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Abstract. The size-Ramsey number R̂(F , H) of a family of graphs F and a graph H
is the smallest integer m such that there exists a graph G on m edges with the property
that any coloring of the edges of G with two colors, say, red and blue, yields a red copy
of a graph from F or a blue copy of H. In this paper we first focus on F = C≤cn, where
C≤cn is the family of cycles of length at most cn, and H = Pn. In particular, we show

that 2.00365n ≤ R̂(C≤n, Pn) ≤ 31n. Using similar techniques, we also managed to analyze

R̂(Cn, Pn), which was investigated before but until last year only by using the regularity
method.

1. Introduction

Following standard notations, for any family of graphs F and any graph H, we write
G → (F , H) if any coloring of the edges of G with 2 colors, red and blue, yields a red
copy of some graph from F or a blue copy of H. For simplicity, we write G → (F,H) if
F = {F} and G → F instead of G → (F, F ). We define the size-Ramsey number of the
pair (F , H) as

R̂(F , H) = min{|E(G)| : G→ (F , H)}
and again, for simplicity, R̂(F,H) = R̂({F}, H) and R̂(F ) = R̂(F, F ).

One of the most studied directions in this area is the size-Ramsey number of Pn, a path
on n vertices. It is obvious that R̂(Pn) = Ω(n) and that R̂(Pn) = O(n2) (for example,

K2n → Pn), but the exact behaviour of R̂(Pn) was not known for a long time. In fact,
Erdős [10] offered $100 for a proof or disproof that

R̂(Pn)/n→∞ and R̂(Pn)/n2 → 0.

This problem was solved by Beck [1] in 1983 who, quite surprisingly, showed that R̂(Pn) <
900n. (Each time we refer to inequality such as this one, we mean that the inequality
holds for sufficiently large n.) A variant of his proof, provided by Bollobás [7], gives

R̂(Pn) < 720n. Very recently, different and more elementary arguments were used by
the first and the third author of this paper [8, 9], and by Letzter [14] that show that

R̂(Pn) < 137n [8], R̂(Pn) < 91n [14], and R̂(Pn) < 74n [9], respectively. On the other hand,
the first nontrivial lower bound was provided by Beck [2] and his result was subsequently

improved by Bollobás [6] who showed that R̂(Pn) ≥ (1+
√

2)n−O(1); today we know that

R̂(Pn) ≥ 5n/2−O(1) [9].

For any c ∈ R+, let C≤cn be the family of cycles of length at most cn. In this paper, we

continue to use similar ideas as in [8, 14, 9] to deal with R̂(C≤cn, Pn). Such techniques (very
simple but quite powerful) were used for the first time in [3, 4]; see also recent book [15] that
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covers several tools including this one. Corresponding theorems use different approaches
and different probability spaces that might be interesting on their own rights. Some non-
trivial lower bounds are provided as well. In particular, it is shown that

2.00365n ≤ R̂(C≤n, Pn) ≤ 31n

for sufficiently large n.

We also study R̂(Cn, Pn) and show that for even and sufficiently large n we have

5n/2−O(1) ≤ R̂(Cn, Pn) ≤ 2257n.

In fact, the lower bound for odd values of n can be improved to 3(n− 1). The linearity of

R̂(Cn, Pn) also follows from the earlier result of Haxell, Kohayakawa and  Luczak [11] who

proved that the size-Ramsey number R̂(Cn, Cn) is linear in n. However, their proof is based
on the regularity method and therefore the leading constant is enormous. Very recently,
Javadi, Khoeini, Omidi, and Pokrovskiy [13] showed that R̂(Cn, Cn) < 1012n avoiding a
use of the regularity lemma.

2. Preliminaries

Let us recall a few classic models of random graphs that we study in this paper. The
binomial random graph G(n, p) is the random graph G with vertex set [n] := {1, 2, . . . , n}
in which every pair {i, j} ∈

(
[n]
2

)
appears independently as an edge in G with probability p.

The binomial random bipartite graph G(n, n, p) is the random bipartite graph G = (V1 ∪
V2, E) with partite sets V1, V2, each of order n, in which every pair {i, j} ∈ V1×V2 appears
independently as an edge in G with probability p. Note that p = p(n) may (and usually
does) tend to zero as n tends to infinity.

Recall that an event in a probability space holds asymptotically almost surely (or a.a.s.)
if the probability that it holds tends to 1 as n goes to infinity. Since we aim for results
that hold a.a.s., we will always assume that n is large enough.

Another probability space that we are interested in is the probability space of random
d-regular graphs with uniform probability distribution. This space is denoted by Gn,d, and
asymptotics are for n→∞ with d ≥ 2 fixed, and n even if d is odd.

Instead of working directly in the uniform probability space of random regular graphs
on n vertices Gn,d, we use the pairing model (also known as the configuration model) of
random regular graphs, first introduced by Bollobás [5], which is described next. Suppose
that dn is even, as in the case of random regular graphs, and consider dn points partitioned
into n labelled buckets v1, v2, . . . , vn of d points each. A pairing of these points is a perfect
matching into dn/2 pairs. Given a pairing P , we may construct a multigraph G(P ), with
loops allowed, as follows: the vertices are the buckets v1, v2, . . . , vn, and a pair {x, y} in
P corresponds to an edge vivj in G(P ) if x and y are contained in the buckets vi and vj,
respectively. It is an easy fact that the probability of a random pairing corresponding to a
given simple graph G is independent of the graph, hence the restriction of the probability
space of random pairings to simple graphs is precisely Gn,d. Moreover, it is well known

that a random pairing generates a simple graph with probability asymptotic to e−(d
2−1)/4

depending on d, so that any event holding a.a.s. over the probability space of random
pairings also holds a.a.s. over the corresponding space Gn,d. For this reason, asymptotic
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results over random pairings suffice for our purposes. For more information on this model,
see, for example, the survey of Wormald [17].

Also, we will be using the following well-known concentration inequality. Let X ∈
Bin(n, p) be a random variable with the binomial distribution with parameters n and p.
Then, a consequence of Chernoff’s bound (see, for example, Theorem 2.1 in [12]) is that
for any t ≥ 0

P(X ≤ EX − t) ≤ exp

(
−EXϕ

(
−t
EX

))
≤ exp

(
− t2

2EX

)
,

where ϕ(x) = (1 + x) log(1 + x)− x for x ≥ −1 (and ϕ(x) =∞ for x < −1).

For simplicity, we do not round numbers that are supposed to be integers either up or
down; this is justified since these rounding errors are negligible to the asymptotic calcula-
tions we will make. Finally, we use log n to denote natural logarithms.

3. Upper bounds

In this section, we will use the following observation.

Lemma 3.1. Let c ∈ R+ and let G be a graph of order (c + 1)n. Suppose that for every
two disjoint sets of vertices S and T such that |S| = |T | = cn/2 we have e(S, T ) ≥ cn.
Then, G→ (C≤cn, Pn).

The above lemma will quickly follow from the following result that was first noticed
by Ben-Eliezer, Krivelevich and Sudakov [3, 4] and later by Pokrovskiy [16], Dudek and
Pra lat [8, 9], and Letzter [14].

Lemma 3.2. For every graph G there exist two disjoint subsets S, T ⊆ V (G) of equal size
such that there are no edges between them and G \ (S ∪ T ) has a Hamilton path.

Proof of Lemma 3.1. Consider any red-blue coloring of the edges of any graph G of or-
der (c + 1)n. Assume that there is no blue copy of Pn. Now by Lemma 3.2 (applied to
the blue subgraph of G) we obtain that there are sets S and T such that |S| = |T | =
(|V (G)| − n)/2 = cn/2 and there are no blue edges between S and T . However, by as-
sumption e(S, T ) ≥ cn. So G[S, T ] (the bipartite graph induced by two partite sets S and
T ), which consists only of red edges, is not a forest and so must contain a red cycle of
length at most cn. �

Since random graphs are good expanders, after carefully selecting parameters, they
should arrow the desired graphs and so they should provide some upper bounds for the
corresponding size Ramsey numbers. Let us start with investigating binomial random
graphs. The next result is fairly standard. We write An ≈ Bn to mean that An =
(1 + o(1))Bn as n→∞.

Lemma 3.3. Let c ∈ R+ and let d = d(c) > 4/c be such that

(c+ 1) log(c+ 1) + c log(d/2)− c2d/4 + c = 0.

Then, the following two properties hold a.a.s. for G ∈ G((c+ 1)n, d/n):

(i) for every two disjoint sets of vertices S and T such that |S| = |T | = cn/2 we have
e(S, T ) > cn;

(ii) |E(G)| ≈ d(c+ 1)2n/2.
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Proof. Let S and T with |S| = |T | = cn/2 be fixed and let X = XS,T = e(S, T ), that
means, X is the random variable that counts the number of edges between sets S and T .
Clearly, EX = c2dn/4 > cn and by Chernoff’s bound

Pr(X ≤ cn) ≤ exp

(
−EX

(
cn

EX
log
( cn
EX

)
+

EX − cn
EX

))
= exp

(
(c log(cd/4)− c2d/4 + c)n

)
.

Thus, by the union bound over all choices of S and T we have

Pr

(⋃
S,T

(XS,T ≤ cn)

)
≤
(

(c+ 1)n

cn/2

)(
(c+ 1)n− cn/2

cn/2

)
exp

(
(c log(cd/4)− c2d/4 + c)n

)
=

((c+ 1)n)!

(cn/2)!(cn/2)!n!
exp

(
(c log(cd/4)− c2d/4 + c)n

)
.

Using Stirling’s formula (x! ≈
√

2πx(x/e)x) we get

Pr

(⋃
S,T

(XS,T ≤ cn)

)
= o

(
exp

( (
(c+ 1) log(c+ 1)− c log(c/2) + c log(cd/4)− c2d/4 + c

)
n
))

= o
(

exp
( (

(c+ 1) log(c+ 1) + c log(d/2)− c2d/4 + c
)
n
))

= o(1),

by the definition of d. This implies part (i).
Part (ii) follows immediately from Chernoff’s bound as the expected number of edges in

G((c+ 1)n, d/n) is
(
(c+1)n

2

)
d/n ≈ d(c+ 1)2n/2. �

Getting numerical upper bounds for size Ramsey numbers is a straightforward implica-
tion of the previous two lemmas. We get the following result.

Theorem 3.4. Let c ∈ R+. Then, for all sufficiently large n we have

R̂(C≤cn, Pn) <

{
80 log(e/c)

c
n for 0 < c < 1

37n for c ≥ 1.

Proof. Let c ∈ R+ and let d = d(c) > 4/c be such that

(c+ 1) log(c+ 1) + c log(d/2)− c2d/4 + c = 0. (1)

Then, an immediate consequence of Lemma 3.1 and Lemma 3.3 is that a.a.s. G ∈ G((c +
1)n, d/n)→ (C≤cn, Pn). As a result, for any ε > 0 and sufficiently large n,

R̂(C≤cn, Pn) <

(
d(c+ 1)2

2
+ ε

)
n. (2)

In particular, for sufficiently large n, it follows that R̂(C≤n, Pn) < 37n and so by mono-

tonicity R̂(C≤cn, Pn) < 37n for any c ≥ 1.
In order to get an explicit upper bound in the case 0 < c < 1, we will show that

d = d(c) < d̂ := 40 log(e/c)/c. From this the result will follow since d(c + 1)2/2 ≤ 2d <
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2d̂ = 80 log(e/c)/c. (Observe that this bound is of the right order as it is easy to see that
d = Ω(log(e/c)/c) as c→ 0.)

Note that

f(c, d̂) = (c+ 1) log(c+ 1) + c log(d̂/2)− c2d̂/4 + c

≤ (c+ 1)c+ c log(20/c2)− 10c log(e/c) + c,

as for c ∈ (0, 1] we have log(c+ 1) ≤ c and log(e/c) ≤ 1/c (and so d̂ ≤ 40/c2). Now, since
clearly log(e/c) ≥ 1,

f(c, d̂) ≤ 3c log(e/c) + c log(20/c2)− 10c log(e/c)

< 3c log(e/c) + c log(e3/c3)− 10c log(e/c) = −4c log(e/c) < 0.

It follows that d < d̂, and the proof is complete. �

It follows from this proof that the best upper bound on R̂(C≤cn, Pn) is given by (2),
where d = d(c) is defined in (1). Unfortunately, d has no explicit form as a function of c.

Let α = α(c) = d(c+ 1)2/2. Thus, for sufficiently large n, we have R̂(C≤cn, Pn) < dα(c)en.
On Figure 1 we present α(c) computed for several values of c.

Figure 1. Graph of α(c) as a function of c.

Now, let us investigate random d-regular graphs. For simplicity we focus on the c = 1
case. Similarly like in [8, 9] this model yields slightly better upper bound for the size
Ramsey numbers.

First we show a similar result to Lemma 3.3.

Lemma 3.5. Let d = 31. Then, a.a.s. for every G ∈ G2n,d and every two disjoint sets of
vertices S and T of G with |S| = |T | = n/2 we have e(S, T ) > n.

Proof. Consider G ∈ G2n,d. Our goal is to show that the expected number of pairs of two
disjoint sets, S and T , such that |S| = |T | = n/2 and e(S, T ) < n tends to zero as n→∞.

Let a = a(n) be any function of n such that an ∈ Z and 0 ≤ a ≤ 1 and b = b(n) be
any function of n such that bn ∈ Z and 0 ≤ b ≤ d/2 − a. Let X(a, b) be the expected
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number of pairs of two disjoint sets S, T such that |S| = |T | = n/2, e(S, T ) = an, and
e(S, V \ (S ∪ T )) = bn. Using the pairing model, it is clear that

X(a, b) =

(
2n

n/2

)(
3n/2

n/2

)(
dn/2

an

)2

(an)!

(
dn/2− an

bn

)(
dn

bn

)
(bn)!

· M(dn/2− an− bn) ·M
(

(dn/2− an) + (dn− bn)
)/

M(2dn),

where M(i) is the number of perfect matchings on i vertices, that is,

M(i) =
i!

(i/2)!2i/2
.

(Each time we deal with perfect matchings, i is assumed to be an even number.) After
simplification we get

X(a, b) = (2n)!(dn/2)!2(dn)!(3dn/2− an− bn)!(dn)!2dn

·

[
n!(n/2)!2(an)!(dn/2− an)!(bn)!(dn− bn)!(dn/4− an/2− bn/2)!

2dn/4−an/2−bn/2(3dn/4− an/2− bn/2)!23dn/4−an/2−bn/2(2dn)!

]−1
.

Using Stirling’s formula (i! ≈
√

2πi(i/e)i) and focusing on the exponential part we obtain

X(a, b) = Θ(n−2)ef(a,b,d)n,

where

f(a, b, d) = (3− 3d+ a+ b) log 2 + d log d− a log a− b log b− (d/2− a) log(d/2− a)

−(d− b) log(d− b)− (d/4− a/2− b/2) log(d/4− a/2− b/2)

−(3d/4− a/2− b/2) log(3d/4− a/2− b/2)

+(3d/2− a− b) log(3d/2− a− b).

Thus, if f(a, b, d) ≤ −ε (for some ε > 0) for all pairs of integers an and bn under con-
sideration, then we would get

∑
an

∑
bnX(a, b) = O(1)e−εn = o(1) (as an = O(n) and

bn = O(n)). The desired property would be satisfied, and the proof would be finished.
It is straightforward to see that

∂f

∂b
= log 2− log b+ log(d− b) + log(d/4− a/2− b/2)/2

+ log(3d/4− a/2− b/2)/2− log(3d/2− a− b).

Now, since ∂f
∂b

= 0 if and only if

b2 − b(2d− 2a) + d(d− 2a)/2 = 0,

function f(a, b, d) has a local maximum for b = b0 := d − a −
√

2d2 − 4ad+ 4a2/2, which
is also a global one on b ∈ (−∞, d/2 − a). (Observe that since b ≤ d/2 − a, b0 =

d/2− a+ d/2−
√
d2 + (d− 2a)2/2 ≤ d/2− a.) Consequently,

f(a, b, d) ≤ g(a, d) := f(a, b0, d).
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Finally, let us fix d0 = 31. It is easy to show that g(a, d0) is an increasing function of a
on the interval 0 ≤ a ≤ a0 = 1. Thus, we get g(a, d0) ≤ g(a0, d0) < −0.02 =: −ε and the
proof is finished. �

The above lemma together with Lemma 3.1 (applied with c = 1) implies the following.

Theorem 3.6. A.a.s. G2n,31 → (C≤n, Pn), which implies that R̂(C≤n, Pn) ≤ 31n for suffi-
ciently large n.

4. Lower bounds

We start with an easy observation. Let C be a family of all cycles (of any length).

Lemma 4.1. Let G = (V,E) be a connected graph such that G→ (C, Pn). Then,

|E| ≥ |V |+ n− 2.

Proof. Let G be any graph such that G→ (C, Pn). Let T be any spanning tree of G. Color
the edges of T red and blue otherwise. Clearly, there is no red cycle (of any length). Thus,
there must be a blue path on n vertices. This implies that |V (G)| = |V (T )| ≥ n and the
number of blue edges is at least n− 1. Hence, |E(G)| ≥ |V (T )| − 1 + (n− 1), and so the
result holds. �

Since obviously if G→ (C, Pn), then |V (G)| ≥ n, we get that Lemma 4.1 implies:

Corollary 4.2. Let c ∈ R+. Then,

R̂(C≤cn, Pn) ≥ R̂(C, Pn) ≥ 2(n− 1).

We will soon improve the leading constant 2. But first, in order to prepare the reader
for more complicated argument, we show a weaker result which improves this constant for
graphs with bounded maximum degree.

Theorem 4.3. Let c ∈ R+ and let G be a graph with maximum degree ∆ such that
G→ (C≤cn, Pn). Then,

|E(G)| ≥ n(2 + 1/∆2)− 2.

Proof. Let G = (V,E) be a connected graph with maximum degree ∆ such that G →
(C≤cn, Pn). We will start by showing that |V | ≥ n(1 + 1/∆2). Consider G2 (recall that two
vertices are adjacent in G2 if they are at distance at most 2 in G). Clearly, the maximum
degree of G2 is at most ∆2. Moreover, observe that any independent set A in G2 induces
a forest between A and V \ A in G (in fact, a collection of disjoint stars as no vertex
from V \ A is adjacent to more than one vertex from A in G). Finally, clearly there is an
independent set A in G2 of size at least |V |/(∆2 + 1).

Now, let us color the edges of G as follows: color red all edges between A and V \A, and
blue otherwise. Since the subgraph induced by the edges between A and V \A is a forest,
there is no red cycle and so there must be a blue path on n vertices. Such a path must be
entirely contained in G[V \ A] as G[A] is an empty graph. Thus, |V \ A| ≥ n and we get

|V | = |A|+ |V \ A| ≥ |V |/(∆2 + 1) + n

implying that |V | ≥ n(1 + 1/∆2), as required.
The rest of the proof is straightforward. We apply Lemma 4.1 to conclude that

|E| ≥ |V |+ n− 2 ≥ n(2 + 1/∆2)− 2
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and the bound holds. �

Using the ideas from the above proof we improve Corollary 4.2. The improvement of the
leading constant might seem negligible. However, it was not clear if one can move away
from the constant 2. The observation below answers this question.

Theorem 4.4. Let c ∈ R+. Then for sufficiently large n we have

R̂(C≤cn, Pn) ≥ R̂(C, Pn) ≥ 2.00365n.

Proof. Set a = 2.0037, b = 0.5, and d = 9. Suppose that G = (V,E) is a graph such that
G→ (C≤cn, Pn). Clearly, G has at least n vertices. Let us put all vertices of degree at least
d + 1 to set B. We may assume that B contains at most 2a/(d + 1) fraction of vertices;
otherwise, G would have more than an edges and we would be done. Let A ⊆ V \B be an
independent set in G2 (and so also in G) as in the proof of Theorem 4.3. That means the
graph induced between A and V \ (A ∪ B) is a collection of disjoint stars. Furthermore,
we may assume that A is maximal (that is, no vertex from V \ (A ∪ B) can be added to
A without violating this property). As in the previous proof we notice that A contains at
least (1− 2a

d+1
)/(d2 + 1) fraction of vertices of G. Now, we need to consider two cases.

Case 1: |B| ≤ b|A|. Color the edges between A and V \ (A∪B) red and blue otherwise.
Clearly, there is no red cycle and so there must be a blue path Pn. Moreover, since
|B| ≤ b|A|, at least (1− b)|A| vertices are not part of a blue Pn. Thus,

|V | ≥ n+ (1− b)|A| ≥ n+ (1− b)
((

1− 2a

d+ 1

)
/(d2 + 1)

)
|V |

yielding

|V | ≥
(

1− (1− b)(1− 2a/(d+ 1)

d2 + 1

)−1
n.

Finally, Lemma 4.1 implies that

|E| ≥ |V |+ n− 2 ≥

(
1 +

(
1− (1− b)(1− 2a/(d+ 1)

d2 + 1

)−1)
n− 2 > 2.00366n

for sufficiently large n.

Case 2: |B| > b|A|. First color the edges between A and V \ (A∪B) red. Then, extend
the graph induced by the red edges to maximal forest in G[V \ B]; remaining edges color
blue. Since A ⊆ V \B is maximal, every vertex in V \ (A∪B) has at least one neighbour
in A. Thus, the number of red edges is at least n−|B|− |A|. As in the previous case there
is no red cycle and so there exists a blue Pn. The number of blue edges that are not on
such blue Pn is at least |B|(d + 1 − 2)/2. Consequently, the total number of edges is at
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least

(n− |B| − |A|) + (n− 1) + |B|(d− 1)/2 ≥ 2n− |A|+ |B|d− 3

2
− 1

≥ 2n+ |A|
(
b(d− 3)

2
− 1

)
− 1

≥

(
2 +

1− 2a
d+1

d2 + 1

(
b(d− 3)

2
− 1

))
n− 1

> 2.00365n

for n large enough. This completes the proof. �

5. Size-Ramsey of Cn versus Pn

The lower bound follows immediately from the result obtained by the first and the third
author of this paper [9]:

R̂(Cn, Pn) ≥ R̂(Pn, Pn) ≥ 5n/2−O(1).

As a matter of fact this can easily be improved for odd n.

Theorem 5.1. For all odd positive integers,

R̂(Cn, Pn) ≥ 3(n− 1).

Proof. Let G = (V,E) be a graph such that G→ (Cn, Pn). Obviously |V | ≥ n. Choose an
(n−1)-vertex set A ⊆ V which minimizes the number of edges in the subgraph induced by
V \A. Color the edges of G[A] blue and the edges between A and V \A red. The remaining
edges remain uncolored. Clearly, there is no blue Pn. Furthermore, since n is odd, there is
no red Cn. But G→ (Cn, Pn). Thus, G[V \ A]→ (K2, Pn) and so |E(G[V \ A])| ≥ n− 1.
Now observe that for every v ∈ A, degV \A(v) ≥ 2. Otherwise, if there is a vertex v ∈ A
with degV \A(v) ≤ 1, then we replace v with a vertex u ∈ V \A of degree 2 in V \A (such
vertex u must exists since G[V \ A] → (K2, Pn)) obtaining smaller number of edges in
G[V \ (A \ {v} ∪ {u})], a contradiction. Consequently,

|E| ≥ 2(n− 1) + (n− 1) = 3(n− 1),

and the proof is finished. �

Now let us focus on the upper bound. We will need the following auxiliary result.

Lemma 5.2 (Corollary 2.1 in [14]). Let G = (V1, V2, E) be a balanced bipartite graph which
has no path of length k. Then there exist disjoint subsets S ⊆ V1 and T ⊆ V2 such that
|S| = |T | = (|V1|+ |V2| − k)/4 and e(S, T ) = 0.

We will estimate now the probability of having a cycle in the union of two random
bipartite graphs.
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u1 u3n/4 u3n/2

v1 v3n/4 v3n/2v`

uL uR

vr

Figure 2. Constructing a cycle of length n.

Lemma 5.3. Let c > 3/2 be any constant. Then, G(cn, cn, d1/n)∪ G(cn, cn, d2/n) fails to
have a copy of Cn with probability at most

exp

((
2c log c− (c− 3/2) log

(
c− 3/2

2

)
−

(c+ 3/2) log

(
c+ 3/2

2

)
− (c− 3/2)2d1

4

)
n

)
+ exp

(
((log 2)/4− d2/16)n/4

)
. (3)

Proof. By Lemma 5.2 (applied with |V1| = |V2| = cn and k = 3n) we obtain that if
G(cn, cn, d1/n) has no path of length 3n, then there are two disjoint sets, each of size
(c− 3/2)n/2, and no edges between them. Thus, the probability that G(cn, cn, d1/n) has
no P3n is at most(

cn

(c− 3/2)n/2

)2(
1− d1

n

)((c−3/2)n/2)2
≤

exp

((
2c log c− (c− 3/2) log

(
c− 3/2

2

)
− (c+ 3/2) log

(
c+ 3/2

2

)
− (c− 3/2)2d1

4

)
n

)
. (4)

Now let us assume that a path v1, . . . , v3n/2, u1, . . . , u3n/2 of length 3n was already found in
G(cn, cn, d1/n). Let us concentrate on two middle vertices v3n/4 and u3n/4 that we assume
belong to the same partite set, and let us fix an even i ∈ [n/4, 3n/4]. We want to construct
a cycle of the desired length as follows: v3n/4 to some v` along the first path (` < 3n/4), to a
specific uL (L < 3n/4), to u3n/4 along the second path, continue to uR for some R > 3n/4,
to a specific vr, and go back to v3n/4 (see Figure 2). We want the ‘left’ half cycle to be of
length i (that is, 3n/4−`+1+3n/4−L = i), and the ‘right’ half to be of length n− i (that
is, r−3n/4+1+R−3n/4 = n− i). This guarantees that for different values of i we always
investigate disjoint set of edges. The remaining edges of the cycle, that is {v`, uL} and
{uR, vr}, will come from G(cn, cn, d2/n), independently generated. Furthermore, observe
that for a fixed i we have i different choices for {v`, uL}. Indeed, we can choose v` = v3n/4−j
and uL = u3n/4−i+j+1 for each 0 ≤ j ≤ i− 1. Thus, for a given i, the probability that there
is no {v`, uL} is at most (1 − d2/n)i. Similarly, we have n − i choices for {uR, vr} giving
the probability of failure at most (1 − d2/n)n−i. Hence, we fail to find edges {v`, uL} or
{uR, vr} with probability at most

(1− d2/n)i + (1− d2/n)n−i ≤ exp(−d2i/n) + exp(−d2(n− i)/n) ≤ 2 exp(−d2/4),
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since i ∈ [n/4, 3n/4]. Now, as we have n/4 independent events for various values of i (recall
that i must be even), we fail to close a cycle with probability at most

(2 exp(−d2/4))n/4 = exp
(

((log 2)/4− d2/16)n
)
. (5)

Thus, by (4) and (5) we get that the probability that G(cn, cn, d1/n) ∪ G(cn, cn, d2/n)
contains no copy of Cn is bounded from above by (3). �

Theorem 5.4. For all even and sufficiently large n,

R̂(Cn, Pn) ≤ 2257n.

Proof. In order to avoid technical problems with events not being independent, we use a
classic technique known as two-round exposure (known also as sprinkling in the percolation
literature). The observation is that a random graph G ∈ G(cn, cn, d/n) can be viewed as
a union of two independently generated random graphs G1 ∈ G(cn, cn, d1/n) and G2 ∈
G(cn, cn, d2/n), provided that d/n = d1/n + d2/n − d1d2/n2 (see, for example, [7, 12] for
more information).

Now, consider G((2c+ 1)n, d1/n)∪G((2c+ 1)n, d2/n) = G((2c+ 1)n, (d1 + d2− o(1))/n),
and assume that there is no blue Pn. Then, by Lemma 3.2, we get that there are two
disjoint sets S and T with |S| = |T | = cn such that all edges between S and T are red.
Due to Lemma 5.3 the probability that G[S, T ] contains no copy of Cn is at most

exp

((
2c log c− (c− 3/2) log

(
c− 3/2

2

)
−

(c+ 3/2) log

(
c+ 3/2

2

)
− (c− 3/2)2d1

4

)
n

)
+ exp

(
((log 2)/4− d2/16)n/4

)
.

On the other hand, the union bound over all choices of S and T contributes only(
(2c+ 1)n

cn

)(
(c+ 1)n

cn

)
=

((2c+ 1)n)!

(cn)!2n!
= o(1) · exp

((
(2c+ 1) log(2c+ 1)− 2c log c

)
n
)

number of terms. Since the number of edges present is a.a.s.(
(2c+ 1)n

2

)
(d1 + d2 − o(1))/n ≈ (2c+ 1)2

2
(d1 + d2)n,

our goal is to minimize (2c+ 1)2(d1 + d2)/2, provided that

(2c+ 1) log(2c+ 1)− (c−3/2) log

(
c− 3/2

2

)
− (c+ 3/2) log

(
c+ 3/2

2

)
− (c− 3/2)2d1

4
≤ 0

and

(2c+ 1) log(2c+ 1)− 2c log c+ (log 2)/4− d2/16 ≤ 0.

One can easily check that for c = 2.21, d1 = 60.34, and d2 = 93.26 the above inequalities
hold and (2c+ 1)2(d1 + d2)/2 < 2257. �
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6. Concluding remarks

In this paper we investigated the size-Ramsey number of a collection of forbidden cy-
cles versus a path. In particular, we showed that for n sufficiently large, 2.00365n ≤
R̂(C≤n, Pn) ≤ 31n. We also considered a more general question and studied R̂(C≤cn, Pn)

for any positive constant c. For instance we showed that R̂(C≤cn, Pn) ≤ 80 log(e/c)
c

n for
fixed 0 < c < 1. This upper bound is a decreasing function of c. This behavior seems to
be correct since in general R̂(C≤c2n, Pn) ≤ R̂(C≤c1n, Pn) for any 0 < c1 < c2. However, for
c ≥ 1 we only provided a bound that does not depend on c. It is plausible to conjecture
that there exists some decreasing function β = β(c) such R̂(C≤cn, Pn) = β(c)n + o(n) for
any fixed c > 0. As it was pointed out by one of he referees one can also consider the
limiting case when c→∞ and study the size-Ramsey number of C (collection of all cycles)

versus a path. Due to Theorem 4.4 we obtain that R̂(C, Pn) ≥ 2.00365n. Unfortunately,
we were unable to provide any better upper bound that the one based on Theorem 3.6
which yields R̂(C, Pn) ≤ R̂(C≤n, Pn) ≤ 31n.
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