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Abstract

We consider schedules of unit-duration tasks with random dependen-
cies. Formally the schedules are obtained by imposing a random partial
order of vertices in an Erdős-Rényi graph. For such schedules, we provide
asymptotic formulas for the parallel execution time and for the required
number of processors in a greedy allocation scheme as a function of con-
nection probability. We also derive asymptotic bounds for the number of
required processors in an optimal allocation scheme. We test our results
for small schedule sizes using simulation and conclude that the conver-
gence to asymptotic results is achieved relatively fast in practice. In our
simulation experiment, we define and compare the efficiency of Mixed In-
teger Programming and Constraint Programming approaches to find the
exact solution of the optimal allocation scheme and conclude that Con-
straint Programming is more efficient in our setting. In the last part of
the paper, we provide preliminary results of similar analysis for random
schedules generated from arbitrary graphs.

1 Introduction
In this text we study the limits on parallelization of schedules with random
precedence constraints. This generic resource-constrained scheduling problem
has important applications in many domains, e.g. project management [15, 36],
simulation scheduling [13], analysis of citation networks or food webs [25], op-
erations research [5, 10, 11, 34] and in computer science for study of parallel
algorithms [12, 29, 38, 41].

While finding minimum parallel execution time for the considered scheduling
problem is relatively simple, identification of an optimal schedule for a limited
number of workers is known to be NP-hard [24, 28, 38]. Therefore many schedul-
ing heuristics were proposed in the literature, aimed at narrowing a performance
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gap between optimal and heuristic scheduling policies [5, 10, 20, 34]. Much less
attention was given to theoretical analysis of gains from parallelization of differ-
ent classes of processes with precedence constraints, even though this problem
has been growing in importance with proliferation of massively parallel comput-
ing platforms whose effective utilization requires fine-grained parallelization of
applications [14, 26].

In the literature acyclic nature of schedules is often assumed to arise from
ordering vertices of a graph and we follow the same approach in this paper [25].
Formally, we assume that a schedule is produced by generating Erdős-Rényi
random graph and then randomly ordering its vertices. Such a setting, known
as random graph order, has already received theoretical treatment by [4] and [7]
for the size of a largest set of strongly independent vertices, [2] for the number of
linear extensions of partial orders, [8] for the dimension of random graph orders,
[37] for the distribution of transitive closure, and [30] for the convergence of first
order properties on transitive closure of such posets.

In order to further motivate the proposed approach we present an example
taken from agent-based modeling in Section 2 below. Agent-based models are
computationally intensive and, at the same time, characterized by high degree
of inherent parallelism. This makes them good candidates for running on par-
allel processors. We answer the question what speed-up one could expect from
parallelization of such applications and what is the optimal number of paral-
lel workers to be used for computation. Specifically, we are interested in the
following three factors (they are formally defined in Section 3):

1) shortest time required to finish parallel execution of a schedule, denoted
as Y ;

2) number of processors required when greedy allocation scheme is applied,
denoted as U ;

3) number of processors required when optimal allocation scheme is applied,
denoted as Q.

The difference between greedy and optimal allocation schemes is that in greedy
allocation we start executing tasks as soon as it is possible (implicitly assuming
that we have an infinite number of processors available at no cost) and in opti-
mal allocation we ask for the minimum number of processors required to finish
parallel execution of a schedule in time Y (where finding such optimal allocation
is, of course, an independent and difficult task).

With respect to quantities Y , U and Q, according to our present knowledge,
only Y (shortest time required to finish parallel execution) has been studied
in the literature. In [13], an analysis of Y using simulation for small sizes of
schedules is provided. A survey of literature in other research fields provides
the following formal results on asymptotic properties of Y . The authors of [1]
analyze it for constant p ≥ 0.1 and obtain the bound that a.a.s. 0.5654n < Y <
0.610n for p = 1/2. We extend these results for varying p, including the case
when p = p(n)→ 0 as n→∞. Similarly, the authors of [9] studied Y but only
for p→ 0 and p ≥ (1 + ε)π2/ log n for some ε > 0. Hence, they concentrate on
very dense graphs. In this text we consider also sparse graphs, that in fact are
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actually more interesting from applications point of view. Papers [32] and [33]
also studied Y ; however, the tools that are used in [32] for dense graphs (that
is, when pn = Ω(log n)) are different than ours, and [33] concentrates only
on the case pn = c ∈ R+. Our approach and tools are different and, more
importantly, they provide some additional insight about the structure of the
random directed graph we deal with (which may have implications in designing
efficient algorithms in practice). In particular, our approach provides bounds
for both U and Q—to the best of our knowledge, these values were not studied
in detail in the existing literature. Finally, we close the missing (but important
from the practical point of view) range of p = p(n) when pn� 1 but pn� log n
in evaluation of Y .

The rest of the text is organized as follows. In Section 2, as already men-
tioned, we discuss the motivating example for our study taken from agent-based
simulation. Next, in Section 3, we provide analysis of Y , U and Q for random
orders. Finally, in Section 4 we provide some preliminary results for schedules
generated by random ordering of vertices in arbitrary graphs.

2 Motivating example
Agent-based simulations are becoming one of the standard tools in research and
applications as they allow to investigate models of complex systems which would
otherwise be intractable [21, 39, 40]. A basic assumption of Agent-Based Model
(ABM) is that systems being modeled are composed of autonomous decision
makers called agents who interact with each other. A typical execution pattern
is that agents repeatedly perform actions which influence themselves and other
agents in their neighborhood. Formally, let V be a set of agents. Action of agent
a ∈ V influences some subset of agents Ea ⊆ V . Usually |Ea| is much smaller
than |V |, i.e. an agent’s action has only local effect on the whole system. Glob-
ally, the structure of a population is then naturally described by a dependency
graph G = (V,E) in which set of vertices V represents agents and set of edges
E = {(a, b) : a ∈ V, b ∈ Ea)} represents their interrelationships.

Large-scale, agent-based simulations are computationally intensive and it is
desirable to run them in parallel environments to speed up execution through
collaboration of processing units. This requires an application to be divided
into subtasks to distribute computational load among processors. Due to their
collective nature ABMs decompose naturally into subtasks defined as individual
actions taken by agents. Hence in ABM the degree of available parallelism de-
pends on two factors: (a) number of agents and (b) structure and nature of their
interactions. In principle, the larger the set of agents the more parallelism is
possible as more agents may take actions concurrently. However, if time depen-
dency of agents’ actions is not carefully treated, then a synchronization failure
may occur and time consistency of a simulation may be violated resulting in
causality errors [18, 27]. This problem is greatly amplified on massively parallel
processors with thousands of processing cores.1 To protect against causality er-

1such as programmable GPUs or clusters of many-core CPUs
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rors a parallel simulation engine must maintain and observe a precedence graph
which defines a partial order of agents’ tasks as induced by the dependency
graph G and their activation sequence. Adhering to this order is essential for
the correct execution of the application [38].

Formally, a task precedence graph is a directed acyclic graph (DAG) im-
plementing topological ordering of agents’ actions. In agent-based simulations
agents are usually activated asynchronously, so the order of their actions can
be described by a random permutation of V . We will call such a permutation
an execution order σ : V → {1, 2, . . . , |V |} that is a bijective mapping. In a
single threaded execution, agents are simply activated in a sequence given by
σ. In contrast, on parallel hardware it is possible to process up to m agents
concurrently, where m is a number of available processors. But the degree of
available concurrency is constrained by a dependency graph G. If σ(b) > σ(a)
and b ∈ Ea, then action of agent b must be executed later than action of agent
a (in particular, they cannot be processed concurrently). Hence, for a given
execution order σ, a dependency graph G induces a directed graph G′ = (V,D),
such that (a, b) ∈ D ⇐⇒ σ(a) < σ(b) ∧ (a, b) ∈ E, imposing a partial ordering
of actions (in graph theory G′ is known as random graph order).

Given G′, a natural challenge is to process it most efficiently on parallel
hardware. This problem, known as optimal scheduling, has been studied exten-
sively in computer science, see e.g. [5, 10, 34]. While finding minimal execution
time Y is relatively simple using topological sorting of G′, optimal scheduling
on parallel hardware is an NP-hard problem [24, 28, 38]. Therefore, in this text
we are interested not only in Q (an optimal number of processors) but also in
U (number of processors required in greedy allocation scheme), which does not
require solving the optimal allocation problem. The greedy scheme is also called
list scheduling in the literature [19].

3 Bounds on parallelization of random graph or-
ders

3.1 Model of parallel graph traversal
Sticking with the ABM example from Section 2 let G = (V,E) be a graph
representing how actions of agents influence each other. In general, this is a
directed graph but very often in practical applications it can be assumed to
be an undirected graph. By n = |V | we denote the number of agents. In this
paper, we concentrate on two models for G leaving other types of graphs to be
considered in the future:

1) binomial random graph G(n, p) (of our main interest, analyzed in this
section);

2) arbitrary graph (preliminary results and open problems given in Sec-
tion 4).

We consider the random graph G(n, p) model as a reference scenario. We
have chosen to concentrate our analysis on it as it is possible to analytically
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show its properties and it is naturally related to random DAG literature. In
practice other graph models might be more relevant therefore in Section 4 we
provide preliminary results for general graphs.

Let us assume a bit more general setting than the one presented in Sec-
tion 2 and presume that there are T actions in the simulation. The mapping
A : {1, . . . , T} → V tells us in which sequence agents act. The following two
models for A are of interest:

1) sample without replacement of size T = n; that is, A corresponds to a
random permutation of V (σ considered in Section 2);

2) sample with replacement of arbitrary size T ; that is, independently for
each i ∈ {1, . . . , T} and v ∈ V , P(A(i) = v) = 1/n.

In the present paper we concentrate on the former scenario, random permu-
tation. Again the choice was guided by analytical tracability and the fact that
it gives a natural link to random DAG literature.

Note, however, that even this simple scenario is often encountered in agent
based modeling practice. It is frequently assumed that all agents act exactly
once in a random order in each turn (typically called tick) of the model. After
simulating a single tick the whole simulation has to be synchronized (e.g. to cal-
culate aggregate statistics of the modelled system). This situation corresponds
exactly to a random permutation of V scenario we consider. Actually this kind
of behaviour is a default one in one of the most popular agent-based modeling
frameworks NetLogo, [42]. The latter scenario of sampling with replacement is
left for future investigation.

Definition 3.1 (Greedy scheme). Given a graph G(V,E) and a mapping
A : {1, . . . , T} → V , we create a directed graph S0 = (V0, E0), where V0 =
{1, . . . , T} and E0 ⊆ V 2

0 ; there exists an edge (i, j) ∈ E0 if and only if i < j
and (A(i), A(j)) ∈ E or A(i) = A(j). Now, we recursively create a sequence
(Sk)k≥0 of directed graphs. Given Sk for some k ∈ N ∪ {0}, let Xk be the set
of vertices of Sk of in-degree 0. Finally, Sk+1 is obtained from Sk by removing
vertices from Xk. Clearly, as long as Sk contains at least one vertex, |Xk| ≥ 1
(in particular, the vertex of the smallest label in Sk belongs to Xk). As a result,
at some time-step Y ≤ n of the process SY is the null graph; that is, the graph
with no vertex. In other words, let Y be the smallest natural number k for which
the graph Sk is the null graph. Finally, let U := max

{
|Xk| : k ∈ N ∪ {0}

}
.

Before we move to the next definition, let us make a few comments:
1) An edge (i, j) indicates that action j cannot be performed before action i;
2) Since for i ≥ j we never create an edge from i to j, graph S0 (and so also

Sk for any k) is acyclic;
3) Set Xk represents a set of actions that can be performed, in parallel, at

step k;
4) We may assume that the process ends at time-step Y as Sk = SY (the

null graph) for any k ≥ Y ;
5) Since G and A are created at random, Y is a random variable; however,

as already pointed out in the above definition, deterministically Y ≤ T ;
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6) Value Y = T is achieved when, for example, G is a directed path 1→ 2→
. . .→ n, T = n, and mapping A is A(i) = i. In this scenario, S0 is also a
directed path;

7) U is the number of parallel processors needed in the greedy scheme.
The following observation, also simple but very useful, will be employed a

few times and so it deserves special treatment and label.

Observation 3.2. It is clear that in order to minimize Y , the number of rounds
the process lasts, one should remove all vertices in Xk. However, alternatively,
one could select some proper subset of vertices of in-degree 0 to formXk. For any
possible rule, the corresponding sequence of directed graphs Ŝk = (V̂k, Êk) will
have the property that Vk ⊆ V̂k and Ŷ ≥ Y . Formally, the proof by induction
of this fact uses the property that once a vertex is ready to be removed from Sk
(that is, has in-degree 0), it will remain in such state till it is actually removed.

Why one would want do do it? There are at least two reasons for that. The
first one is technical: in some proofs we provide in this paper it will be con-
venient to pick some specific subsets of vertices of in-degree 0 to get an upper
bound for Y . The second one is more important as it has some practical impli-
cations. As already mentioned, U = maxk{|Xk|} corresponds to the number of
processors needed to run the simulation in parallel. However, we usually want to
keep the number of required processors as small as possible. Hence, very often
one can gain more by selecting Xk sub-optimally (and so reducing the number
of processors needed) in comparison to (possibly) some small increase of the
number of rounds. This trade-off is not always simple to judge, but reducing
the number of processors needed without increasing the number of rounds is
always beneficial. This motivates the next definition.

Definition 3.3 (Optimal scheme). Let R be the family of all rules with
the property that the corresponding sequence of directed graphs Ŝk has the
property that Ŷ = Y . (Clearly R is non-empty as the rule following the greedy
scheme that yields Y belongs to this family.) For a given rule R ∈ R, let
QR = maxk{|Xk|}, where (Xk) is the sequence of the corresponding subsets of
in-degree 0 that are removed during the process following R. (In other words,
QR is the number of processors needed to execute rule R.) Finally, let Q =
minR∈RQR.

The graph parameter Q is both interesting and important because, in gen-
eral, one would like to use a minimum number of parallel processors to finish the
task without compromising the running time. Clearly, the number of processors
used in a greedy scheme, U , could be much larger than Q. Consider, as an ex-
ample, a graph consisting of an n-element directed path and n isolated vertices
(together with an ordering A consistent with the ordering of the directed path).
In this example, Y = n, U = n+ 1 (in the first phase we use n+ 1 processors),
but Q = 2 (in each phase we use one processor for a vertex from the path and
one processor for an isolated vertex).

In summary, given some process (possibly random) that generates graph G,
assuming that T = n and A is a random permutation, we are interested in the
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following natural values: Y (the number of steps for the process to finish), U
(number of processors needed in greedy scheme) and Q (number of processors
needed in an optimal scheme). We are typically interested in finding upper
and lower bounds that hold asymptotically almost surely for such variables (see
below for a definition) or their expected values.

3.2 Theoretical bounds for binomial random graphs
3.2.1 Preliminary results and notation

Let 0 ≤ p ≤ 1 and let Ω be the family of all graphs on n vertices. To every
graph G ∈ Ω we assign a probability

P({G}) = p|E(G)|(1− p)(
n
2)−|E(G)|.

We denote this probability space by G(n, p). The space G(n, p) is often referred
to as the binomial random graph or Erdős-Rényi random graph. Note
also that this probability space can informally be viewed as a result of

(
n
2

)
independent coin flips, one for each pair of vertices u, v, where the probability
of success (that is, adding an edge uv) is equal to p.

As typical in random graph theory, we shall consider only asymptotic prop-
erties of the model as n→∞ and T →∞. In particular, when writing inequal-
ities in the proofs we require that they hold asymptotically. Moreover, p = p(n)
and T = T (n) may and usually do depend on n. We emphasize that the no-
tations o(·) and O(·) refer to functions of n, not necessarily positive, whose
growth is bounded. We use the notations f � g for f = o(g) and f � g for
g = o(f). We also write f(n) ∼ g(n) if f(n)/g(n)→ 1 as n→∞ (that is, when
f(n) = (1 + o(1))g(n)).

We say that an event in a probability space holds asymptotically almost
surely (a.a.s.) if its probability tends to one as n goes to infinity. For mode
details see, for example, the two classic books [6, 23] or more recent mono-
graph [17].

In the proofs we will use a well-known bound on tail probabilities.

Theorem 3.4 (Chernoff Bound (see [23], Theorem 2.1)). Let X ∈ Bin(n, p)
be distributed as a binomial random variable with n trials and success probability
p, so E[X] = µ = pn. If 0 < δ < 1, then

P[X < (1− δ)µ] ≤ exp

(
−δ

2µ

2

)
. (1)

If δ > 0, then

P[X > (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
. (2)

In addition, all of the above bounds hold for the general case in which
X =

∑n
i=1Xi and Xi is the Bernoulli random variable with parameter pi with

(possibly) different pi’s.
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Finally, let us make an observation that will simplify the notation. Since
one can generate random permutation A before generating random graph G ∈
G(n, p), without loss of generality, we may assume that A is the identity per-
mutation; that is, A(i) = i for all i.

3.2.2 Results

Let YG(n, p) and UG(n, p) be the corresponding values of Y and U for G(n, p),
respectively. Below we collect our results for YG(n, p) into a single theorem and
then we deal with upper and lower bounds independently (that, in fact, are
often stronger than what is claimed here). Part (a) follows from Theorems 3.10
and 3.11. Part (b) follows from Theorems 3.10 and 3.12.

Theorem 3.5. Let ε > 0 be any constant. The following hold a.a.s.
(a) If pn ≥ ε log n, then YG(n, p) = Θ(pn);
(b) If pn = o(log n) and pn ≥ ε, then YG(n, p) = Θ(βpn), where

β = β(n, p) =
log n/(pn)

log(log n/(pn))
.

In particular YG(n, p) = Θ(log n/ log log n) for pn = Θ(1).

(Note our convention that log n/a = (log n)/a, here and throughout the rest of
the paper.)

The results for UG(n, p) are collected below. In fact, more can be said for
pn > 0.49 log n—see Theorem 3.11.

Theorem 3.6. For any 0 < p = p(n) ≤ 1,

max
{
E
[
|Xk|

]
: k ∈ N

}
≤ E

[
|X0|

]
≤ p−1.

Moreover, the following holds a.a.s.
(a) If pn� 1 and pn = o(n/ log n), then UG(n, p) ∼ |X0| ∼ p−1.
(b) If pn� 1 and pn ≤ 0.49 log n, then UG(n, p) = |X0| ∼ p−1.
(c) If pn = c for some c ∈ R+, then UG(n, p) = |X0| ∼ n(1− e−c)/c.

Knowing some properties of YG(n, p) and UG(n, p), we can reason about
QQ(n, p) using the following natural bounds that hold for any graph generating
process:

Observation 3.7. We have that n/Y ≤ Q ≤ U .

Therefore, using this observation the following corollary follows immediately
from Theorems 3.5 and 3.6:

Corollary 3.8. Let ε > 0 be any constant. The following hold a.a.s.
(a) if pn > ε log n and pn = o(n/ log n), then

Θ(p−1) = n/YG(n, p) ≤ QG(n, p) ≤ UG(n, p) ∼ p−1;
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(b) if pn� 1 and pn = o(log n), then

Θ(β−1p−1) = n/YG(n, p) ≤ QG(n, p) ≤ UG(n, p) ∼ p−1,

where
β = β(n, p) =

log n/(pn)

log(log n/(pn))
.

(c) if pn→ c for some c ∈ R+, then

Θ(n log log n/ log n) = n/YG(n, p) ≤ QG(n, p) ≤ UG(n, p) ∼ n(1− e−c)/c.

In Section 3.3 we provide simulation analysis of QG(n, p) and find that it
actually tends (very fast) to the lower bound established in Corollary 3.8 for
sparse graphs (for such graphs there is the widest gap between lower and upper
bound on QG(n, p)). A rigorous proof of this fact is left as an open problem and
we plan to investigate it in a future work.

3.2.3 Upper bound

Let us start with an upper bound. First we present a weaker bound but one
that has some practical implications. In particular, from the proof it follows
that one can partition a permutation A into blocks of order pn and deal with
each block one by one, without loosing too much on the performance.

Theorem 3.9. Let ε > 0 be any constant. A.a.s. YG(n, p) = O(pn log n),
provided that pn ≥ ε and p = o(1).

Proof. Let us partition a permutation A into d2pne blocks, each of length at
most d1/2pe. (Recall that A is assumed to be the identity permutation.) We will
use the following sub-optimal strategy (see the discussion in Observation 3.2)
that will yield sets X̂k in the corresponding directed graphs Ŝk. During the
first phase, we keep removing all vertices of in-degree zero, but only those that
belong to the first block. Once all vertices from the first block are deleted, we
move to the second phase during which only vertices from the second block are
considered. We continue similarly with the remaining blocks until all vertices
are removed and the process ends. Clearly, this is a suboptimal strategy but will
be relatively easy to analyze. Our goal is to show that a.a.s. each phase takes
O(log n) rounds to be finished. This immediately implies the desired upper
bound for Y .

Note that our sub-optimal process on G(n, p) reduces to analyzing d2pne
original processes on independent copies of G(d1/2pe, p). Since the expected
degree in G(d1/2pe, p) is asymptotic to 1/2 < 1 it is well known that a.a.s. the
largest component has size O(log n). For our purpose, however, we need to show
that a.a.s. it is true for all copies. Since the argument is easy and standard we
omit some details.

Take any vertex v and consider the breadth-first-search process starting
from v. Put v into the queue Q (first-in first-out list), call v saturated, and
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then do the following as long as Q is not empty: remove w from Q, expose
all edges from w to non-saturated vertices, put all new neighbours of w into Q
and call them saturated. Note that Zi, random variable counting the number
of vertices added into Q at ith step of this process has binomial distribution
Bin(d1/2pe−m, p), where m is the number of saturated vertices at that step of
the process (m is affected by the process but clearly it is always non-negative).
Hence, it can be stochastically upper bounded by Z̄i, an independent copy of
Bin(d1/2pe, p). As a result, the BFS process resembles very much the branching
process with parameter 1/2 that is known to die out with probability 1.

Note that the probability that v belongs to a component of size at least
k = k(n) is bounded from above by the probability that

∑k
i=1 Zi ≥ k− 1. Note

also that Z̄ :=
∑k
i=1 Z̄i ∼ Bin(kd1/2pe, p) and so E[Z̄] ≥ k/2. Hence, using the

union bound over all vertices, the probability that some copy of G(n, p) contains
a component of size k is at most

n P

(
k∑
i=1

Zi ≥ k − 1

)
≤ n P

(
k∑
i=1

Z̄i ≥ k − 1

)
≤ n P

(
Z̄ ≥ 1.9 E[Z̄]

)
≤ n exp

(
−0.92 E[Z̄]

2 + 0.9

)
≤ n exp

(
− 0.27(k/2)

)
= o(1),

provided that k = d8 log ne. The proof is finished.

Here is another upper bound that determines an order of Y . However, it
provides less insight into the problem.

Before we state the result, we need to define one important constant. For
0 < p = p(n) < 1, let c = c(p) be a positive constant that is the solution of the
following equation:

xp log(x) + (1− xp) log(1− xp) = 0. (3)

It is easy to see that c→ e if p→ 0 and c→ 1 if p→ 1. Moreover, cp is growing
with p but cp < 1, provided p is bounded away from 1, see Figure 1.

Theorem 3.10. The following hold a.a.s.
(a) YG(n, p) ≤ (1 + o(1))cpn, provided that p = Θ(1).
(b) YG(n, p) ≤ (1 + o(1))epn, provided that p = o(1) and pn� log n.
(c) YG(n, p) ≤ xpn = O(pn), provided that pn = Θ(log n), where x is a

constant such that
x log(x)− x = log n/(pn).

(d) YG(n, p) ≤ (1 + o(1))βpn, provided that pn = o(log n) and pn = Ω(1),
where

β = β(n, p) =
log n/(pn)

log(log n/(pn))
.

Note that β →∞. In particular, β = Θ(log n/ log log n) for pn = Θ(1).
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Figure 1: Plot of c and cp against p.

Proof. A path (v0, v1, . . . , vk) of length k is called ordered if 1 ≤ v0 < v1 <
. . . < vk ≤ n. (Recall that A is assumed to be the identity permutation.) It is
straightforward to see that YG(n, p) = k if and only if the length of a longest
path is equal to k. Hence, in order to show an upper bound of k for Y that
holds a.a.s., it is enough to show that the expected number of ordered paths of
length k is o(1). The first moment method will immediately imply that a.a.s.
there is no such path and so a.a.s. the desired bound will hold.

Fix a positive integer k. For a given sequence of vertices v0, v1, . . . , vk such
that 0 ≤ v0 < v1 < . . . < vk ≤ n, let Z(v0, v1, . . . , vk) be the indicator random
variable that is equal to one if (v0, v1, . . . , vk) yields an ordered path; and it is
equal to zero otherwise. We are interested in the following random variable

Z =
∑

0≤v0<v1<...<vk≤n

Z(v0, v1, . . . , vk)

counting the number of ordered paths of length k.

Let ε′ be any positive constant (arbitrarily small) and assume that p ≤ 1−ε′.
The result for p = 1−o(1) will hold by monotonicity of YG(n, p). Let ε = ε(n) be
a function tending to zero slowly enough (it will be determined soon, depending
on the case we will consider).

Let k = k(n) := (c+ ε)pn, where c is defined in (3). Using Stirling’s formula
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we get

E[Z] =

(
n

k + 1

)
pk =

n− k
k + 1

· n!pk

k!(n− k)!

= Θ(n/k)

√
2πn(n/e)npk√

2πk(k/e)k
√

2π(n− k)((n− k)/e)n−k

= Θ
(
n/k3/2

) nnp(c+ε)pn

((c+ ε)pn)(c+ε)pn((1− (c+ ε)p)n)(1−(c+ε)p)n

= Θ
(
n/k3/2

)
(c+ ε)−(c+ε)pn(1− (c+ ε)p)−(1−(c+ε)p)n

= Θ
(
n/k3/2

)
exp

(
− n f(p, c+ ε)

)
, (4)

where
f(p, x) = xp log(x) + (1− xp) log(1− xp).

Note that the derivative of f with respect to c satisfies

f ′(p, c) = p log(x)− p log(1− cp) =
f(p, c)− log(1− px)

x
=
− log(1− px)

x
,

as it follows from the definition of c = c(p) (see (3)) that f(p, c) = 0.
For p = o(1), we get f ′(p, c) ∼ p and so

f(p, c+ ε) = f(p, c) + (1 + o(1))f ′(p, c)ε ∼ pε.

It follows that
E[Z] = Θ

(
n/k3/2

)
exp

(
− pnε

)
= o(1),

provided that pn ≥ ω log n for some ω = ω(n) tending to infinity as n→∞ (by
taking, say, ε = 1/

√
ω = o(1)). Part (b) follows.

For p = Θ(1), we get f ′(p, c) = Θ(1). It follows that

E[Z] = Θ
(
n/k3/2

)
exp

(
− nΘ(ε)

)
= o(1),

provided that, say, ε = 1/
√
n = o(1). Part (a) follows.

On the other hand, for pn = O(log n) but pn = Ω(1), and x > e but
xp = o(1), we have

f(p, x) = xp log(x)− (1− xp)
(
xp+ (1 + o(1))

(xp)2

2

)
> xp log(x)− xp.

Now, one can take x > e to be large enough such that (x log(x)− x)pn = log n,
and k = k(n) := xpn→∞ to get

E[Z] = Θ
(
n/k3/2

)
exp

(
− nf(p, x)

)
= o(n) exp(− log n) = o(1).

If pn = Θ(log n), then x is large enough constant. If pn = o(log n), then x→∞
and so x log(x)pn ∼ log n; that is x ∼ β. Part (c) and (d) follow and so the
proof of claimed upper bounds is finished.
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3.2.4 Lower bound

Now, let us move to a lower bound and start with the dense case. The proof of
part (a) can be easily adapted to the sparse case. However, we do not do it as
for pn = o(log n) this result does not match the upper bound anyway. We will
treat the sparse case independently later.

Theorem 3.11. For any 0 < p = p(n) ≤ 1,

max
{
E
[
|Xk|

]
: k ∈ N

}
≤ E

[
|X0|

]
≤ p−1.

If pn� 1, then a.a.s.
(a) YG(n, p) ≥ (1 + o(1))pn.

In fact, the following stronger properties hold a.a.s.
(b) If pn� 1 and p = o(1), then almost all |Xk|’s are at most

u = u(n) := p−1 + p−2/3 ∼ p−1 ∼ |X0|

and the sum of cardinalities of all larger ones is o(n).
(c) If pn� 1 and pn = o(n/ log n), then UG(n, p) ≤ u ∼ |X0|.
(d) If pn� 1 and pn ≤ 0.49 log n, then UG(n, p) = |X0| ∼ p−1.
(e) If pn = c for some c ∈ R, then UG(n, p) = |X0| ∼ n(1− e−c)/c.

Proof. The distribution of X0 is easy to determine. Vertex i belongs to X0 if
and only if it has no neighbour (in graph G) with a smaller label; that is, there is
no edge from i in G to any of 1, 2, . . . , i−1. (Recall that A is assumed to be the
identity permutation.) Hence, the probability of this event is pi = (1−p)i−1. It
follows that |X0| is distributed as X—the sum of the Bernoulli random variables
with parameters pi (i = 1, . . . , n). We get

E
[
|X0|

]
= E

[
X
]

=

n∑
i=1

(1− p)i−1 =
1− (1− p)n

p
∼ p−1, (5)

since it is assumed that pn � 1. (Note that if pn = c for some c ∈ R, then
E
[
|X0|

]
∼ n(1 − e−c)/c.) Moreover, E

[
|X0|

]
≤ p−1. If, additionally, p = o(1),

then E
[
|X0|

]
� 1 and Chernoff bound easily implies that a.a.s. |X0| ∼ p−1.

Clearly, the distribution of |X1| is affected by X0 but the probability that ith
vertex in the sub-permutation obtained after removing vertices from X0 has no
neighbour with a smaller label is at most pi. (Note that we condition on the fact
that this vertex was not in X0; that is, it used to have at least one neighbour
with a smaller label one step before.) Hence, |X1| can be stochastically upper
bounded by (an independent copy of) the random variable distributed as X .

Formally, one can do the following coupling. Vertex v is called good if it
belongs to X0; the only information that is exposed to determine if v is good is
whether it has a neighbour with a smaller label. Vertex that is not good exposes
more information about the graph and it is called bad if it has a neighbour with
a smaller label in X0; note that edges to vertices with a smaller label that are
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not in X0 are not exposed. Otherwise, v is called very bad. Now, ith vertex
in the sub-permutation we consider belongs to X1 with probability pi, provided
that it is bad, and 0 if it is very bad. The desired coupling is easy to establish.
The only purpose of partitioning the set of vertices into good, bad, and very
bad is to formally define the coupling and we will not use it later in the proof.

In fact, it can be upper bounded by the sum of n−|X0| random variables but
we are happy with the proposed weaker coupling for parts (a)-(c). We proceed
similarly with |Xk| for any k ∈ N. In particular, we will show that for any k,
E
[
|Xk|

]
≤ E

[
|X0|

]
≤ p−1.

Part (a) is straightforward. The established coupling implies that
∑`−1
k=0 |Xk|

is stochastically upper bounded by the sum of ` independent copies of X , and so
itself it is a sum of the Bernoulli random variables with expectation ` E

[
X
]
≤

`p−1. Taking ` = bnp− (np)2/3c ∼ np, Chernoff bound implies that

P

(
`−1∑
k=0

|Xk| ≥ n

)
≤ exp

(
−Θ
(

(np)1/3
))

= o(1).

So a.a.s. at least ` rounds are needed to finish the process and part (a) follows.

Part (c) is also easy. Recall that in this case it is assumed that p−1 ≥ ω log n
for some ω = ω(n) → ∞ as n → ∞. Our goal is to show that a.a.s. during all
rounds all |Xk|’s are at most p−1+p−2/3 ∼ p−1. Note that the process must end
after n rounds (in fact, we know that it will finish earlier a.a.s. but it gives us no
advantage here). It follows from Chernoff bound, combined with the coupling
mentioned earlier, that for any k

P
(
|Xk| > p−1(1 + δ)

)
≤ P

(
X > p−1(1 + δ)

)
≤ exp

(
−δ

2p−1

3

)
= o(n−1),

by taking δ = 2/
√
ω = o(1). Hence, a.a.s. the desired property holds and part

(c) follows.

Part (b) is the most sophisticated. We may assume that p ≥ ε/ log n for
some ε > 0 as, otherwise, part (c) provides a stronger statement. This time our
goal is to show that a.a.s. during the first 3pn rounds almost all |Xk|’s are at
most p−1 + p−2/3 ∼ p−1 and the sum of cardinalities of all larger ones is o(n)
and so is negligible compared to the total number of vertices, n; that is, almost
all vertices belong to small |Xk|’s. (Note that it follows from Theorem 3.10 that
a.a.s. the process will finish after (1 + o(1))epn rounds.)

Let us restrict ourselves to the sequence (|Xk|)3pn−1k=0 of 3pn random variables.
It follows from Chernoff bound, combined with the coupling mentioned earlier,
that for any k

P
(
|Xk| > p−1 + p−2/3

)
≤ P

(
X > p−1 + p−2/3

)
≤ exp

(
−p
−1/3

3

)
=: q0 = o(1).
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Similarly, for any k and any s ∈ N

P
(
|Xk| > 2s+1p−1

)
≤ P

(
X > 2s+1p−1

)
≤ P

(
X > (1 + 2s)p−1

)
≤ exp

(
−22sp−1

2 + 2s

)
≤ exp

(
−2s−1p−1

)
=: qs ≤ qs−1/4.

The last inequality has a lot of room to spare.
Now, the number of values of k for which |Xk| is more than p−1 + p−2/3 is

stochastically upper bounded by Bin(3pn, q0). After applying Chernoff bound
one more time we get that a.a.s. for almost all values of k (that is, for all but
o(1) fraction of them) we have |Xk| ≤ p−1 + p−2/3. Let smax be the smallest
natural number s such that 2sp−1 ≥ log2 n. As before, for any s ∈ N such that
1 ≤ s ≤ smax, the number of random variables that are more than 2s+1p−1

is stochastically upper bounded by Bin(3pn, qs). Since 3pn · qsmax
= o(1), it

follows from Markov’s inequality that a.a.s. no random variable is more than
2smax+1p−1. Finally, for any 1 ≤ s ≤ smax, using Chernoff bound for the last
time we get that the number of variables that are more than 2s+1p−1 is larger
than 2 · 3pn · qs with probability exp(−Ω(pnqs)). Since qs ≤ qs−1/4, a.a.s.
corresponding bounds hold for all values of s in the range. The conclusion is
that a.a.s. the sum of all variables that are more than p−1 + p−2/3 ∼ p−1 is of
order at most

p−1 · o(pn) +

s=smax∑
s=1

(2sp−1) · (pnqs) = o(n) +

s=smax∑
s=1

2snq1/4
s−1 = o(n)

and so, as promised, is negligible. Part (b) follows.

For part (d), assume that pn ≤ 0.49 log n and pn � 1. This time we have
to be slightly more careful with estimating error terms. We have (see (5) for a
more coarse version)

E
[
|X0|

]
=

n∑
i=1

(1− p)i−1 =
(

1− exp
(
− pn+O(p2n)

))
p−1

=
(

1− (1 + o(1)) exp
(
− pn

))
p−1 ∼ p−1,

and so by Chernoff bound a.a.s.

|X0| ≥ E
[
|X0|

]
− log n/

√
p ≥ E

[
|X0|

]
−
√
n log2 n.

(Note that the last inequality holds not only for pn � 1 but also when pn = c
for some c ∈ R.) On the other hand, for each k ∈ N we use the fact and
the coupling mentioned earlier that |Xk| can be upper bounded by the sum
of n − |X0| = n − (1 + o(1))/p random variables and so its expectation is
substantially smaller than the one for |X0|. This will be enough to make sure
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that not only the corresponding expectations are far apart but with the desired
probability |Xk| < |X0|. Indeed we get that for any k ∈ N

E
[
|Xk|

]
=

n−|X0|∑
i=1

(1− p)i−1

≤
(

1− exp
(
− p
(
n− (1 + o(1))/p

)
+O(p2n)

))
p−1

=
(

1− (e+ o(1)) exp
(
− pn

))
p−1

≤ E
[
|X0|

]
− exp

(
− pn

)
p−1

≤ E
[
|X0|

]
− exp

(
− 0.49 log n

)
n/ log n

= E
[
|X0|

]
− n0.51/ log n.

It follows from Chernoff bound that for any k ∈ N, with probability 1− o(n−1),

|Xk| ≤
(
E
[
|X0|

]
− n0.51/ log n

)
+ log n/

√
p

≤
(
E
[
|X0|

]
− n0.51/ log n

)
+
√
n log2 n

< E
[
|X0|

]
−
√
n log2 n ≤ |X0|.

Therefore, by the union bound over at most n values of k, a.a.s.

max
{
|Xk| : k ∈ N

}
< |X0|.

In part (e), the only difference is that E
[
|X0|

]
∼ n(1− e−c)/c and so the proof

is finished.

As already mentioned, it seems that Theorem 3.10 yields an asymptotic
behaviour of Y . However, since our aim is to determine the order of Y , we leave
it as an open problem and only concentrate on a weaker result. Theorem 3.11
provides a matching lower bound if pn ≥ ε log n for some ε > 0 so it remains to
concentrate on the case pn = o(log n).

Theorem 3.12. Let ε > 0 be any constant. A.a.s. YG(n, p) ≥ (1 + o(1))βpn,
provided that pn = o(log n) and pn ≥ ε, where

β = β(n, p) =
log n/(pn)

log(log n/(pn))
.

In particular, β →∞ and β = Θ(log n/ log log n) for pn = Θ(1).

Proof. We will use the same notation as in the proof of Theorem 3.10. By taking
x = x(n)→∞ such that

nf(p, x) ≤ x log(x)pn = log n− 2 log n

log β
− 2 log log n ∼ log n

16



we get that

x ∼ log n/(pn)

log(log n/(pn))
= β.

It follows that using (4) when k = xpn we get

E[Z] = Θ
(
n/k3/2

)
exp

(
− n f(p, x)

)
= Ω

(
n/ log3/2 n

)
exp

(
− log n+ 2 log log n

)
→∞

as n→∞. We will use the second moment method to show that a.a.s. Z ≥ 1.
Let us consider two directed paths of length k = xpn, (v0, v1, . . . , vk) and

(w0, w1, . . . , wk), and associated with them indicator random variables Zv =
Z(v0, v1, . . . , vk) and Zw = Z(w0, w1, . . . , wk). Clearly, if they share at most
one vertex, then they are edge disjoint and so Cov(Zv, Zw) = 0. On the other
hand, if they share s vertices (for some 2 ≤ s ≤ k), then they share at most
s− 1 edges and so

Cov(Zv, Zw) ≤ E[ZvZw] ≤ p2k−(s−1).

Denoting the falling factorial by (q)r = q(q − 1) · · · (q − r + 1), the number of
pairs of paths of this type is(

n

2(k + 1)− s

)(
2(k + 1)− s

s

)(
2(k + 1)− 2s

(k + 1)− s

)
=

(n)2(k+1)−s

s! (k + 1− s)!2

=

(
(n)k+1

(k + 1)!

)2

· 1

s!
·
(

(k + 1)!

(k + 1− s)!

)2

·
(n)2(k+1)−s

(n)2k+1

=

(
n

k + 1

)2
(k + 1)2s

s!
· (n− k − 1)k+1−s

(n)k+1

≤
(

n

k + 1

)2
(k + 1)2s
s!(n− k)s

≤ (1 + o(1))

(
n

k + 1

)2(
ek2

sn

)s
,

since s ≤ k = O(log n), k → ∞, and s! ≥ (s/e)s. Indeed, there are
(

n
2(k+1)−s

)
ways to select vertices for the two paths,

(
2(k+1)−s

s

)
ways to select vertices that

are shares by both paths, and
(
2(k+1)−2s
(k+1)−s

)
ways to assign the remaining vertices

to the paths. Hence, the variance can be estimates as follows

Var[Z] =
∑
v,w

Cov(Zv, Zw)

≤ E[Z] + (1 + o(1))

k∑
s=2

(
n

k + 1

)2(
ek2

sn

)s
p2k−s+1

= E[Z] + (1 + o(1))E[Z]2 · p ·
k∑
s=2

(
ek2

spn

)s
.
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Clearly, ek2

spn ≥
ek
pn = ex → ∞. Moreover, observe that h(s) :=

(
ek2

spn

)s
is

increasing for s ≤ k. To see this recall that k/(np) = x > 1 and so

h(s)

h(s− 1)
= ex

k(s− 1)s−1

ss
>

e(
1 + 1

s−1

)s−1 > 1.

It follows that

Var[Z] ≤ E[Z] + E[Z]2 · p ·O(k) ·
(
ek

pn

)k
= E[Z] + E[Z]2 · o

(
log2 n

n

)
· (ex)

xpn

= E[Z] + E[Z]2 · o
(

log2 n

n

)
· exp

(
x log(x)pn+ xpn

)
= E[Z] + E[Z]2 · o

(
log2 n

n

)
· exp

(
log n− 2 log n

log β
− 2 log log n+ xpn

)
= E[Z] + o

(
E[Z]2

)
· exp

(
−2 log n

log β
+ xpn

)
= o

(
E[Z]2

)
,

since xpn ≤ log n/ log x ≤ 2 log n/ log β. As promised, the conclusion follows
from the second moment method.

3.2.5 Distribution of |Xk|’s

Let us finish this section with investigating sizes ofXk’s for small values of k. We
already showed that a.a.s. |X0| ∼ p−1 and all remaining |Xk|’s are stochastically
upper bounded by |X0|. This implies that for any constant C (arbitrarily large),
a.a.s. for all 0 ≤ k ≤ C we have |Xk| ≤ (1 + o(1))p−1. In fact, Theorem 3.11(c)
shows that this is true for all k, provided pn� 1 and p� 1/ log n.

Here we will investigate an asymptotic behaviour of |Xk|’s for 0 ≤ k ≤ C. In
order to show the result we will use the differential equation method [43]. The
general setting that is used in this method is a sequence of random processes
indexed by n (which in our case is the number of vertices in Xk). The aim is
to find asymptotic properties of the random process and the conclusion we aim
for is that variables defined are well concentrated, which informally means that
a.a.s. they are very close to certain deterministic functions. These functions
arise as the solution to a system of ordinary first-order differential equations.
One of the important features of this approach is that the computation of the
approximate behavior of processes is clearly separated from the proof that the
approximation is correct.

Before we state the result, we need to define (recursively) a sequence of
functions. Let y0 : R→ R be the particular solution to the following differential
equation with the initial condition:

y′0(x) = exp(−x), y0(0) = 0.
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Figure 2: Plot of yk(x) against x for k = 0, 1, . . . , 29.

Now, we recursively define yk : R→ R for any k ∈ N:

y′k(x) = exp

(
−x+

k−1∑
`=0

y`(x)

)
− exp

(
−x+

k−2∑
`=0

y`(x)

)
, yk(0) = 0.

It is easy to find y0 and y1 explicitly:

y0(x) = 1− exp(−x),

y1(x) = exp(− exp(−x) + 1) + exp(−x)− 2.

Functions with larger indexes can be approximated numerically. The solutions
we present below to the corresponding ODE’s are given using Verner’s “Most
Efficient” 8/7 Runge-Kutta method [35], with absolute and relative accuracy set
to 10−12. Values of yk(x) for k < 30 are presented on Figure 2.

Finally, for any k ∈ N ∪ {0} we define bk = limx→∞ yk(x). It follows that
b0 = 1, b1 = e− 2; other values for k ≤ 29 are approximated in Table 1.

Theorem 3.13. The following hold a.a.s.
(a) For any k ∈ N ∪ {0}, |Xk| ∼ bkp−1, provided that pn� 1 and p = o(1).
(b) For any k ∈ N ∪ {0}, |Xk| ∼ yk(c)p−1, provided that pn→ c ∈ R+.

Proof. We will investigate vertices one by one, starting with vertex of label 1
and finishing with vertex of label n, and expose all edges from the current vertex
to vertices with smaller labels. Based on that, we may classify each vertex at
the time it is investigated, and put it into the right set Xk. For simplicity, let
Zk(t) be the size of Xk after dealing with vertices with labels at most t.

Clearly, a vertex joins X0 if it has no neighbour with a smaller label; it
follows that

E
[
Z0(t+ 1)− Z0(t) | Z0(t)

]
= (1− p)t = exp

(
− pt+O(p2t)

)
.
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k bk k bk k bk
0 1.000000 10 0.426076 20 0.395735
1 0.718282 11 0.420582 21 0.394306
2 0.605452 12 0.415981 22 0.393013
3 0.545083 13 0.412078 23 0.391836
4 0.507813 14 0.408730 24 0.390760
5 0.482700 15 0.405829 25 0.389775
6 0.464738 16 0.403294 26 0.388869
7 0.451320 17 0.401063 27 0.388032
8 0.440956 18 0.399084 28 0.387258
9 0.432737 19 0.397318 29 0.386540

Table 1: Values of bk that were approximated by yk(40).

It provides some insight if we define real function f0(x) to model the behaviour
of the scaled random variable Z0(x/p)/p−1. If we presume that the changes
in the function correspond to the expected changes of the random variable, we
obtain the following differential equation

f ′0(x) = exp(−x)

with the initial condition f0(0) = 0. The general solution of this equation can
be put in the form f0(x) = C−exp(−x) with C ∈ R, and the particular solution
is f0(x) = y0(x). This suggests that the random variable Z0(t) should behave
similarly to the deterministic function y0(tp)/p. In particular,

|X0| ∼ p−1 lim
x→∞

y0(x) = b0p
−1 = p−1.

In order to make this argument precise and rigorous, one can use our predic-
tion and transform Z0(t) into something close to a martingale. Then general-
ization of the Hoeffding-Azuma inequality can be used to show a concentration.
However, since here we do not aim to control error terms, we simply use the
general purpose theorem [43, Theorem 5.1] to deal with all random variables
discussed below simultaneously.

Now, we move to investigating X1. Clearly, a vertex joins X1 if it has at
least one neighbour with a smaller label in X0 but no neighbours outside of X0;
it follows that

E
[
Z1(t+ 1)− Z1(t) | Z0(t), Z1(t)

]
= (1− p)t−Z0(t)

(
1− (1− p)Z0(t)

)
= (1− p)t−Z0(t) − (1− p)t

= exp
(
− pt+ pZ0(t) +O(p2t)

)
+ exp

(
− pt+O(p2t)

)
.

= exp
(
− pt+ pZ0(t) +O(p)

)
+ exp

(
− pt+O(p)

)
∼ exp

(
− pt+ pZ0(t)

)
+ exp

(
− pt

)
,
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provided that t = x/p for some x ∈ R. Note that trivially Z0(t) ≤ t.
This time we obtain the following system of differential equations

f ′0(x) = exp(−x)

f ′1(x) = exp(−x+ f0(x))− exp(−x)

with the initial conditions fi(0) = 0, i ∈ {0, 1}. The particular solution is
f1(x) = y1(x), and arguing as before we get that a.a.s. Z1(t) ∼ y1(tp)/p. In
particular

|X1| ∼ p−1 lim
x→∞

y1(x) = b1p
−1 = (e− 2)p−1.

Generalizing it to Xk for some k ∈ N is straightforward. A vertex joins Xk

if it has at least one neighbour with a smaller label in Xk−1 but no neighbours
in
⋃
`≥kX`; it follows that

E
[
Zk(t+ 1)− Zk(t) | Z0(t), . . . , Zk(t)

]
= (1− p)t−

∑k−1
`=0 Z`(t)

(
1− (1− p)Zk−1(t)

)
,

which yields the following differential equation

f ′k(x) = exp

(
−x+

k−1∑
`=0

f`(x)

)
− exp

(
−x+

k−2∑
`=0

f`(x)

)
,

with fk(0) = 0. As before, the conclusion is that a.a.s. Zk(t) ∼ yk(tp)/p. The
proof of the theorem is finished.

3.3 Simulation analysis for binomial random graphs
In this section, we continue analyzing theG(n, p) model but for small n and using
different techniques, simulations. In particular, for finite (and, in fact, relatively
small) values of n, we want to better understand the difference between U , the
number of processors needed in the greedy scheme, and Q, the expected number
of processors needed in the optimal execution scheme (denoted by q when we
deal with a concrete instance of graph G(n, p) and schedule A and so Q is a
constant, not a random variable).

We analyze small values of n ranging from 100 to 1,000 (in case of calculation
of Q) and to 100,000 (to analyze U only, as it is less computing intensive). The
number of simulation replications 128 per design point was chosen so that it
is enough to get reasonably stable estimates. We choose values of pn from the
set {5, 10, 15, 20} as in practical applications the case of sparse graph is most
relevant (especially when n is large).

It is known that in general, finding concrete value of q for a concrete instance
of graph G(n, p) and schedule A is a NP-hard problem [38]. Therefore we use
simulation to assess Q, as it cannot be expected that it is possible to derive it
analytically and have to restrict ourselves to small problem instances (n ≤ 1000
in the paper). In order to find exact value of q we formulate problem of finding it
as mathematical programming tasks. There are two natural approaches to this:
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Mixed Integer Programming (MIP) [44] and Constraint Programming (CP) [3].
Both approaches were analyzed in the earlier literature for this class of problems
and MIP usually is more popular one, see e.g. scheduling handbooks [15, 36].
Below we provide MIP and CP formulation of the optimization problem and
compare their performance for G(n, p) generated schedules.

3.3.1 Mixed Integer Programming formulation

We have n vertices in our problem numbered from 1 to n. Recall that E0 denotes
the list of edges (i, j) in graph S0. Recall also that finding a longest path in
S0 is equivalent to determining the required number of epochs, y, to finish the
process. Our goal is to find q, the minimum number of processors in order to
finish the job in y epochs numbered from 0 to y− 1. This can be written as the
following MIP, where xi,k ∈ {0, 1} is an indicator that vertex i is collected in
epoch k:

min q

subject to:

∀k ∈ {0, 1, . . . , y − 1} : q ≥
n∑
i=1

xi,k

∀i ∈ {1, 2, . . . , n} :

y−1∑
k=0

xi,k = 1

∀(i, j) ∈ E0 :

y−1∑
k=1

k(xj,k − xi,k) ≥ 1

∀i ∈ {1, 2, . . . , n}, k ∈ {0, 1, . . . , y − 1} : xi,k ∈ {0, 1}
q ∈ N

We solve this problem using JuMP mathematical programming modeling
language [16] and CPLEX solver [22]. In order to make the optimization more
efficient additional constraints giving precomputed earliest start and latest finish
of each job were added (the constraints do not affect the solution but signifi-
cantly reduced presovle phase of optimization).

3.3.2 Constraint Programming Formulation

We keep notation that the first epoch is 0 for consistency. By ai denote the
epoch in which vertex i is collected. As above y is number of epochs needed.
CP formulation of our task is the following (in the formulation we use notation
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n 5 10 15 20
100 2.1516 1.7781 1.6031 1.5207

1,000 2.8516 2.4234 2.2182 2.1688
10,000 3.3422 2.8367 2.6641 2.5375
100,000 3.7313 3.1156 2.8818 2.7863

Table 2: Table of estimate E(Y )/(pn). In columns there are different values of
pn. The results are averages of 128 simulations.

[`] that is equal to 1 if ` is true and 0 otherwise):

min q

subject to:

∀k ∈ {0, 1, . . . , y − 1} : q ≥
n∑
i=1

[ai = k]

∀(i, j) ∈ E0 : ai < aj

∀i ∈ {1, 2, . . . , n} : ai ∈ {0, 1, . . . , y − 1}
q ∈ {1, 2, . . . , n}

The solutions were generated using MiniZinc environment and GECODE
solver [31] using standard cumulative constraint.

3.3.3 Simulation results

We have first compared MIP and CP timings for the average degree pn =
10 and the number of vertices n ∈ {1000, 2000, 3000} in single-threaded mode
(interestingly, for this task it was found that running solvers in multi threaded
mode increased solution time). We report here results of single runs, but the
times were consistent thorough many runs. The MIP times were respectively:
1.33, 8.10 and 47.24 seconds. The corresponding CP timings were: 1.44, 4.75
and 14.77 seconds. We could observe that CP becomes more efficient for larger
n where number of variables in MIP formulation grows much faster than in CP
(we have ≈ ny variables in MIP and ≈ n variables in CP). Our main focus, for
practical reasons, is for sparse graphs. But for dense graphs CP approach is
even more efficient than MIP. For instance for a graph G(400, 0.5) a sample of
runtime of MIP was 13.50 seconds and CP was 0.61 seconds. The reason is that
for dense graphs MIP produces even more variables as y is large and there are
a lot of constraints in the model. For CP high y is not problematic and high
number of constraints do not pose a problem as they actually simplify finding
the right domains for decision variables. In short, the conclusion is as follows:
for this problem CP solver can be recommended over MIP.

In Figure 3 we have a comparison between the number of processors for the
greedy and the optimal scheme, respectively. The results are a bit scattered due
to a limited number of simulations, but it is clear that: (1) increase of n improves
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n 5 10 15 20
100 0.9914 1.0906 1.2059 1.2938

1,000 0.9941 0.9913 1.0099 1.0052
10,000 0.9941 0.9966 0.9953 1.0029
100,000 0.9930 1.0001 1.0005 0.9994

Table 3: Estimate of E(U)/p. In columns there are different values of pn. The
results are averages of 128 simulations.
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Figure 3: Estimate of E(Q/U) for pn ∈ {5, 10, 15, 20}. Results are based on 128
replications of simulations for the G(n, p) model.

the benefits from optimal assignment, (2) the higher the average degree, pn, the
lower the benefit. In Table 2 we present an estimate of E(Y )/(pn). We see that
they are consistent with the proven theorems: these estimates are greater than 1
and increase with n. In Table 3 we present an estimate of E(U)/p. We see that,
again along with the proven theorems, these values converge very fast to p−1,
which is asymptotically equal to E(|X0|). This is natural to expect; although
E(U) is strictly greater than E(|X0|) the concentration theorems show that it
should be very close to it.

Additionally, as it was observed earlier trivially Q ≥ dn/Y e. Therefore,
we analyze the ratio Q/dn/Y e which captures how many more processors are
needed comparing to the lower bound of U . The results are given in Figure 4.
As can be expected, the larger the average degree, pn, the higher the ratio.
However, actually the ratio drops and seems to go fast to the lower bound.

4 Bounds for arbitrary graphs
In this section we extend our interest from G(n, p) graphs, which are the main
model of interest in this paper, to arbitrary graphs. We present some prelim-
inary results about E[|X0|] for this class of graphs and formulate hypotheses
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Figure 4: Estimate of E(Q/dn/Y e) for pn ∈ {5, 10, 15, 20}. Results based on
128 replications of simulation for the G(n, p) model.

about the value of E(Y ) and E(U).

Theorem 4.1. Let G be a graph on n vertices with the degree distribution
(d1, d2, . . . , dn). Then,

E
[
|X0|

]
=

n∑
i=1

1

di + 1
.

In particular, for any graph on n vertices and m edges we have

n2

2m+ n
≤ E

[
|X0|

]
< n−

√
2m+ 2 .

Moreover, the lower bound is tight for d-regular graphs and asymptotically tight
for m = m(n) � n. Formally, for any m � n there exists Gmin on n vertices
and m edges such that

E
[
|X0|

]
∼ n2

2m+ n
∼
(
n

2

)
/m.

Finally, the upper bound is (almost) tight in the following sense: for any m
there exists Gmax on n vertices and m edges such that

E
[
|X0|

]
> n−

√
2m− 1.

Proof. Let A be a random permutation of the vertices of G taken with uniform
distribution. For a vertex v ∈ V , let N+(v) be the number of neighbours
of v that follow it in the permutation. The random variable N+(v) attains
each of the values 0, 1, . . . ,deg(v) with probability 1/(deg(v) + 1). Indeed, this
follows from the fact that the random permutation A induces a uniform, random
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permutation on the set of deg(v) + 1 vertices consisting of v and its neighbours.
Therefore, by linearity of expectation,

E
[
|X0|

]
=

∑
v∈V (G)

P
(
N+(v) = 0

)
=

∑
v∈V (G)

1

deg(v) + 1
=

n∑
i=1

1

di + 1
,

and the claimed equality holds.

It remains to bound the expectation over the family of graphs on n vertices
and m edges. Maximizing/minimizing the sum,

∑n
i=1 1/(di + 1), provided that

each di ∈ R+∪{0} and
∑n
i=1 di = 2m is straightforward. The only two problems

are that di ∈ N ∪ {0} and that not all sequences are graphic, i.e. a sequence
of numbers which can be the degree sequence of some (simple) graph. As a
result, one needs to be more careful. We consider an upper and a lower bound
independently.

Lower bound: After relaxing the condition di ∈ N∪ {0} to di ∈ R+ ∪ {0}, the
sum is minimized for di = 2m/n for all i; that is,

∑
v∈V (G)

1

deg(v) + 1
≥ n

2m/n+ 1
=

n2

2m+ n
.

Clearly, equality holds for d-regular graphs and so this inequality is tight for
this class of graphs. As mentioned in the proof of Theorem 3.11, for binomial
random graph G(n, p) we have that a.a.s.

E
[
|X0|

]
∼ p−1,

provided pn � 1. It is straightforward to translate results from G(n, p) to
G(n,m), the model with a given number of edges, m = p

(
n
2

)
. Hence, the lower

bound is asymptotically tight for m = m(n)� n.

Upper bound: It is natural to expect that E[|X0|] is maximized for a graph
Gmax that consists of a complete graph with, perhaps, one more non-isolated
vertex. Formally, let s be the largest integer such that

(
s
2

)
≤ m. We construct

graph Gmax by starting with a complete graph on s vertices. If ` := m−
(
s
2

)
> 0,

then we add another vertex and connect it to ` vertices in the complete graph
and then we add n − s − 1 isolated vertices; otherwise (that is, if ` = 0), we
simply add n− s isolated vertices.

It is perhaps surprising that this claim does not seem to have a short proof.
We found an argument that is relatively simple but quite long and tedious.
Fortunately, since we aim for an upper bound that is tight up to an additive
constant, it is enough to prove the claim for the case when ` = 0. We start
with an arbitrary graph G on n vertices and m edges. If the number of isolated
vertices is less than n−s, then we show that one can modify G by moving some
edges around so that there is one more isolated vertex and, more importantly,
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E[|X0|] increases. We continue this process until the number of isolated vertices
is equal to n− s, that is, G = Gmax.

Suppose that G has k > s non-isolated vertices; that is, there are k non-
zero values of di. Let vi (1 ≤ i ≤ n) be a vertex of degree di. Without loss of
generality, we may suppose that di = 0 for k < i ≤ n, dk is the smallest non-zero
value, and vertex vk (of degree dk) is adjacent to vertices v1, v2, . . . , vdk (observe
that dk < k).

Note that it is possible to remove all dk edges adjacent to vk and put them
back (arbitrarily) between vertices from {vi : i < k}. Our goal is to show that
this operation increases E[|X0|], the sum

∑n
i=1

1
di+1 . Let (di) and (d̂i) be the

degree distributions before and after the operation. Clearly,

d̂i = di − 1 + δi (1 ≤ i ≤ dk)

d̂i = di + δi (dk + 1 ≤ i ≤ k − 1)

d̂k = 0

d̂i = di = 0 (k + 1 ≤ i ≤ n),

where 0 ≤ δi ≤ dk and
∑k−1
i=1 δi = 2dk. Indeed, dk edges of the form vivk

(1 ≤ i ≤ dk) are removed and then they are put back: δi of them become
adjacent to vi (1 ≤ i ≤ k − 1). It follows that
n∑
i=1

1

d̂i + 1
−

n∑
i=1

1

di + 1

=

dk∑
i=1

(
1

di + δi
− 1

di + 1

)
+

k−1∑
i=dk+1

(
1

di + 1 + δi
− 1

di + 1

)
+ 1− 1

dk + 1

=

dk∑
i=1

1− δi
(di + δi)(di + 1)

+

k−1∑
i=dk+1

−δi
(di + 1 + δi)(di + 1)

+ 1− 1

dk + 1
.

We aim to show that it is positive so it is enough to show that

L :=

dk∑
i=1

δi
(di + δi)(di + 1)

+

k−1∑
i=dk+1

δi
(di + 1 + δi)(di + 1)

+
1

dk + 1

< 1 +

dk∑
i=1

1

(di + δi)(di + 1)
.

In fact, we will show something slightly stronger, namely, that L (the left hand
side of the above inequality) is at most 1. Indeed,

L ≤
dk∑
i=1

δi
(di + 1)2

+

k−1∑
i=dk+1

δi
(di + 1)2

+
1

dk + 1

≤
k−1∑
i=1

δi
(dk + 1)2

+
1

dk + 1
=

2dk
(dk + 1)2

+
1

dk + 1
≤ 3

dk + 1
,
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which is at most 1, provided dk ≥ 2. For dk = 1, we get L ≤ 2dk
(dk+1)2 + 1

dk+1 = 1.

The claim is proved, provided that ` = 0. It follows that if m =
(
s
2

)
for some

integer s, then the upper bound

u(m) := max

{
n∑
i=1

1

degG(vi) + 1
: G = (V,E), V = {v1, . . . , vn}, |E| = m

}

attains its maximum for Gmax, that is,

u(m) = s · 1

(s− 1) + 1
+ (n− s) · 1

0 + 1
= n− s+ 1.

In general, s is the largest integer such that
(
s
2

)
≤ m. Note that u(m) is clearly

a decreasing function of m; indeed, adding an edge to any graph G, decreases
the corresponding sum. We get

n− s = u

((
s+ 1

2

))
< u(m) ≤ u

((
s

2

))
= n− s+ 1.

Finally, note that n − s + 1 < n −
√

2m + 2 as (s + 1)2/2 >
(
s+1
2

)
> m and

n− s > n−
√

2m− 1 as (s− 1)2/2 <
(
s
2

)
≤ m. The conclusion is that the upper

bound is (almost) sharp and the proof is finished.

The above theorem provides natural observations about bounds for E(Y )
and E(U) using the graphs that provide tight bounds for E[|X0|], namely:

Observation 4.2. Consider a set G of all graphs with n vertices and m edges.
Then:
(a) there exists G ∈ G for which E(Y ) ≤ 2m/n+ 1;
(b) there exists G ∈ G for which E(Y ) ≥

√
2m;

(c) for all G ∈ G we have E(U) ≥ n2/(2m+ n) and the bound is tight;
(d) there exists G ∈ G for which E(U) ≥ n−

√
2m− 1.

It is conjectured that all bounds given above are tight. However, we do not
provide the proofs of these conjectures in this text. Let us just highlight, in
contrast to our results for the G(n, p) model, that the sequence (E[|Xk|]) does
not have to be decreasing for general graphs. For example, consider 3×3 regular
toroidal grid (every vertex has degree 4). Table 4 shows the exact values for
E[|Xk|] and it can be seen that the maximum is achieved for k = 2. Similarly,
for a cycle consisting of 4 vertices we have E[|X0|] = 4/3, E[|X1|] = 5/3,
E[|X2|] = 2/3, E[|X4|] = 1/3 with maximum for k = 1.

5 Concluding remarks
In this paper we have given bounds on random schedules for: the shortest
time required to finish parallel execution of the schedule Y , the number of
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k E[|Xk|] k E[|Xk|] k E[|Xk|]
0 9/5 = 1.800 3 173/112 ≈ 1.545 6 337/1680 ≈ 0.201
1 25/14 ≈ 1.786 4 193/168 ≈ 1.149 7 223/5040 ≈ 0.044
2 4679/2520 ≈ 1.857 5 155/252 ≈ 0.615 8 1/240 ≈ 0.004

Table 4: Values of E[|Xk|] for regular toroidal 3× 3 grid.

processors required in greedy allocation scheme U , and the number of processors
required in optimal allocation Q. There are, however, several other topics that
are interesting and left for further research.

First, while we have relatively good bounds for Y and U , the bounds for Q
could be improved, especially for sparse graphs. Our simulation study shows
the direction for the research, but we left the problem of formally proving the
proper rate of growth of Q open.

The second avenue for more analysis is the derivation of bounds for Y , U
and Q for schedules generated by random orderings of arbitrary graphs. We
have provided some preliminary results in the text, but the problem in general
is left open. Apart from arbitrary graphs, one could concentrate on analysis of
special classes of graphs, e.g. grids, geometric graphs, etc., that are important
from practical point of view.

Another research avenue would be to analyze Q not under assumption of
an optimal allocation but some suboptimal allocation generated by one of the
scheduling heuristics mentioned in the Introduction.

Finally, the model analyzed in the text can be naturally extended to weighted
graphs or other assumptions about schedule generation policy; in particular,
schedules generated by sampling vertices from initial graph with replacement.
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