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Abstract. A clique colouring of a graph is a colouring of the vertices such
that no maximal clique is monochromatic (ignoring isolated vertices). The
least number of colours in such a colouring is the clique chromatic number.
Given n points x1, . . . ,xn in the plane, and a threshold r > 0, the corre-
sponding geometric graph has vertex set {v1, . . . , vn}, and distinct vi and vj
are adjacent when the Euclidean distance between xi and xj is at most r.
We investigate the clique chromatic number of such graphs.

We first show that the clique chromatic number is at most 9 for any
geometric graph in the plane, and briefly consider geometric graphs in higher
dimensions. Then we study the asymptotic behaviour of the clique chromatic
number for the random geometric graph G(n, r) in the plane, where n random
points are independently and uniformly distributed in a suitable square. We
see that as r increases from 0, with high probability the clique chromatic
number is 1 for very small r, then 2 for small r, then at least 3 for larger r,
and finally drops back to 2.

1. Introduction and main results

In this section we introduce clique colourings and geometric graphs; and
we present our main results, on clique colourings of deterministic and random
geometric graphs.

Recall that a proper colouring of a graph is a labeling of its vertices with
colours such that no two vertices sharing the same edge have the same colour;
and the smallest number of colours in a proper colouring of a graph G = (V,E)
is its chromatic number, denoted by χ(G).

We are concerned here with another notion of vertex colouring. A clique
S ⊆ V is a subset of the vertex set such that each pair of vertices in S is
connected by an edge; and a clique is maximal if it is not a proper subset of
another clique. A clique colouring of a graph G is a colouring of the vertices
such that no maximal clique is monochromatic, ignoring isolated vertices. The
least number of colours in such a colouring is the clique chromatic number of
G, denoted by χc(G). (If G has no edges we take χc(G) to be 1.) Clearly,
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χc(G) ≤ χ(G) but it is possible for χc(G) to be much smaller than χ(G). For
example, for any n ≥ 2 we have χ(Kn) = n but χc(Kn) = 2. Note that if G is
triangle-free then χc(G) = χ(G).

A standard example of a hypergaph arising from a graph G is the hypergraph
H with vertex set V (G) and edges the vertex sets of the maximal cliques. A
clique-colouring of G is exactly the standard hypergraph colouring of H, that
is, colouring the vertices so that no edge is monochromatic.

For several graph classes the maximum clique chromatic number is known to
be 2 or 3. For maximum value 2 we have for example: comparability graphs [10],
claw-free perfect graphs [3], odd-hole and co-diamond free graphs [8], claw-free
planar graphs [29], powers of cycles (other than odd cycles longer than three,
which need three colours) [5], and claw-free graphs with maximum degree at
most 7 (again, except for odd cycles of length more than three) [19]. For
maximum value 3 we have for example: planar graphs [26], co-comparability
graphs [10], circular-arc graphs (see [6]) and generalised split graphs (see [15]).
Further related results can be found in [2], [15] and [17]. It was believed for some
time that perfect graphs had bounded clique chromatic number, perhaps with
maximum value 3 (see [10] or for example [16]); but it was shown very recently
that in fact such clique chromatic numbers are unbounded [7]. The behaviour
of the clique chromatic number for the binomial (known also as Erdős-Rényi)
random graph G(n, p) is investigated in [22] and [1].

On the algorithmic side, it is known that testing whether χc(G) = 2 for a
planar graph can be performed in polynomial time [18], but deciding whether
χc(G) = 2 is NP -hard for perfect graphs [18] and indeed for K4-free perfect
graphs [8], and for graphs with maximum degree 3 [3]; see also [20].

We are interested here primarily in clique colourings of geometric graphs in
the plane, but we shall also briefly consider geometric graphs in Rd for any
positive integer d. Given n points x1, . . . ,xn in Rd and given a threshold dis-
tance r > 0, the corresponding (Euclidean) geometric graph has vertex set
{v1, . . . , vn}, and for i 6= j, vertices vi and vj are adjacent when the Euclidean
distance d(xi,xj) ≤ r. We call a graph G geometric or geometric in Rd if there
are points xj and r > 0 realising G as above. By rescaling by a factor 1/r we
may assume, without loss of generality, that r = 1. A geometric graph in R2 is
also called a unit disk graph.

Our first theorem shows that the clique chromatic number is uniformly bounded
for geometric graphs in the plane. (In contrast, Bacsó et al. [3] observed that
χc(G) is unbounded even for line graphs of complete graphs, and recall that
χc(G) is unbounded for perfect graphs.)

Theorem 1.1. If G is a geometric graph in the plane R2 then χc(G) ≤ 9.

Let χmax
c (Rd) denote the maximum value of χc(G) over geometric graphs G in

Rd. Clearly χmax
c (R2) is at least 3 (consider C5) so we have 3 ≤ χmax

c (R2) ≤ 9:
it would be interesting to improve these bounds. In Section 2 we shall see
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that more generally χmax
c (Rd) is finite for each d, but (perhaps unsurprisingly)

χmax
c (Rd)→∞ as d→∞; and we shall see further related deterministic results.

For random geometric graphs the upper bound in Theorem 1.1 can often
be improved. Given a positive integer n and a threshold distance r > 0, we
consider the random geometric graph G ∈ G(n, r) on vertex set V = {v1, . . . , vn}
obtained as before by starting with n random points sampled independently
and uniformly in the square Sn = [−

√
n/2,

√
n/2]

2
, see [28]. (We could equally

work with the unit square [0, 1]2.) Note that, with probability 1, no point in
Sn is chosen more than once, so we may identify each vertex v ∈ V with its
corresponding geometric position v = (vx, vy) ∈ Sn. The (usual) chromatic
number of G(n, r) was studied in [21, 23], see also [28].

We say that events An hold with high probability (whp) if the probability that
An holds tends to 1 as n goes to infinity. Also, we use log to denote natural
logarithm. It is known that the value rc = rc(n) =

√
(log n)/π is a sharp

threshold function for connectivity for G ∈ G(n, r) (see, for example, [27, 14]).
This means that for every ε > 0, if r ≤ (1− ε)rc, then G is disconnected whp,
whilst if r ≥ (1 + ε)rc, then G is connected whp.

The next two results summarise what we know about the clique chromatic
number χc of a random geometric graph G in the plane; but first here is an
overview. As r increases from 0 we have whp the following rough picture:
χc(G) is 1 up to about n−1/2, then 2 up to about n−1/8, then at least 3 (and at
most χmax

c (R2) ≤ 9) up to about
√

log n (roughly the connectivity threshold),
when it drops back to 2 and remains there.

Theorem 1.2. For the random geometric graph G ∈ G(n, r) in the plane:

(1) if nr2 → 0 then χc = 1 whp,
(2) if nr2 → c then P(χc = 1)→ e−(π/2)c and P(χc = 2)→ 1− e−(π/2)c,
(3) if nr2 →∞ and nr8 → 0 then χc = 2 whp,
(4) if nr8 → c then P(χc = 2) → e−µc and P(χc = 3) → 1 − e−µc, for a

suitable constant µ = µ(C5) > 0 (see below),
(5) if nr8 →∞ and r ≤ 0.46

√
log n then χc ≥ 3 whp,

(6) if r ≥ 9.27
√

log n then χc = 2 whp.

The constant µ in part (4) above may be expressed explicitly as an integral,
see equation (3.2) in [28]. It is the asymptotic expected number of components
C5 in the case when nr8 → 1. We can say more within the interval in (5) above
where χc(G) ≥ 3: at the low end of the interval we have χc(G) = 3 whp; and
higher up, within a suitable subinterval, χc(G) is whp as large as is possible for
a geometric graph.

Proposition 1.3. For the random geometric graph G ∈ G(n, r) in the plane:

(1) if nr8 →∞ and nr18 → 0 then χc(G) = 3 whp,
(2) there exists ε > 0 such that, if n−ε ≤ r ≤ ε

√
log n then χc(G) =

χmax
c (R2) whp.
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The only random geometric graphs we consider here are those described
above, where the points are independently and uniformly distributed over a
square in the plane. See [28] for more general models of random geometric
graphs, and see [9] in particular for models in high dimensions.

2. Deterministic results

In this section, we start by proving Theorem 1.1, and then consider geometric
graphs in dimensions greater than 2. After that we give Lemma 2.4, concerning
the maximum value of χc(G) for general n-vertex graphs, for small values of n:
this result will be used in the next section in the proof of Proposition 1.3.

Proof of Theorem 1.1. Fix y with 1
2
< y <

√
3/2. Divide the plane into hori-

zontal strips R× [ny, (n + 1)y) for n ∈ Z. Suppose we are given a finite set of
points in the plane, and let G be the corresponding unit disk graph. Consider
one strip, let W be the subset of the given points which are in the strip (which
we may assume is non-empty), and H be the geometric graph corresponding to
W . We claim that χc(H) ≤ 3.

For u,v ∈ W we write u ≺ v if ux < vx and uv ∈ E(H). If u ≺ v then
1 < d(u,v) < (vx − ux)

2 + 3
4

so vx > ux + 1
2
. Thus if also v ≺ w then

wx > vx + 1
2
> ux + 1, so u ≺ w. Thus ≺ is a (strict) partial order on W .

Further, H is the corresponding comparability graph, since if uv ∈ E(H) then
ux 6= vx (for if ux = vx then d(u,v) = |uy − vy| < y < 1 so uv is in E(H) not
E(H)). Thus H is a co-comparability graph. Hence, by the result of Duffus et
al. [10] mentioned earlier, we have χc(H) ≤ 3, as claimed. (Indeed, we do not
know an example where χc(H) > 2.)

Now label the strips cyclically a, b, c, a, b, c, a, . . . moving upwards say, and
use 3 colours to properly clique colour the a-strips, a new set of 3 colours for
the b-strips and similarly a new set of 3 colours for the c-strips, using 9 colours
in total. A monochromatic maximal clique with at least 2 vertices could not
have points in two different strips since 2y > 1, and could not be contained in
one strip since we have a proper clique-colouring there. Thus χc(G) ≤ 9. �

Theorem 1.1 shows that the clique chromatic number is at most 9 for any
geometric graph in the plane. We next see that, for a given dimension d, there
is a uniform bound on the clique chromatic number for all geometric graphs in
Rd.

Proposition 2.1. Let G be a geometric graph in Rd. Then

χc(G) ≤ 2 (d
√
de+ 1)

d
< 2 e2

√
d dd/2.

Our simple proof uses a tessellation into small hypercubes which induce
cliques. In the case d = 2 it is better to use hexagonal cells, and then the
bound improves from 18 to 14. In [25], hexagonal cells are used in pairs to show
that χmax

c (R2) ≤ 10, nearly matching the upper bound 9 in Theorem 1.1.



CLIQUE COLOURINGS OF GEOMETRIC GRAPHS 5

Proof. We may assume that the threshold distance r is 1. Let k = d
√
de, let

s = 1/k, and let Q be the hypercube [0, s)d. Observe that Q has diameter

s
√
d ≤ 1, so the subgraph of G induced by the points in Q is complete. We

partition Rd into the family of translates Q + sz of Q, for z ∈ Zd. (Here
Q + y is the set of all points x + y for x ∈ Q.) Consider the subfamily
F0 = (Q + (k + 1)sz : z ∈ Zd). Let z and z′ be distinct points in Zd, and
let x and x′ be points in the cells Q + (k + 1)sz and Q + (k + 1)sz′ in F0

respectively. Without loss of generality, we may assume that z1 > z′1. Then

d(x,x′) ≥ x1 − x′1 > (k + 1)s(z1 − z′1)− s ≥ ks = 1.

Thus the subgraph G′ of G induced on the vertices corresponding to the points
in the cells of F0 consists of disjoint cliques, with no edges between them. Hence
χc(G

′) ≤ 2, since we just need to ensure that each cell with at least two points
gets two colours. Finally, let F(y) denote the translate by y of the family F0,
so

F(y) = (Q+ y + (k + 1)sz : z ∈ Zd)
(and F0 = F(0)). Let S(y) be the union of the cells in F(y), and let G(y) be
the subgraph of G induced by the vertices corresponding to the points in S(y).
Then the (k + 1)d sets S(y) for y ∈ {0, . . . , k}d partition Rd; and so

χc(G) ≤
∑

y∈{0,...,k}d
χc(G(y)) ≤ 2(k + 1)d,

as required for the first inequality. For the second inequality, we have

(k + 1)d < (
√
d+ 2)d = dd/2(1 + 2/

√
d)d < dd/2e2

√
d,

and the proof is finished. �

For example, we may deduce from this result that χmax
c (R3) ≤ 2 · 33 = 54. It

is not hard to make small improvements for each d, but let us focus on the case
d = 3.

Proposition 2.2. If G is a geometric graph in R3 then χc(G) ≤ 21.

Proof. Let T denote the unit triangular lattice in R2, with vertices the integer

linear combinations of p = (1, 0) and q = (1
2
,
√
3
2

) (and where the edges have
unit length). Consider the hexagonal packing in the plane, as in Figure 1,
formed from the hexagonal Voronoi cells of T .

The sublattice T ′ of T with vertices generated by 2p + q and −p + 3q is a
triangular lattice with edge-length

√
7, and 7 translates of V (T ′) partition V (T )

(for example translate by (0, 0),q, 2q, 3q,p+q,p+2q,p+3q – see Figure 2, and
for example [24]). We thus obtain a 7-colouring of the vertices of T , and this
gives a 7-colouring of the cells.

Since the cells have diameter 2/
√

3, the distance between any two cells centred
on distinct points in T ′ is at least

√
7−2/

√
3 ≈ 1.491051. (In fact, the minimum

distance occurs for example between the cells centred on (0, 0) and on 2p + q,

and equals d((1
2
, 1
2
√
3
), (2, 1√

3
)) =

√
7
3
≈ 1.527525.) Thus our 7-colouring of the
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Figure 1. Dashed lines join points of the unit triangular lattice
T at distance 1, and solid lines bound the hexagonal Voronoi cells

cells is such that, for any two distinct cells of the same colour, the distance
between them is at least 1.49 (see also Theorems 3 and 4 of [24] for related
results).

Figure 2. Cells with the same colour. Any two cells of the same

colour are at distance at least
√

7
3

Rescale by multiplying by 3
4
, so that the diameter of a hexagonal cell is now

3
4
· 2√

3
=
√

3
4
. The distance between distinct rescaled cells corresponding to

centres in T ′ has now been reduced to at least 3
4
· 1.49 = 1.1175 > 1.1, still

bigger than 1.
Suppose that we are given any finite set of points in R3, take r = 1, and let

G be the corresponding geometric graph. Think of R3 as R2 × R. Consider
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any cell C, and let GC be the geometric graph corresponding to the points in
the cylinder C × R, with threshold distance r = 1. We may now argue as
in the proof of Theorem 1.1: for clarity we spell this out. Observe that for
u,v ∈ C×R, if uz = vz then d(u,v) ≤ 3

4
< 1 so uv ∈ E(GC). For u,v ∈ C×R

we write u ≺ v if uv ∈ E(GC) and uz < vz. If u ≺ v then

1 < d(u,v)2 = (ux − vx)2 + (uy − vy)2 + (uz − vz)2 ≤ 3
4

+ (uz − vz)2,

and so vz > uz + 1
2
. If also v ≺ w then similarly wz > vz + 1

2
; and then

wz > uz + 1 and so u ≺ w. It follows that ≺ is a (strict) partial order, and
GC is the co-comparability graph. Thus, once more by the result of Duffus et
al. [10], we have χc(GC) ≤ 3.

Consider the 7-colouring of the cells. For each colour i = 1, . . . , 7 and each
cell C of colour i, properly clique colour the points in C × R using colours
(i, 1), (i, 2), (i, 3). If two points in distinct cylinders have the same colour, then
the distance between them is at least 1.1 > 1, so the corresponding vertices are
not adjacent in G. Thus the colourings of the cylinders fit together to give a
proper clique colouring of G using at most 21 colours, as required. �

The next result shows that, if we do not put some restriction on the dimension
d, then we can say nothing about a geometric graph in Rd.

Proposition 2.3. For each graph G there is a positive integer d such that G
is a geometric graph in Rd, and indeed if G has n ≥ 2 vertices we can take
d ≤ n− 1.

Observe that the second part of this result follows immediately from the first,
since the affine span of n points has dimension at most n− 1.

Proof. We prove more, namely that for any ε > 0 there are points x1, . . . ,xn

in Rn such that for each i we have 1 · xi = 1 and xi is within distance ε of ei

(where ei is the ith unit vector in Rn), and such that for i 6= j

d(xi,xj)

{
<
√

2 if ij is an edge

>
√

2 if not.

The case n = 2 is trivial. Suppose that n ≥ 3 and the result holds for n− 1.
Start with xi = ei for each i = 1, . . . , n. We first adjust xn. For 1 ≤ i < j ≤ n
let zij be −1 if ij is an edge and +1 if not. Note that the n n-vectors 1 and
en−e1, en−e2, . . . , en−en−1 form a basis of Rn. Hence there is a unique vector
y with y · 1 = 0 and y · (en − ei) = zin for each i = 1, . . . , n− 1.

Let ε > 0, and assume (as we may) that ε < 1/‖y‖. Let δ = ε/‖y‖, and
re-set xn to be en + δy. Note first that 1 · xn = 1 and d(xn, en) = ‖δy‖ = ε.
For each i ∈ [n− 1]

‖xn − ei‖2 = ‖(en − ei) + δy‖2 = 2 + 2δzin + δ2‖y‖2 = 2 + ε2 + 2δzin.
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But ε2 − 2δ = ε(ε− 2
‖y‖) < −δ. Thus ‖xn − ei‖2 is < 2− δ if in is an edge and

> 2 + δ if not. Let

0 < η < min{
√

2 + δ −
√

2,
√

2−
√

2− δ}.
By the induction hypothesis, we may choose points x1, . . . ,xn−1 in Rn with nth
co-ordinate 0, such that distances corresponding to edges are <

√
2 and other

distances are >
√

2, and for each i ∈ [n− 1] we have xi · 1 = 1 and xi is within
distance η of ei. By the triangle inequality, d(xn,xi) = d(xn, ei) + ηi for some
ηi with |ηi| ≤ η. Thus for each i ∈ [n− 1]

d(xn,xi)

{
<
√

2− δ + η <
√

2 if in is an edge

>
√

2 + δ − η >
√

2 if not.

This completes the proof by induction. �

Let χmax
c (n) be the maximum value of χc(G) over all n-vertex graphs. Since

the Ramsey number R(3, k) satisfies R(3, k) = Θ(k2/ log k), there exist n-vertex
triangle-free graphs Gn with stability number O(

√
n log n) (see [12] for the best

known bounds) and thus with chromatic number and hence clique chromatic

number Ω(
√
n/ log n). (Recall that χc = χ for a triangle-free graph.) Hence

χmax
c (n) = Ω(

√
n/ log n) as n→∞. (1)

It now follows from Proposition 2.3 that

χmax
c (Rd) = Ω(

√
d/ log d) as d→∞. (2)

This shows explicitly that χmax
c (Rd) → ∞ as d → ∞, though the lower bound

here is rather a long way from the upper bound (roughly dd/2) provided by
Proposition 2.1. (See also Section 4, where we discuss χmax

c (Rd) in para-
graph (2), and χmax

c (n) in paragraphs (5) and (6).)

It is convenient to give one more deterministic result here, which we shall
use in the proofs in the next section and in the final section. For the sake of
completeness, we include the straightforward proof.

Lemma 2.4. Let the graph G have n vertices. If n ≤ 5 then χc(G) ≤ 2 except
if G is isomorphic to C5 when χc(G) = 3. If n ≤ 10 then χc(G) ≤ 3.

Proof. Suppose that n ≤ 5. If deg(v) ≥ 3 then colouring N(v) with colour 1
and the other vertices with colour 2 shows that χc(G) ≤ 2: thus we may assume
that each degree is at most 2. If G has a triangle then G consists of a triangle
perhaps with one additional disjoint edge, so χc(G) ≤ 2. If G does not have a
triangle, then either G is isomorphic to C5 or χc(G) ≤ χ(G) ≤ 2. Also, since
C5 has no triangles, χc(C5) = χ(C5) = 3. This completes the proof of the first
statement.

Now let us prove that χc(G) ≤ 3 for n ≤ 9. Suppose for a contradiction
that n ≤ 9 and χc(G) > 3, and n is minimal such that this can happen. The
minimum degree in G is at least 3 (for if deg(v) ≤ 2 and χc(G − v) ≤ 3 then
χc(G) ≤ 3).
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Suppose that deg(v) ≥ 4 for some vertex v, and let G′ = G \ N(v). Then
|V (G′)| ≤ 5 and χc(G

′) ≥ 3 (since χc(G) ≤ χc(G
′) + 1). Thus by the first part

of the lemma, deg(v) = 4 and G′ is isomorphic to C5. But now v has neighbours
in G′, a contradiction.

It follows that G is cubic. Hence n is even, and so n ≤ 8. Now let v be
any vertex and as before let G′ = G \ N(v). Arguing as before, we must have
χc(G

′) ≥ 3 so G′ is isomorphic to C5 and v has neighbours in G′, a contradiction.

It remains only to show that χc(G) ≤ 3 when n = 10. As above, we may
assume that G is connected and the minimum degree in G is at least 3. If G has
a vertex v with deg(v) ≥ 5, then by the case n = 4 of the lemma, G′ = G\N(v)
satisfies χc(G

′) ≤ 2, since G′ consists of an isolated vertex and a 4-vertex graph:
but now, using the third colour for each vertex in N(v), we see that χc(G) ≤ 3.
If each vertex has degree at most 3 then χc(G) ≤ χ(G) ≤ 3 by Brooks’ theorem
(since G is connected and is not K4).

Now we may assume, without loss of generality, that G has a vertex v with
deg(v) = 4. Since v is isolated in G′ = G \ N(v), by the case n = 5 of the
lemma, χc(G

′) ≤ 2 (and thus as before χc(G) ≤ 3) unless G′ is the disjoint
union of the vertex v and the 5-cycle C = v1, . . . , v5 with edges vivi+1 (where
v6 means v1). Assume that G′ is indeed of this form. We now have two cases.
Case 1: there are adjacent vertices vi, vi+1 in the cycle C that form a triangle

with some vertex u ∈ N(v).
We may 3-clique colour G as follows. Without loss of generality, assume that
i = 2. Give colour 1 to v, v2, v3 and v5; give colour 2 to v1 and v4; and give
colour 3 to each vertex in N(v). Let K be a monochromatic clique of size at
least 2. If K has only colour 1, then K cannot contain v or v5 (since they have
no neighbours coloured 1), so we can add u to K; K cannot have only colour
2 (since the vertices coloured 2 form a stable set); and if K has only colour 3
then we can add v to K.

Case 2: no two vertices in the cycle C form part of a triangle.
Each vertex u ∈ N(v) can be adjacent to at most two (non-adjacent) vertices
in C, and every vertex vi in C has at least 1 and at most 2 neighbours in N(v).
Hence some vertex in C has exactly one neighbour in N(v): without loss of
generality, assume that v1 has exactly one neighbour, say, u1 in N(v). Note
that u1 is not adjacent to v2 or v5: since u1 is adjacent to at most one of v3, v4
we may assume, without loss of generality, that u1 is not adjacent to v4. Give
colour 1 to u1, v2, v4; give colour 2 to v, v3, v5; and give colour 3 to v1 and each
vertex in N(v) \ {u1}.

As in the first case, let K be a monochromatic clique of size at least 2. Then
K cannot be only colour 1 or only colour 2, since the vertices coloured 1 and
the vertices coloured 2 both form stable sets; and if K has only colour 3 then
v1 6∈ K (since v1 has no neighbours coloured 3) so we can add v to K. �

The Grötzsch graph is triangle-free on 11 vertices and has chromatic number
4, and thus has clique chromatic number 4. Since χmax

c (10) = 3 by the last
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result, it follows that χmax
c (11) = 4. Indeed, we may deduce easily that

χmax
c (n) = 4 for n = 11, . . . , 16. (3)

In order to see it, suppose G is connected and has n ≤ 16 vertices: we must
show that χc(G) ≤ 4. If each vertex has degree at most 4 then χ(G) ≤ 4 by
Brooks’ Theorem, and so χc(G) ≤ 4. If some vertex v has degree at least 5 then
G′ = G \N [v] has at most 10 vertices, so χc(G) ≤ 1 + χc(G

′) ≤ 4.

3. Random results

In this section we prove Theorem 1.2 and Proposition 1.3. We use one prelim-
inary lemma that concerns the appearance of small components in the random
geometric graph G. It is taken from Chapter 3 of [28], where it is proved using
Poisson approximation techniques.

Lemma 3.1. Let k ≥ 2 be an integer, let H be a connected unit disk graph
with k vertices, and let µ = µ(H) > 0 be the constant defined in equation (3.2)
in [28].

(1) If nr2(k−1) → 0 then whp G has no component with k or more vertices.
(2) If nr2(k−1) → c where 0 < c < ∞ then the expected number of compo-

nents isomorphic to H tends to µc, and the probability that G has such
a component tends to 1− e−µc.

(3) If nr2(k−1) →∞ and r → 0 then whp G has a component H.

(In part (2) above, the number of components isomorphic to H in fact converges
in distribution to Poisson(µc).) We may now prove Theorem 1.2, taking the
parts in order. We shall use the last lemma several times, sometimes without
explicit reference.

Proof of Theorem 1.2

Part (1). The expected number of edges is asymptotic to
(
n
2

)
πr2/n ∼ (π/2)nr2.

Thus by Markov’s inequality, if nr2 → 0 then whp G has no edges so χc(G) = 1.
(This also follows from Lemma 3.1 part (1) with H as the complete graph K2.)

Part (2). If nr2 → c where 0 < c < ∞, then the expected number of
edges tends to µc, where µ = µ(K2) = π/2 (edge-effects are negligible). Also,
since nr4 → 0, whp each component has size at most 2, and so χc(G) ≤
2. Hence P(χc(G) = 1) = P(G has no edges) → e−µc, and P(χc(G) = 2) ∼
P(G has an edge)→ 1− e−µc.

Part (3). If nr2 → ∞ then whp G has an edge (and indeed G has at least
one component that is an isolated edge), so χc(G) ≥ 2. If nr8 → 0 then whp
each component of G has size at most 4, and then χc(G) ≤ 2 by Lemma 2.4.
These two results combine to prove Part (3).

Part (4). If nr8 → c (where 0 < c < ∞), then the probability there
is a component C5 tends to 1 − e−µc, where µ = µ(C5) > 0. Also whp
G has edges and each component has size at most 5. Hence P(χ = 2) ∼
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P(G has no component C5) → e−µc; and, using also Lemma 2.4, P(χ = 3) ∼
P(G has a component C5)→ 1− e−µc.

Part (5). If nr8 → ∞ and r → 0, then whp G has a component C5, and so
χc(G) ≥ 3. The following lemma covers the remainder of the relevant range of
values for r.

Lemma 3.2. Let G ∈ G(n, r) with (n/ log n) r8 → ∞ and r ≤ 0.46
√

log n.
Then χc(G) ≥ 3 whp.

In order to simplify the proof of Lemma 3.2 we will make use of a technique
known as Poissonization, which has many applications in geometric probability
(see [28] for a detailed account of the subject). Here we sketch all we need.

Consider the related model of a random geometric graph G̃(n, r), where the set
of points is given by a homogeneous Poisson point process of intensity 1 in the
square Sn of area n. In other words, we form our graph from N points in the
square Sn chosen independently and uniformly at random, where N is a Poisson
random variable of mean n.

The main advantage of generating our points by a Poisson point process arises
from the following two properties: (a) the number of points that lie in any region
A ⊆ Sn of area a has a Poisson distribution with mean a, and the numbers
of points in disjoint regions of Sn are independently distributed; and (b) by

conditioning G̃(n, r) on the event N = n, we recover the original distribution of

G(n, r). Therefore, since Pr(N = n) = Θ(1/
√
n), any event holding in G̃(n, r)

with probability at least 1− o(n− 1
2 ) must hold whp in G(n, r).

Proof of Lemma 3.2. Our plan is to show that whp G contains a copy of C5

such that no edge of this copy is in a triangle in G, and so χc(G) ≥ 3. In order
to allow r to be as large as possible we consider a configuration of 5 points such
that the corresponding unit disk graph is C5, and the area A that must contain
no further points (to avoid unwanted triangles) is as small as possible.

We work in the Poisson model G̃(n, r). Within Sn choose (b
√
n/4rc)2 disjoint

square cells which are translates of [0, 4r)2. For each of these cells, we shall
consider a regular pentagon Q centered at the center of the cell and contained
well within the cell.

Consider first the square [−2, 2)2. Start with a regular pentagon, with ex-
treme points listed clockwise as v1, . . . ,v5 around the boundary, centred on
the origin O = (0, 0), and scaled so that the diagonals (for example v1v3)
have length 1. The angle v1Ov2 is 2π/5, and the line Ov2 is orthogonal to
the line v1v3 and bisects it. Hence the radius (from the centre O to each
extreme point vi) is a := |Ov1| = 1/(2 sin 2π

5
) ≈ 0.525731. (We give num-

bers rounded to 6 decimal places.) If T is the midpoint of the side v1v2,
then the line OT is orthogonal to v1v2 and the angle v1OT is π/5. Hence
the side length s (the length of v1v2 for example) satisfies s

2a
= sin(π/5), so

s = sin(π/5)/ sin(2π/5) = 1/(2 cos π
5
) ≈ 0.618034. For each successive pair

vivi+1 of extreme points (including v5v1), let Bi be the intersection of the unit
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radius disks centred on vi and vi+1; and let the ‘controlled region’ B be the
union of the Bi, with area A. For the value of A, we have the following claim.

OO

P

R

Q

T

U

W

Figure 3. Configuration of points in the proof of the claim

Claim: A ≈ 4.633376.

Proof of the claim. We may calculate A as follows. Let us take v1 to be on the
y-axis above the origin O, so v1 = (0, a). Now v2 = (a cos π

10
, a sin π

10
). Let us

denote v1 by W and v2 by P .
Suppose that the circle C of radius 1 centred on P meets the lines x = 0

(on which W lies) and y = (tan 3π
10

)x (bisecting the angle between OW and
OP ) above the x-axis at Q and R respectively. Then the area A is 10A0, where
A0 is the area bounded by these two straight lines and the arc of the circle C
between Q and R – see the shaded area on Figure 3. We may calculate A0 as
the area A1

0 of the sector of the circle bounded by the arc between Q and R
and the radii PQ and PR, less the area A2

0 of triangle OPR, plus the area A3
0

of triangle OPQ. Recall that T is the point of intersection of the lines PW
and OR, and note that |PT | = |WT | = s/2 and PW and OR are orthogonal.
Now (by Pythagoras’ theorem) |OT |2 = a2 − (s/2)2 and |TR|2 = 1 − (s/2)2;

and so |OT | = a
√

1− sin2(π/5) ≈ 0.425325 and |TR| =
√

1− a2 sin2(π/5) ≈
0.951057.

Drop a perpendicular from Q to the (extended) line PW , meeting the line
at U . Note that the angle UWQ is 3π

10
, and so |UW | = |QU | cot(3π/10). Hence,

by considering the triangle PQU in which |PQ| = 1, |UQ| is the positive solu-
tion h of the quadratic equation(

s+ cot(3π/10)h
)2

+ h2 = 1;
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and thus we obtain h ≈ 0.406737. It follows that the angle WPR is α =
arcsin |TR| ≈ 1.256637, the angle WPQ is γ = arcsin |UQ| ≈ 0.418879, and so

A1
0 =

α− γ
2
≈ 0.418879.

Moreover,

A2
0 =

s|OT |
4

+
s|TR|

4
≈ 0.212663,

A3
0 =

s|UQ|
2

+
s|OT |

2
≈ 0.257121,

and so A = 10A0 = 10(A1
0 − A2

0 + A3
0) ≈ 4.633376. �

We continue with the proof of Lemma 3.2. Let 0 < b < A−
1
2 ≈ 0.464570; and

let r = r(n) satisfy (n/ log n) r8 → ∞ and r ≤ b
√

log n. As indicated earlier,
we shall show that whp G contains a copy J of C5 such that no edge of J is in
a triangle in G, and so χc(G) ≥ 3.

Choose ε > 0 sufficiently small that η := 1 − (1 + ε)2b2A > 0, the region
(1 + ε)B is contained in the ball centred on O with radius 2, and ε < (1 + ε)s <
1 − ε. Scale up by a factor 1 + ε, and use the notation v′i, A

′, B′ to refer to
the rescaled case. Note that B′ is contained in [−2, 2)2 (by our assumption on
(1+ε)B). Put small open balls of radius ε/2 around the five extreme points v′i of
the pentagon, and note that these small balls are all disjoint (since (1+ε)s > ε).
If x and y are points in the small balls at non-adjacent vertices v′i and v′j then
d(x,y) > 1 (since d(v′i,v

′
j) = 1 + ε). If x and y are points in the small balls

at adjacent vertices v′i and v′i+1 (where v′6 means v′1) then d(x,y) < 1 (since
(1 + ε)s + ε < 1); and if z 6∈ B′ then either d(z,x) > d(z,v′i) − ε/2 > 1 or
similarly d(z,y) > 1, so we do not get triangles involving a point z 6∈ B′.

Now rescale by r, and call the rescaled controlled region B′′. Note that the
area of B′′ is (1 + ε)2r2A. If exactly one Poisson point x lies in each rescaled
small ball and there are no other such points in B′′ then we have a copy of C5

as desired. Setting λ = π(εr/2)2, the probability qn of this happening satisfies

qn = (λe−λ)5e−r
2((1+ε)2A−5π(ε/2)2) = λ5e−r

2(1+ε)2A.

Since events within different cells are independent, the probability pn that G ∈
G̃(n, r) has no C5 as desired satisfies

pn ≤ (1− qn)(b
√
n/4rc)2 ≤ exp

(
−(1 + o(1))

qn n

16r2

)
.

Observe that

r2(1 + ε)2A ≤ b2(1 + ε)2A log n = (1− η) log n.

If 1 ≤ r ≤ b
√

log n then

qnn/r
2 = λ5e−r

2(1+ε)2A n/r2 = Ω(r8nη) = Ω(nη),

and if ( logn
n

)
1
8 � r ≤ 1 then

qnn/r
2 = Ω(λ5n/r2) = Ω(r8n)� log n.
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Thus in both cases pn = o(n−
1
2 ). It follows that the failure probability in the

original G(n, r) model is o(1), as required. �

Part (6) (of Theorem 1.2). The next lemma proves Part (6), and thus com-
pletes the proof of Theorem 1.2.

Lemma 3.3. Let G ∈ G(n, r) with r ≥ 9.27
√

log n. Then χc(G) = 2 whp.

Proof of Lemma 3.3. ClearlyG has an edge whp, and so χc(G) ≥ 2 whp. Hence,
we only need to show that χc(G) ≤ 2 whp. As in the proof of Proposition 2.2,
start with a hexagonal packing in the plane, as in Figure 1, formed from the
Voronoi cells (with vertical left and right sides) of the unit triangular lattice T
(where the edges have unit length). The hexagonal cells have area

√
3/2 and

diameter 2/
√

3.

Now rescale by the factor
√

2√
3
(1 + ε) log n for some suitably small ε > 0. As

a result, each cell has area (1+ε) log n and diameter δ := ((1+ε)8 log n)
1
2 3−3/4.

(For orientation, note that the lower bound on r is (for small ε) more than
7.4 δ.) By shrinking slightly in the x and the y directions, we may ensure that
the left and right sides of the square Sn lie along vertical sides of cells (more
precisely, we may ensure that, as we move up the left side of the square, every
second internal cell has its vertical left boundary along the side of the square,
and every second one is bisected by the side of the square; and similarly for the
right side of the square), and each cell which meets a horizontal side of Sn is
at least half inside Sn. We then obtain (at least for large n) a partition of the
square Sn such that each cell has diameter at most δ, each ‘internal’ cell not
meeting the boundary has area at least a = (1+ε/2) log n, and each ‘boundary’
cell meeting the boundary has area at least a/2. There are O(n/ log n) internal

cells and O(
√
n/ log n) boundary cells.

The probability that a given internal cell contains at most one point in its
interior is at most(

1− a

n

)n
+ n

(
1− a

n

)n−1 a
n
≤ n−1−ε/2+o(1).

Since there are O(n/ log n) internal cells, the expected number of such cells is
n−ε/2+o(1) = o(1). Similarly, the probability that a given boundary cell contains

at most one point in its interior is at most n−
1
2
−ε/4+o(1); and since there are

O(
√
n/ log n) boundary cells, the expected number of such cells is n−ε/4+o(1) =

o(1). It follows from Markov’s inequality that whp all cells have at least two
points in their interior.

It suffices now to show (deterministically) that for each set of points in Sn
with at least two in the interior of each cell, the corresponding graph G has
χc(G) ≤ 2. To do this, we colour the vertices of G arbitrarily as long as both
colours are used in every cell: we shall show that this gives a proper clique-
colouring.
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Observe that G has no isolated vertices since r is more than the diameter δ of
a cell (indeed, r > 7.4δ and so – assuming n is large – the minimum degree may
be shown to be at least 95, since in the triangular lattice there are 48 lattice
points (x, y) ≥ (0, 0) within graph distance 7 of (0, 0), and thus within Euclidean
distance 6.1δ, so each point in each of these cells is at Euclidean distance < r
from each point in the cell corresponding to (0, 0)). Consider any maximal
clique K in G with corresponding Euclidean diameter D (so 0 < D ≤ r), and
suppose that D is attained for the Euclidean distance between the points u and
v corresponding to vertices u and v in K. Let y be the midpoint of the line
joining u and v, and let the cell C contain y. Since for each vertex w in the
clique K, the corresponding point w is at distance at most D from both u and
v, it follows that w is at distance at most

√
D2 − (D/2)2 =

√
3D/2 from y.

Hence if √
3D/2 + δ ≤ r, (4)

then every point of the cell C is at distance at most r from all points of K. Since
K is maximal, all vertices corresponding to points that belong to the cell must
be inK, and soK is not monochromatic. SinceD ≤ r, the desired inequality (4)
holds as long as

√
3r/2 + δ ≤ r, which is equivalent to r ≥ 4δ(1 +

√
3/2). But

4(1 +
√

3/2)8
1
2 3−3/4 = (1 +

√
3/2)27/23−3/4 = 9.261506

to 6 decimal places. Thus, by choosing ε > 0 sufficiently small, we see that it
suffices to have r ≥ 9.2616

√
log n. �

We have completed the proof of Theorem 1.2. It remains to prove Proposi-
tion 1.3. The first part of that result follows directly from Lemmas 2.4 and 3.1,
since we already know that χc(G) ≥ 3 whp, and the latter lemma shows that
whp G has no components with more than 10 vertices. The second part will
follow easily from the next lemma, by considering a connected geometric graph
H such that χc(H) = χmax

c (R2).

Lemma 3.4. Let h ≥ 2 and let H be any given connected geometric graph
with h vertices. Suppose that nr2(h−1) → ∞ and r ≤

√
log n/(πh). Then for

G ∈ G(n, r), whp G has a component isomorphic to H.

Proof. If nr2(h−1) → ∞ and r → 0 then whp G has a component H by
Lemma 3.1. To handle larger values of r, we now work in the Poisson model

G̃(n, r). Assume from now on that r ≥ 1/ log n say (and still r ≤
√

log n/(πh)).
Fix distinct points x1, . . . ,xh such that, for each distinct i and j, d(xi,xj) < 1
if ij ∈ E(H) and d(xi,xj) > 1 if ij 6∈ E(H). Thus the unit disk graph
generated by these points is H. Let α = max{d(xi,xj) : ij ∈ E(H)}, let
β = min{d(xi,xj) : ij 6∈ E(H)}, and let γ = min{d(xi,xj) : i 6= j}. Let
0 < η ≤ 1

2
min{1 − α, β − 1, γ}. Put a small open ball B(xi, η) of radius η

around each point xi. Observe that these balls are pairwise disjoint, and if
yi ∈ B(xi, η) for each i then y1, . . . ,yh yield the same geometric graph H.

Let C1 be the set of points within distance 1 of the points xi (so C1 is the
union of the balls B(xi, 1)), and let A1 be the area of C1. Observe that A1 < πh
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since h ≥ 2 and H has an edge. Let C be the set of points within distance 1+η
of the xi, and let C have area A. Let b = (πh)−1/2. If η is chosen sufficiently
small then b2A < 1; assume we have done this.

If each ball B(xi, η) contains exactly one Poisson point and there are no other
such points in C, then we have a copy of H forming a component of G. Now
scale by r, note that we can pack Θ(n/r2) disjoint copies of the configuration
in Sn, and we may argue as in the proof of Lemma 3.2, as follows.

Set λ = π(ηr)2. Let qn be the probability that each small ball contains exactly
one Poisson point and there are no such points where they should not be. Then

qn = (λe−λ)he−r
2(A−hπη2) = λhe−r

2A.

Since events within different cells are independent, for some constant c > 0 the

probability pn that G ∈ G̃(n, r) has no component H satisfies

pn ≤ (1− qn)
cn
r2 ≤ exp

(
−cnqn

r2

)
.

Now, for r ≤ b
√

log n, we have r2A ≤ b2A log n, and so

qnn/r
2 = λhe−r

2An/r2 = Ω(n1−b2Ar2h−2) = Ω(n1−b2A(log n)−(2h−2)).

Thus, since b2A < 1, we have pn = o(n−
1
2 ). It follows that the failure probability

in the original G(n, r) model is o(1), as required. �

4. Concluding Remarks

Let us pick up a few points for further thought.

(1) Recall that χmax
c (R2) is the maximum value of χc(G) over geometric

graphs G in the plane, and we saw that 3 ≤ χmax
c (R2) ≤ 9. Can we

improve either bound?
Observe that if a geometric graph G is triangle-free then G is planar

(if in the embedding of a geometric graph two edges cross, then this
induces a triangle in G, see for example [4]) and so χc(G) ≤ χ(G) ≤ 3
by Grötzsch’s theorem. We saw in Lemma 2.4 that χc(G) ≤ 3 for all
graphs with at most 10 vertices. The Grötzsch graph showed that this
bound does not extend to n = 11 (see also equation (3), and point (4)
below). But the Grötzsch graph is not a geometric graph in the plane, so
perhaps the upper bound 3 extends to larger values n when we restrict
our attention to geometric graphs? Any extension for geometric graphs
would lead to an improvement in Proposition 1.3 Part (1). If it turns
out that χmax

c (R2) = 3, then Theorem 1.2 is tighter than it currently
seems, and Proposition 1.3 is redundant. If χmax

c (R2) > 3 then it would
be interesting to refine Part (5) of Theorem 1.2.

(2) More generally, can we say more about χmax
c (Rd)? We saw in Proposi-

tion 2.2 that χmax
c (R3) ≤ 21: can we improve this upper bound? Can

we find a geometric graph in R3 with χc(G) > 3? We have seen that
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χmax
c (Rd) is at most 2e2

√
d dd/2 and is Ω(

√
d/ log d) as d → ∞. Can we

improve these bounds?
Remark: After submission of this paper the upper bound on χmax

c (Rd)
was improved in [13] to 2O(d).

(3) In the light of the last two parts of Theorem 1.2 (and Proposition 1.3),
it is natural to ask if there is a constant ρ, where 0.46 ≤ ρ < 9.27, such
that for G ∈ G(n, r) and any ε > 0, we have whp

χc(G)

{
≥ 3 if n−1/8 � r ≤ (ρ− ε)

√
log n

= 2 if r ≥ (ρ+ ε)
√

log n.

(4) Recall that χmax
c (n) is the maximum value of χc(G) over all n-vertex

graphs. Trivially χmax
c (1) = 1. We saw in Lemma 2.4 and equation (3)

that

χmax
c (n) =


2 if n = 2, 3, 4

3 if n = 5, . . . , 10

4 if n = 11, . . . , 16

What about larger values of n?
Now consider asymptotic behaviour. We saw in equation (1) that

χmax
c (n) = Ω(

√
n/ log n). On the other hand, we claim that

χmax
c (n) ≤ 2

√
n. (5)

We may see this as follows. Repeatedly, pick greedily a maximal inde-
pendent set, give all the vertices in the set the same fresh colour and
remove them, until we find a maximal independent set I of size less
than

√
n. Such a set I is a dominating set in the remaining graph H,

so χc(H) ≤ |I| + 1, see [3, 22]. Thus if H has h vertices, then at most
min{|I|+ 1, h} further colours are needed.

In the first phase we use at most (n− h)/
√
n =
√
n− h/

√
n colours.

If h ≥
√
n then we use at most (

√
n − 1) + (|I| + 1) < 2

√
n colours in

total. If h <
√
n then we use at most

√
n+h < 2

√
n colours, and hence

χmax
c (n) < 2

√
n. This proves the claim (5).

We know that χmax
c (n) is Ω(

√
n/ log n) and O(

√
n). Can we say more

about the asymptotic behaviour of χmax
c (n)? See also [11], and Problem 1

there in particular.
Is it true that for each n, χmax

c (n) is achieved by a triangle-free n-
vertex graph? Indeed, could it even be the case that every graph has a
triangle-free subgraph with at least the same value of χc?

(5) Our upper bound on χc(G) gives an upper bound on the clique transver-
sal number τc(G), which is defined to be the minimum size of a set S
of vertices which meets all maximal cliques (ignoring isolated vertices).
For each n-vertex graph G, since the maximum size of a set of vertices
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containing no maximal clique is at least n/χc(G), we have

τc(G) ≤ n− n/χc(G).

The result noted above that χc(G) ≤ 2
√
n yields τc(G) ≤ n− 1

2

√
n, which

may be compared with the best known bound τc(G) ≤ n −
√

2n +
√

2
(see [11]). It is not likely to be easy to improve our upper bound by say
a factor 4 to χc(G) ≤ (1/2)

√
n, since that would strictly improve the

upper bound on τc (to τc(G) ≤ n− 2
√
n).

(6) Finally, consider the number of dimensions we need to embed a graph.
Let d∗(n) be the least value d such that every graph with n vertices is
geometric in Rd. Then d∗(n) ≤ n− 1 by Proposition 2.3. We claim that

d∗(n) = Ω(log n/ log log n). (6)

For, let ε > 0, and let f(n) = (1− ε) log n/ log log n for n ≥ 3. Suppose
that d∗(n) ≤ f(n) for arbitrarily large values n. We shall obtain a
contradiction.

Note first that f(n) is increasing for n ≥ 16. Define m = m(d) =
dd(1+ε)de. Clearly m(d) ≥ 16 for d ≥ 3. Now f(m(d+ 1)) ∼ (1− ε2)d as
d → ∞: hence, for some constant d0 ≥ 3 we have f(m(d + 1)) ≤ d for
each d ≥ d0.

Let d1 ≥ d0 be arbitrarily large. There exists d ≥ d1 such that
m(d) ≤ n < m(d+ 1) for some n with d∗(n) ≤ f(n). Now

d∗(m(d)) ≤ d∗(n) ≤ f(n) ≤ f(m(d+ 1)) ≤ d,

and so

χmax
c (Rd) ≥ χmax

c (m(d)).

But by (1), for some constant c > 0 we have

χmax
c (n) ≥ c

√
n/ log n for each n ≥ 3.

Hence,

χmax
c (Rd) ≥ c d(1+ε)d/2(log(m(d))−1/2 � d(1+ε/2)d/2.

But this contradicts the upper bound on χmax
c (Rd) in Proposition 2.1,

and so we have established the claim (6).
Now we know that d∗(n) = Ω(log n/ log log n) and d∗(n) ≤ n−1. Our

bounds are wide apart. What more can be said about d∗(n)?
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