) >
√
n/ω. Indeed, after extending the argument, the probability that no

zombie catches the survivor would be(
1− t(S)

n2

)k

= exp

(
−O

(
k√
n

))
= exp(−o(1)) ∼ 1.

This would only be a small improvement comparing to the lower bound in [1] and so we are
not formalize the argument here. Is there a lower bound of Ω(n1/2+ε) for some ε > 0? This
remains an open question.
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