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Abstract

Let T be a random tree taken uniformly at random from the family of labelled

trees on n vertices. In this note, we provide bounds for c(n), the number of sub-trees

of T that hold asymptotically almost surely (a.a.s.). With computer support we show

that a.a.s. 1.41805386n ≤ c(n) ≤ 1.41959881n. Moreover, there is a strong indication

that, in fact, a.a.s. c(n) ≤ 1.41806183n.

1 Introduction

In this paper, we are concerned with the problem of finding bounds for the number of

sub-trees of a random tree on n vertices. Clearly, the path Pn and, respectively, the star

K1,n−1 have the most and the least sub-trees among all trees of order n. The binary

trees that maximize or minimize the number of sub-trees are characterized in Székely and

Wang (2005, 2007). There is an unexpected connection between the binary trees which

maximize the number of sub-trees and the binary trees which minimize the Wiener index,

a chemical index widely used in biochemistry; the Wiener index is defined as the sum of all

pairwise distances between vertices Wiener (1947). Sub-trees of trees with given order and

maximum vertex degree are studied in Kirk and Wang (2008). The extremal trees coincide

with the ones for the Wiener index as well. Finally, trees with given order and given degree

distribution was considered in Zhang et al. (2013).

In this paper, we investigate c(n), the number of sub-trees of a random tree T taken

uniformly at random from the family of labelled trees on n vertices. The tree T is called a

random tree (or random Cayley tree). The classical approach to the study of the properties

of T was purely combinatorial, that is, via counting trees with certain properties. In this

way, Rényi and Szekeres, using complex analysis, investigated the height of T . Perhaps

surprisingly, it turns out that the typical height is of order
√
n Rényi and Szekeres (1967).

Now, a useful relationship between certain characteristics of random trees and branching

processes is established. In fact, recently and independently of this work, Cai and Janson

(2018) investigated the number of sub-trees in a conditioned Galton–Watson tree of size n.

They, in particular, showed that log(c(n)) has a Central Limit Law and that the moments

of c(n) are of exponential scale. Moreover, in an earlier work, Wagner (2012) used these

techniques to show that log(c(n)) is asymptotically normally distributed, with mean and

variance asymptotically equal to µn and σ2n respectively, where the numerical values of

µ and σ2 are µ ≈ 0.35 (slightly less than 1/e; eµ ≈ 1.419067549) and σ2 ≈ 0.04. The

mentioned above central limit theorem for log c(n) implies that a.a.s. c(n) = (c + o(1))n,
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where c = eµ. For more on random trees see, for example, Frieze and Karoński (2015)

or Lyons and Peres (2016).

In this paper, instead of exploiting this probabilistic point of view taken in the papers

mentioned above, we approach the problem through combinatorial perspective. We show

that c(n) can be bounded from above and from below by expressions of the form an,

a.a.s. In fact, the constants in upper and lower bounds can be made arbitrarily close.

The difficulty with calculating the constants lies in the fact that the formula involves the

number of root-containing sub-trees of all rooted trees; since the number of rooted trees

grows quite quickly with the number of vertices, this is quite difficult to calculate. With

computer support, we provide fairly accurate numerical estimates.

Our main results are presented in Section 2. After introducing the notation we move

to a lower bound that does not require computer support; see Section 2.4. The strongest

lower bound, with support of a computer, is presented in Section 2.5 culminating with

Theorem 2.5 which gives that a.a.s. c(n) ≥ 1.41805n. The strongest upper bound can

be found in Section 2.7; Theorem 2.9 implies that a.a.s. c(n) ≤ 1.41960n. In the final

section of the paper, Section 3, we present a conjecture (that we are rather confident is

true) that would determine the first 5 digits of n
√
c(n); see Conjecture 3.1. There is also

a short discussion of the outcome of applying the general result of Zhang et al. (2013)

on the number of sub-trees of a tree with a given order and degree distribution. The

final subsection discusses briefly complementary simulations that we performed during this

project.

The numerical results presented in this paper (in particular, Table 1) were obtained

using Julia language Bezanson et al. (2017). The computations were performed on AWS

EC2 taking in total approximately 1,000 hours of computing.

2 Theoretical bounds

2.1 Asymptotic notation

Each time we refer to T in this paper, we consider a labelled tree on the vertex set [n] taken

uniformly at random from the set of all labelled trees on n vertices. As typical in random

graph theory, we shall consider only asymptotic properties of T as n→∞. We emphasize

that the notations o(·) and O(·) refer to functions of n, not necessarily positive, whose

growth is bounded. We use the notations f � g for f = o(g) and f � g for g = o(f). We

also write f(n) ∼ g(n) if f(n)/g(n) → 1 as n → ∞ (that is, when f(n) = (1 + o(1))g(n)).

We say that an event in a probability space holds asymptotically almost surely (a.a.s.) if

its probability tends to one as n goes to infinity.

2.2 Prüfer code

Let us start with recalling a classic result that will be useful in our analysis. The Prüfer

code of a labelled tree T on n vertices is a unique sequence from [n]n−2 (the set of sequences

of length n− 2, each term is from the set [n] = {1, 2, . . . , n}) associated with tree T Prüfer

(1918). In fact, there exists a bijection from the family of labelled trees on n vertices and

the set [n]n−2. This, in particular, implies that the Cayley’s formula holds: the number

of labelled trees on n vertices is nn−2. More importantly, it gives us a way to generate a

random labelled tree by simply selecting a random element from [n]n−2 and considering

the corresponding tree T .
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Suppose a labelled tree T has vertex set [n]. One can generate the Prüfer code of T by

iteratively removing vertices from the tree until only two vertices remain. At step i of this

process, remove the leaf with the smallest label and set the ith element of the Prüfer code

to be the label of this leaf’s neighbour.

2.3 Lower bound: trivial approach

Consider the Prüfer code of T . Clearly, the degree of any vertex v is the number of times

v appears in the code plus 1. It follows that for any v ∈ [n] = V (T ) and any k ∈ N,

P (deg(v) = k) =

(
n− 2

k − 1

)(
1

n

)k−1(
1− 1

n

)n−k−1
∼ e−1

(k − 1)!
. (1)

Now, let X1 be the number of leaves of T . From above it follows that E[X1] ∼ n/e and

we can easily prove (using, say, the second moment method) that a.a.s. X1 ∼ n/e. (We will

prove a more general result below—see Lemma 2.2—so we skip a formal argument here.)

One can select all non-leaves and then any subset of the leaves to form a sub-tree. (Note

that any subset of leaves can be safely removed and so any choice results with a connected

graph.) We get the following lower bound that holds a.a.s.:

c(n) ≥ 2X1 = 2(1/e+o(1))n =
(

21/e + o(1)
)n
≥ 1.29045n.

2.4 Lower bound: warming up on a piece of paper...

The reason for this section is twofold. First of all, we present a lower bound that does not

require computer support. Another reason is to prepare the reader for a more sophisticated

argument presented in the next section that will give a stronger bound but will require

computer support.

Theorem 2.1. A.a.s. c(n) ≥ 1.37135n.

Proof. Let γ be a sufficiently large integer that will be determined soon. For k ∈ {2, 3, . . . , γ},
let Xk be the number of subsets S ⊆ [n] of size k that induce a star (K1,k−1) and the only

edge connecting S to the rest of T is adjacent to the center of the star. In particular, the

k − 1 leaves of the star are leaves in T .

A trivial, but important, property is that vertices of T that belong to K1,k−1 cannot

be part of some other K1,k′−1 for some k′ (that could be equal to k but does not have

to be). We put vertex v of T (together with the k − 1 leaves adjacent to v) into Ck if v

belongs to some K1,k−1. As a result, we partition the vertex set into a family of classes Ck
(k ∈ {2, 3, . . . , γ}; Ck contains Xk stars and so it contains Xk · k vertices), leaves L that

are not part of any earlier class, and R that contains the remaining vertices of T .

By considering a random Prüfer code, we get that a.a.s., for any k ∈ {2, 3, . . . , γ}

Xk ∼
(
n

k

)
k

(
1

n

)k−1(
1− k

n

)n−k−1
∼ ne−k

(k − 1)!
;

there are
(
n
k

)
choices for S, k choices for the root, each leaf selects the root with probability

1/n, with probability (1− k/n)n−k−1 no vertex picked leaves and no vertex other than the

leaves picked the root. (a more general result will be proved in the next subsection—see

Lemma 2.2.) The number of leaves in L is a.a.s.

|L| = |X1| −
γ∑
k=2

Xk · (k − 1) ∼

(
e−1 −

γ∑
k=2

e−k

(k − 1)!
(k − 1)

)
n = βL n,
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where βL = βL(γ) is a constant that can be made arbitrarily close to

β̂L := e−1 −
∑
k≥2

e−k

(k − 2)!
= e−1 − e1/e−2 ≈ 0.1724

by taking γ large enough. The number of rooted sub-trees of K1,k−1 (including the empty

tree) is clearly 2k−1 + 1. Hence, we get the following lower bound for c(n) by taking all

vertices of R, any subset of L, and any rooted sub-trees from classes Ck: a.a.s.

c(n) ≥ 2|L|
γ∏
k=2

(
2k−1 + 1

)Xk
=

(
2βL+o(1)

γ∏
k=2

(2k−1 + 1)e
−k/(k−1)!+o(1)

)n

=

(
2βL

γ∏
k=2

(2k−1 + 1)e
−k/(k−1)! + o(1)

)n
=
(
β + o(1)

)n
,

where β = β(γ) is a constant that can be made arbitrarily close to

β̂ := 2β̂L

∏
k≥2

(2k−1 + 1)e
−k/(k−1)! = 2e

−1−e1/e−2 ∏
k≥2

(2k−1 + 1)e
−k/(k−1)! > 1.37135

by taking γ large enough. The desired bound holds.

2.5 Lower bound: computer assisted argument

In this section, we generalize the strategy we considered in the previous section. Instead of

restricting ourselves to stars, we investigate all possible trees on k vertices, where k ≤ K

for some value of K. Unfortunately, there is no closed formula for the number of trees with

a given number of sub-trees. However, with computer assistance, we can compute it even

for relatively large values of K. As before, one could additionally include an (arbitrarily

large) family of stars but this improvement is negligible and so we do not do it.

Fix some K ∈ N. We start with a few important definitions.

Family Fk

For each k ∈ [K], let Fk be the family of rooted trees on k vertices; that is, each member

of Fk is a pair (T, v), where T is a labelled tree on the vertex set [k] and v ∈ [k]. Clearly,

|Fk| = kk−2 · k = kk−1. Finally, let F =
⋃K
k=1 Fk.

Vertices of type (T, v) and internal vertices

For each vertex v of T , we consider ` = deg(v) sub-trees of T (T1, T2, . . . , T`), all of them

rooted at v, that are obtained by removing one of the ` edges adjacent to v. Now, each Ti
(on ki vertices) is re-labelled so that labels are from [ki] but the relative order is preserved.

Since we aim for asymptotic results, we may assume that n > 2K and so at most one such

rooted tree, say (T1, v), belongs to F . If this is the case, then we say that v is of type (T1, v)

and that it induces rooted tree (T1, v); otherwise, we say that v is an internal vertex.

Partition of the vertex set of T

We partition the vertex set of T (set [n]) as follows. We start the process at round K.

(It will be convenient to count rounds from K down to 1.) For each vertex of type (T, v),

for some (T, v) ∈ FK , we put all the vertices of the rooted sub-tree it induces into class

C(T, v). Note that no vertex of T belongs to more than one sub-tree as we consider only
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types from FK (trees of a fixed size). Hence, in particular, the classes created so far are

mutually disjoint. On the other hand, all vertices of type different than (T, v) that are

placed into class C(T, v) are of type from F \ FK . Hence, in order to avoid placing one

vertex into more than one class, we need to “trim” the tree and remove all vertices that are

already placed into some class. Round K is finished and now we move to the next round,

round K − 1, in which vertices of types from FK−1 are considered and proceed the same

way. (Note that not all of them are removed during round K.) We do it recursively all the

way down to round 1 during which F1 is considered and so the remaining leaves of T are

trimmed. The only vertices left are internal ones which are placed into set R. We obtain

the following partition of [n]: {C(T, v) : (T, v) ∈ F} ∪ {R}.

We start with estimating the number of vertices of each type. The following lemma is

well-known but we provide its proof for completeness. In fact, the number of vertices of

type (T, v) satisfies a central limit theorem; see, for example Janson (2016)

Lemma 2.2. For any K ∈ N, the following property holds a.a.s. For any (T, v) ∈ Fk for

some k ∈ [K], the number of vertices of type (T, v) is (1 + o(1))ne−k/k!.

Proof. The argument is a straightforward application of the second moment method. Fix

any k ∈ [K] and (T, v) ∈ Fk; we will show that the desired bound holds a.a.s. for this

choice. This will finish the proof as the number of choices for k and (T, v) is bounded and

so the conclusion holds by the union bound.

For any S ⊆ [n], |S| = k, let I(S) be the indicator random variable that set S induces a

tree T rooted at v (after relabelling preserving the order of vertices of S) and the only edge

from S to its complement is adjacent to a vertex re-labelled as v. The number of vertices

of type (T, v) is

X =
∑

S⊆[n],|S|=k

I(S).

For any S we have

p := P(I(S) = 1) =

(
1

n

)k−1(
1− k

n

)n−k−1
∼ n−(k−1)e−k.

Indeed, without loss of generality, we may assume that S = {1, 2, . . . , k}. Then, the first

k − 1 terms of the Prüfer code of T are completely determined by T and v (hence term

(1/n)k−1); moreover, the remaining (n− 2)− (k − 1) = n− k − 1 terms cannot be from S

(hence term (1− k/n)n−k−1). It follows that

E[X] =

(
n

k

)
p ∼ nkp

k!
∼ ne−k

k!
.

Now,

Var[x] = Var

 ∑
S⊆[n],|S|=k

I(S)


=

∑
S,S′(∗)

(
P(I(S) = 1, I(S′) = 1)− P(I(S) = 1)2

)
+
∑
S

(
P(I(S) = 1)− P(I(S) = 1)2

)
,

where (∗) means that the sum is taken over all pairs of sets S, S′ ⊆ [n] with |S| = |S′| = k.

The second term in the last sum can be dropped to get an upper bound of E[X] for the last
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sum. More importantly, note that if S and S′ intersect, then P(I(S) = 1, I(S′) = 1) = 0.

Hence,

Var[x] ≤
∑

S,S′(∗∗)

(
P(I(S) = 1, I(S′) = 1)− P(I(S) = 1)2

)
+ E[X],

where (∗∗) means that the sum is taken over all pairs of disjoint sets S, S′ ⊆ [n] with

|S| = |S′| = k. For any such pair,

q := P(I(S) = 1, I(S′) = 1)− P(I(S) = 1)2

=

(
1

n

)2(k−1)(
1− 2k

n

)(n−2)−2(k−1)

−

((
1

n

)k−1(
1− k

n

)(n−2)−(k−1)
)2

=

(
1

n

)2(k−1)
((

1− 2k

n

)n−2k
−
(

1− k

n

)2n−2k−2
)
.

Using the fact that 1−x = exp(−x−x2/2 +O(x3)) and then that exp(x) = 1 +x+O(x2),

we get

q := n−2(k−1)
(

exp

(
−2k +

2k2

n
+O(n−2)

)
− exp

(
−2k +

k2 + 2k

n
+O(n−2)

))
∼ n−2(k−1)e−2k

(
1− exp

(
−k2 + 2k

n
+O(n−2)

))
∼ p2(k2 − 2k)

n
.

It follows that

Var[x] ≤
(
n

k

)(
n− k
k

)
q + E[X] ∼

((
n

k

)
p

)2
k2 − 2k

n
+ E[X] = o(E[X]2).

The second moment method implies that a.a.s. X ∼ E[X] and the proof is finished.

Now, we are ready to analyze the trimming process that yields the desired partition of

the vertex set of T .

Lemma 2.3. For any K ∈ N, the following property holds a.a.s. For any (T, v) ∈ Fk for

some k ∈ [K],

|C(T, v)|
n

∼ k · fK(k), where fK(k) :=
e−k

k!
−

K∑
`=k+1

(`− k)`−k−1
(

`

`− k

)
e−`

`!
.

Proof. Since we aim for a statement that holds a.a.s., we may assume that T is any labelled

tree on the vertex set [n] that satisfies the properties stated in Lemma 2.2. The desired

property will hold deterministically. To that end, we need to analyze the trimming process.

Fix any (T, v) ∈ FK . During the first round (that is, round K), all vertices of type

(T, v), together with the corresponding trees that are induced by them, are moved to class

C(T, v). By Lemma 2.2, the number of vertices of type (T, v) is (1 + o(1))ne−K/K! and so

|C(T, v)|/n ∼ K · f̂K(K), where

f̂K(K) :=
e−K

K!
.

Now, consider any round k (1 ≤ k < K) and suppose that the process is already analyzed up

to that point; that is, during rounds ` (k+1 ≤ ` ≤ K), for any (T, v) ∈ F`, (1+o(1))f̂K(`)n

vertices of type (T, v) were moved to class (T, v) (as usual, together with the corresponding

trees that are induced by them). Fix any (T, v) ∈ Fk. By Lemma 2.2, at the beginning of
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the trimming process there were (1 + o(1))ne−k/k! vertices of type (T, v). Some of them

were trimmed during some round ` (k + 1 ≤ ` ≤ K); but how many of them? In order

to answer this question we need to know how many rooted trees on ` vertices contain a

vertex of type (T, v). We are going to use an argument similar to the one used in the

proof of Lemma 2.2. There are
(
`
k

)
ways to select labels for the sub-tree on k vertices of

a tree on ` vertices. Without loss of generality, we may assume that the selected labels

are {1, 2, . . . , k}. Now, the Prüfer code for a super-tree on ` vertices has to have the first

k − 1 terms as determined by T and v. The remaining (` − 2) − (k − 1) = ` − k − 1

terms yield all possible super-trees; each of these terms is from [`] \ [k]. Since there are

(`− k) choices for the root of a tree on ` vertices, we get that the answer to our question is

(`− k)`−k−1(`− k)
(
`
k

)
= (`− k)`−k

(
`
k

)
. It follows that the number of vertices of type (T, v)

that survived till round k is (1 + o(1))f̂K(k)n, where

f̂K(k) :=
e−k

k!
−

K∑
`=k+1

(`− k)`−k
(

`

`− k

)
f̂K(`), (2)

and so |C(T, v)|/n ∼ k · f̂K(k).

It remains to show that fK(k) = f̂K(k) for 1 ≤ k ≤ K; we prove it by strong induction

on k. Clearly, fK(K) = f̂K(K) so the base case holds. Suppose then that fK(`) = f̂K(`)

for k + 1 ≤ ` ≤ K and our goal is to show that fK(k) = f̂K(k). From this and (2) we get

f̂K(k) =
e−k

k!
−

K∑
`=k+1

(`− k)`−k
(

`

`− k

)
fK(`)

=
e−k

k!
−

K∑
`=k+1

(`− k)`−k
(

`

`− k

)(
e−`

`!
−

K∑
m=`+1

(m− `)m−`−1
(

m

m− `

)
e−m

m!

)
.

We will show that the terms in f̂K(k) containing e−a for k < a ≤ K are the same as the

ones in fK(k). (Clearly, it is the case for a = k.) To see this, note that one of these terms

is present in the above equation for ` = a (see the first part inside the parenthesis) and

one for each k < ` < a (see the term corresponding to m = a in the second part inside the

parenthesis). Collecting those terms in f̂K(k) we get:

−(a− k)a−k
(

a

a− k

)
e−a

a!
+

a−1∑
`=k+1

(`− k)`−k
(

`

`− k

)
(a− `)a−`−1

(
a

a− `

)
e−a

a!
.

On the other hand, the only term in fK(k) containing e−a is −(a − k)a−k−1
(
a

a−k
)
e−a/a!.

Hence, to finish the inductive step it is enough to show that

(a− k − 1)(a− k)a−k−1
(

a

a− k

)
=

a−1∑
`=k+1

(`− k)`−k
(

`

`− k

)
(a− `)a−`−1

(
a

a− `

)
,

which, after substituting b = a− k and c = `− k, we can rewrite as

(b− 1)bb−1 =

b−1∑
c=1

(
b

c

)
cc(b− c)b−c−1 =

b−1∑
c=1

c

(
b

c

)
cc−1(b− c)b−c−1. (3)

Then, by setting d = b − c in the first step, and then using the fact that
(
b
b−d
)

=
(
b
d

)
and

changing d to c in the notation in the second step, we get

(b− 1)bb−1 =

b−1∑
d=1

(b− d)

(
b

b− d

)
(b− d)b−d−1dd−1

=

b−1∑
c=1

(b− c)
(
b

c

)
(b− c)b−c−1cc−1. (4)
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By adding (3) and (4) and dividing both sides by b we get

2(b− 1)bb−2 =

b−1∑
c=1

(
b

c

)
cc−1(b− c)b−c−1. (5)

The final “puzzle piece” missing is the proof of (5) for which we will use a bijective

argument. The left hand side of (5) counts all labelled trees on the vertex set [b] with

one edge selected and oriented. Now, consider the following construction. First, take any

proper and non-empty subset C ⊆ [b] of size c (1 ≤ c ≤ b− 1); let D = [b] \ C. Construct

any labelled tree on C and select one vertex vC ∈ C. Similarly, construct any labelled

tree on D and select one vertex vD ∈ D. Finally, connect vC to vD by an oriented edge

from vC to vD. The described construction generates all possible labelled trees with one

edge selected and oriented. Moreover, each such tree is constructed exactly once. Now

observe that the number of such constructions is equal to right hand side of (5). The proof

is finished.

Now, we are ready to state the main result of this sub-section that yields the strongest

lower bound we have.

Theorem 2.4. Fix any K ∈ N. For any (T, v) ∈ Fk for some k ∈ [K], let g(T, v) be

the number of sub-trees of T containing v. Let fK(k) be defined as in the statement of

Lemma 2.3.

Then, the following bound holds a.a.s.

c(n) ≥

 K∏
k=1

∏
(T,v)∈Fk

g(T, v)fK(k) + o(1)

n

. (6)

Proof. Recall that the vertex set of T is partitioned as follows: for (T, v) ∈ F , set C(T, v)

contains vertices of type (T, v) that induce rooted trees T , together with other vertices of

T ; the internal vertices form set R. It follows from Lemma 2.3 that a.a.s., for any k ∈ [K]

and any (T, v) ∈ Fk, the number of rooted trees in C(T, v) is (1 + o(1))fK(k)n. By taking

all vertices of R and any rooted sub-trees from C(T, v), the following lower bound for c(n)

holds: a.a.s.

c(n) ≥

 K∏
k=1

∏
(T,v)∈Fk

g(T, v)fK(k)+o(1)

n

=

 K∏
k=1

∏
(T,v)∈Fk

g(T, v)fK(k) + o(1)

n

,

since the number of terms in this product is bounded.

Function fK(k) can be easily calculated (numerically) even for relatively large values

of K and k. Unfortunately, there is no closed formula for g(T, v), the number of rooted

sub-trees of T (recall that the empty tree is included). On the other hand, g(T, v) can be

easily computed with computer support using the following simple, recursive algorithm.

Let N(v) be the set of neighbours of v. For any w ∈ N(v), T − vw (that is, forest obtained

after removing edge vw) consists of two sub-trees; let S(T, v, w) be the sub-tree containing

w. Then g(T, v) can be computed as follows: if T is K1 (isolated vertex), then g(T, v) = 2;

otherwise,

g(T, v) = 1 +
∏

w∈N(v)

g(S(T, v, w), w). (7)

Actual computations of c(n) can be made efficient using the following two observations:

8



1. we do not have to explicitly generate all trees (T, v) in Fk; it is enough to count

the number of rooted trees of size k that have a given value of g(T, v)—since this is

enough to compute (6);

2. if we start from k = 1 up to k = K, then we can derive counts of trees from Fk with

unique values of g(T, v) using counts of numbers of trees from Fk−s, where s ∈ [k−1],

with unique values of g(T, v)—as in (7), the right hand side considers trees of size

one less than the left hand side.

The exact procedure is given in Algorithm 1, where x(k, g) = |{(T, v) ∈ Fk : g(T, v) = g}|.
Using x(k, g), one can rewrite (6) as follows:

c(n) ≥

 K∏
k=1

∏
g∈N

gfK(k)

x(k,g)

+ o(1)


n

=

 K∏
k=1

∏
g∈N

gx(k,g)

fK(k)

+ o(1)


n

,

Algorithm 1 Algorithm for calculation of x(k, g).

∀k, g ∈ N : x(k, g)← 0

x(1, 2)← 1

for k ∈ {2, 3, . . . ,K} do
for all a1, a2, . . . , am ∈ N such that

∑m
i=1 ai = k − 1 and ai ≤ ai+1 do

let nj , j ∈ [p], be the length of the j-th constant subsequence of the ai sequence

for all x(ai, gi) over all i ∈ [m] and gi ∈ N do

x(k, 1 +
∏m
i=1 gi)← x(k, 1 +

∏m
i=1 gi) + k!∏p

j=1 nj !

∏m
i=1

x(ai,gi)
ai!

end for

end for

end for

The obtained lower bounds for K = 1, 2, . . . , 30 are presented in Table 1 (column lower,

the following columns are explained in the following sections). Clearly, the strongest bound

is yielded by K = 30 and is the best lower bound we have.

Theorem 2.5. A.a.s. c(n) ≥ 1.41805n.

2.6 Upper bound: trivial approach

Recall that in the proof of Theorem 2.1 we partition the vertex set of T into a family of

classes Ck (k ∈ {2, 3, . . . , γ}; Ck contains Xk stars and so it contains Xk ·k vertices), leaves

L that are not part of any earlier class, and R that contains the remaining vertices of T .

The size of L is already estimated in Theorem 2.1. The number of vertices that belong to

some class Ck is a.a.s.∣∣∣ γ⋃
k=2

Ck

∣∣∣ =

γ∑
k=2

Xk · k ∼
γ∑
k=2

ne−k

(k − 1)!
k = βC n,

where βC = βC(γ) is a constant that can be made arbitrarily close to

β̂C :=
∑
k≥2

e−k

(k − 1)!
k = e1/e−1 + e1/e−2 − e−1 ≈ 0.3591

by taking γ large enough. Finally, a.a.s.

|R| = n−
∣∣∣⋃Ck

∣∣∣− |L| ∼ (1− βC − βL)n = βR n,
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where βR = βR(γ) = 1− βC − βL is the constant tending to

β̂R := 1− β̂C − β̂L = 1− e1/e−1 ≈ 0.4685

as γ →∞.

To get an upper bound for c(n), we select any subset of R∪L and any rooted sub-trees

from classes Ck. Clearly, sub-trees of T consisting of a single leaf from one of the Ck’s are

not achieved but there are only O(n) of them. All other sub-trees of T are achieved but

not all selected sets induce a connected graph. (In fact, almost all of them do not!) So we

are clearly over-counting but the following can serve as the upper bound that holds a.a.s.:

c(n) ≤ 2|L|+|R|
γ∏
k=2

(
2k−1 + 1

)Xk
+O(n)

=

(
2βL+βR+o(1)

γ∏
k=2

(2k−1 + 1)e
−k/(k−1)!+o(1)

)n
+O(n)

=

(
2βL+βR

γ∏
k=2

(2k−1 + 1)e
−k/(k−1)! + o(1)

)n
+O(n) =

(
α+ o(1)

)n
,

where α = α(γ) is a constant that can be made arbitrarily close to

α̂ := 2β̂L+β̂R

∏
k≥2

(2k−1 + 1)e
−k/(k−1)!

= 21+e
−1−e1/e−1−e1/e−2 ∏

k≥2

(2k−1 + 1)e
−k/(k−1)! < 1.89756

by taking γ large enough. It follows that a.a.s. c(n) ≤ 1.89756n.

The same trivial argument can be used to adjust Theorem 2.4: the ratio between the

upper and the lower bound is 2|R|, where R is the set of internal vertices. The following

straightforward corollary of Lemma 2.2 estimates the size of R. It shows that the fraction

of vertices that are internal is tending to zero as K → ∞. This is, of course, a desired

property as it implies that the gap between the upper and the lower bound for c(n) can

be made arbitrarily small by considering large values of K. Unfortunately, the rate of

convergence is not so fast.

Corollary 2.6. For any K ∈ N, a.a.s.

|R|
n
∼ h(K) := 1−

K∑
k=1

(k/e)k

k · k!
= Θ

(
1√
K

)
,

where the asymptotic expression is with respect to K.

Proof. The number of internal vertices (that is, vertices that are not of type (T, v) for any

(T, v) ∈ F) can be estimated using Lemma 2.2. Since |Fk| = kk−1, we get that

|R|
n

∼ 1−
K∑
k=1

|Fk|
e−k

k!
= 1−

K∑
k=1

(k/e)k

k · k!
= h(K).

It is well-known that h(K) tends to zero, that is, the series
∑∞
k=1

(k/e)k

k·k! tends to 1. For

example, it is the exponential generating function for rooted labelled trees evaluated at 1/e,

or (up to the sign) the Lambert W -function evaluated at −1/e. However, for completeness
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and less familiar readers, let us consider the branching process in which every individual

produces individuals that is an independent random variable with Poisson distribution with

expectation 1. The process extincts with precisely k individuals (in total) with probability
(k/e)k

k·k! (see, for example, Tanner (1961)). Hence, h(K) is the probability that the total

number of individuals is more than K. Since the process extincts with probability 1,

h(K)→ 0+ as K →∞; or, alternatively,
∑
k≥1

(k/e)k

k·k! = 1. To see the rate of convergence

we apply Stirling’s formula k! ∼
√

2πk(k/e)k to get

h(K) =
∑
k>K

(k/e)k

k · k!
= Θ

(∑
k>K

k−3/2

)
= Θ

(
1√
K

)
.

The proof is finished.

We get the following counterpart of Theorem 2.4.

Observation 2.7. Fix any K ∈ N. For any (T, v) ∈ Fk for some k ∈ [K], let g(T, v)

be the number of sub-trees of T containing v. Let fK(k) and h(K) be defined as in the

statements of Lemma 2.3 and Corollary 2.6, respectively.

Then, the following bound holds a.a.s.

c(n) ≤

2h(K)
K∏
k=1

∏
(T,v)∈Fk

g(T, v)fK(k) + o(1)

n

.

Moreover, a.a.s. c(n) = (c+ o(1))n, where

c = lim
K→∞

K∏
k=1

∏
(T,v)∈Fk

g(T, v)fK(k) .

The numerical values of the upper bounds for c(n) and for |R|/n (K ∈ {1, 2, . . . , 30})
are presented in Table 1 (see column upper 1 and column |R|/n, respectively). For K = 30

we get that a.a.s. c(n) ≤ 1.56727n. As already mentioned, unfortunately, the rate of

convergence is not so fast. Since the computational complexity of the problem makes K to

be not so large (at most 30), the number of internal vertices is substantial (|R| ≈ 0.14434n

for K = 30) and so more sophisticated arguments will be needed.

2.7 Upper Bound: computer assisted argument

We continue using the notation and definitions used in Section 2.5. Recall that the vertex

set of T is partitioned as follows: for (T, v) ∈ F , set C(T, v) contains vertices of type (T, v)

that induce rooted trees T , together with other vertices of T ; the internal vertices form set

R. However, this time we additionally partition R into two sets: RL contains vertices of

type (T, v) ∈ Fk for some K < k ≤ K̂ (light internal vertices) and RH = R \ RL (heavy

internal vertices).

Here is the strongest upper bound we have, in its general form.

Theorem 2.8. Fix any K, K̂ ∈ N such that K < K̂. For any (T, v) ∈ Fk for some k ∈ [K],

let g(T, v) be the number of sub-trees of T containing v. Let fK(k) and h(K) be defined as

in the statements of Lemma 2.3 and Corollary 2.6, respectively.

Then, the following bound holds a.a.s.

c(n) ≤ (ξ1ξ2ξ3ξ4 + o(1))
n
,
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where

ξ1 =

(
K̂ + 1

K̂

)h(K̂)

ξ2 =

K̂∏
k=K+1

(
k + 1

k

)k(k−1)k−2e−k/k!

ξ3 =

K̂∏
k=K+1

(
2k − 1

2k − 2

)(kk−1−k(k−1)k−2)e−k/k!

ξ4 =

K∏
k=1

∏
(T,v)∈Fk

g(T, v)fK(k).

Proof. Let us fix any vertex r ∈ [n]. Our goal is to use (7) to estimate g(T , r), the number

of sub-trees of T containing r. As mentioned earlier, [n] is partitioned into sets C(T, v)

containing trees rooted at vertices of type (T, v), RL and RH consisting of light and,

respectively, heavy internal vertices. It follows from Lemma 2.3 that a.a.s., for any k ∈ [K]

and any (T, v) ∈ Fk, the number of rooted trees in C(T, v) is (1 + o(1))fK(k)n. From

Corollary 2.6 we get that a.a.s. the number of heavy internal vertices is (1 + o(1))h(K̂)n.

Finally, Lemma 2.2 implies that a.a.s. for any (T, v) ∈ Fk for some k ∈ [K̂], the number of

vertices of type (T, v) is (1 + o(1))ne−k/k!.

Recall that for any w ∈ N(v), T−vw consists of two sub-trees; S(T, v, w) is the sub-tree

containing w. Then,

g(T, r) = 1 +
∏

w∈N(r)

g(S(T, r, w), w)

and g(T, v) can be (recursively) computed as follows: if (T, v) ∈ F =
⋃
k∈[K] Fk, then

g(T, v) is already known (that is, computed by computer); otherwise,

g(T, v) = 1 +
∏

w∈N(v)

g(S(T, v, w), w) = m(T, v) ·
∏

w∈N(v)

g(S(T, v, w), w),

where

m(T, v) =
1 +

∏
w∈N(v) g(S(T, v, w), w)∏

w∈N(v) g(S(T, v, w), w)
=

g(T, v)

g(T, v)− 1
.

Clearly, for any (T, v) ∈ Fk we have the following trivial upper bound: m(T, v) ≤
(k + 1)/k; this bound is sharp as g(T, v) = (k + 1)/k for a rooted path on k vertices. We

will use this bound for all pairs (T, v) where v is a leaf in T . The number of pairs (T, v) in

Fk where v is a leaf of T is k(k−1)k−2 (there are k choices for the label of v, and (k−1)k−2

rooted trees in Fk−1 that can be attached to v to form T ). This explains the term ξ2. For

heavy internal vertices, we use even a weaker bound: m(T, v) ≤ (K̂ + 1)/K̂. This justifies

the term ξ1. To make our bound stronger, we will use a better estimation for m(T, v) when

v has degree at least 2 in T and corresponds to a light internal vertex in T . Indeed, if this

is the case, then g(T, v) ≥ 2k−1; this bound is also sharp as g(T, v) = 2(k−1)+1 = 2k−1

for a rooted path on k − 1 vertices with a leaf attached to the root (that is, a path on

k vertices rooted at a vertex adjacent to a leaf). Hence, for pairs of this type we have

m(T, v) ≤ (2k − 1)/(2k − 2). The total number of members of Fk is kk−1 and we already

know how many of them are not of this type. This justifies the term ξ3.

Putting all ingredients together we get that a.a.s. g(T , r) ≤ (ξ1ξ2ξ3ξ4 + o(1))
n
, and so

c(n) ≤ n (ξ1ξ2ξ3ξ4 + o(1))
n

= (ξ1ξ2ξ3ξ4 + o(1))
n

as n = (1 + O(log n/n))n = (1 + o(1))n.

The proof is finished.
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The numerical values of the upper bounds for c(n) (K ∈ {1, 2, . . . , 30} and K̂ = 10, 000)

following from Theorem 2.8 are presented in Table 1 (see column upper 2 ). Note that in

the computations we are aggregating very small numbers; therefore, in order to ensure

numerical soundness of the results, we have performed them using 1,024 bit mantissa and

rounding-up arithmetic. For K = 30 we get the following values ξ1 < 1.0000008, ξ2 <

1.0005917, ξ3 < 1.00049672, ξ4 < 1.4180539 that lead to the following upper bound which

is the strongest bound we managed to obtain:

Theorem 2.9. A.a.s. c(n) ≤ 1.41960n.

3 Conclusions

We finish the paper with a few comments.

3.1 Conjecture

Let us revisit the proof of Theorem 2.8. It follows that the ratio between upper and lower

bounds for n
√
c(n) can be made arbitrarily close to

η :=
∏

k≥K+1

∏
(T,v)∈Fk

m(T, v)e
−k/k! =

∏
k≥K+1

m(k)k
k−1e−k/k!,

where

m(k) :=

 ∏
(T,v)∈Fk

m(T, v)

1/kk−1

is a geometric mean of m(T, v) over all members of Fk. We partitioned Fk into two sets

to get the two corresponding upper bounds for m(T, v) ((k + 1)/k and (2k − 1)/(2k − 2))

which yielded constants ξ2 and ξ3. The improvement after partitioning of Fk is rather mild

and the main reason for that was to determine the two significant digits of n
√
c(n). On the

other hand, one can easily partition Fk into more sets to improve the upper bound. We

do not follow this approach as the following, much stronger, property should be true. It is

safe to conjecture that m(k) is a decreasing function of k and this is verified to be the case

for 1 ≤ k ≤ K = 30—see Table 1 (column multiplier). (In fact, it should converge to zero

quite fast so the conjecture is really safe.) Unfortunately, at present, we cannot prove this

property; we have tried a number of couplings between Fk+1 and Fk but with no success.

If the property holds, then

η =
∏

k≥K+1

m(k)k
k−1e−k/k! ≤

∏
k≥K+1

m(K)k
k−1e−k/k! = m(K)|R|/n.

Using K = 30 and the numerical value of m(30) ≈ 1.00003886 we make the following

conjecture. The conjectured bounds implied by smaller values of K can be found in Table 1

(see column conj. upper).

Conjecture 3.1. A.a.s. c(n) ≤ 1.41806182n.

In fact, it feels safe to conjecture that the first 5 digits of n
√
c(n) are 1.41805. If the

desired property is proved, we would certainly go for k = 31 to squeeze the last drop from

the argument.
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3.2 Upper bound based on degree distribution

Let Sπ be the family of all trees on n vertices with a given non-increasing degree sequence

π = (d0, d1, . . . , dn−1). As mentioned in the introduction, it is known which extremal tree

from Sπ has the largest number of sub-trees Zhang et al. (2013). This tree, Tπ, can be

constructed in a greedy way using the breadth-first search method. First, label the vertex

with the largest degree d0 as v01. Then, label the neighbours of v01 as v11, v12, . . . , v1d0
from “left to right” and let d(v1i) = di for i = 1, . . . , d0. Then repeat this for all newly

labelled vertices until all degrees are assigned.

As computed in (1), a.a.s. the number of vertices of degree k is (1 + o(1))ne−1/(k− 1)!.

Using that and the construction mentioned above, we get that a.a.s. c(n) ≤ 1.52745n which

gives a non-trivial bound but is far away from the one we obtained. Of course, this is not

too surprising, and it confirms that the degree distribution is not a crucial factor in our

problem; the number of sub-trees of T is governed by the distribution of small rooted trees

from F =
⋃K
k=1 Fk.
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K lower upper 1 upper 2 conj. upper |R|/n multiplier

1 1.29045464 2.00000000 1.43208050 2.00000000 0.63212055 2.00000000
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8 1.41610182 1.71070328 1.42681559 1.43464704 0.27266454 1.04887463
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10 1.41726225 1.68018579 1.42502733 1.42600450 0.24551402 1.02536358
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20 1.41804099 1.60199646 1.42085548 1.41829108 0.17597172 1.00100264
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27 1.41805326 1.57560132 1.41985928 1.41807551 0.15199081 1.00010326

28 1.41805354 1.57267244 1.41976483 1.41806933 0.14930621 1.00007457

29 1.41805374 1.56989841 1.41967830 1.41806494 0.14675899 1.00005383

30 1.41805387 1.56726614 1.41959880 1.41806182 0.14433784 1.00003886

Table 1: Asymptotic lower/upper bounds for c(n), |R|/n, and multipliers for various values

of K.
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