
SMALL ON-LINE RAMSEY NUMBERS—A NEW APPROACH

PRZEMYSŁAW GORDINOWICZ AND PAWEŁ PRAŁAT

Abstract. In this note, we revisit the problem of calculating small on-line Ram-
sey numbers R(G,H). A new approach is proposed that reduces the running
time of the algorithm determining that R(K3,K4) = 17 by a factor of at least
2 · 106 comparing to the previously used approach. Using high performance com-
puting networks, we determined that R(K4,K4) ≥ 26, R(K3,K5) ≥ 25, and that
R(K3,K3,K3) ≥ 20 for a natural generalization to three colours. All graphs on 3
or 4 vertices are investigated as well, including non-symmetric cases.

1. Introduction and definitions

In this paper, we consider on-line Ramsey numbers introduced in 2005 by Kurek
and Ruciński [7] and the corresponding on-line Ramsey game. (The game was con-
sidered earlier by Beck [1] but not in terms of the numbers; Friedgut et al. [5] also
studied a variant of this game but in the context of the random graph theory.) Let
G and H be two fixed graphs. The game between two players, called Builder and
Painter, is played on an unbounded set of vertices. In each of her moves, Builder
draws a new edge which is immediately coloured red or blue by Painter. The goal
of Builder is to force Painter to create a red copy of a graph G or a blue copy of a
graph H; the goal of Painter is the opposite, he is trying to avoid it for as long as
possible. The payoff to Painter is the number of moves until this happens and he
seeks the highest possible payoff. Since this is a two-person, full information game
with no ties, one of the players must have a winning strategy. The on-line Ramsey
number R(G,H) is the smallest payoff over all possible strategies of Builder, assum-
ing Painter uses an optimal strategy. Note that this number is well defined since
Builder may present edges of the Ramsey graph for G and H.

Similar to the classical Ramsey numbers (see a dynamic survey of Radziszowski [15]
which includes all known nontrivial values and bounds for Ramsey numbers), it is
difficult to compute the exact value of R(G,H) unless G,H are trivial. In the area
of small on-line Ramsey numbers, very little is known. For example, in [6], Grytczuk
et al., dealing with many cases, determined on-line Ramsey numbers for short paths
on 6 or less vertices. The second author of this paper, with computer support,
extended it to paths on 9 or less vertices (see [13, 12] for more details).

In [7], Kurek and Ruciński considered the most interesting case where G and H are
cliques, but besides the trivial R(K2, Kk) =

(
k
2

)
, they were able to determine only

Key words and phrases. on-line Ramsey number, size Ramsey number.
The second author is supported in part by NSERC, Ryerson University, and Sharcnet.

1



2 PRZEMYSŁAW GORDINOWICZ AND PAWEŁ PRAŁAT

one more value, namely R(K3, K3) = 8. Only one more value is known up to date,
namely, R(K3, K4) = 17. It was obtained, with computer support, by the second
author in [11]. The total computational requirements were estimated to be around
1, 379, 000 CPU hours! In fact, 17 matches a trivial upper bound for R(K3, K4) that
can be obtained by mimicking the proof of the upper bound for classical Ramsey
number R(K3, K4). This observation can be generalized and it follows that for all
2 ≤ k ≤ `

R(Kk, K`) ≤
3

2

k−1∑
i=0

(
2i

i

)
+

(
k + `− 1

`− 1

)
−
(
2k − 1

k − 1

)
− `− k +

1

2
, (1)

which gives an asymptotic upper bound of 3
8
√
π

4k√
k
for diagonal numbers R(Kk, Kk).

(See [11] for more details.) In a table below, we present small values of this trivial
upper bound of R(Kk, K`) for 3 ≤ k ≤ ` ≤ 10.

3 4 5 6 7 8 9 10
3 8 17 31 51 78 113 157 211
4 36 70 125 208 327 491 710
5 139 264 473 802 1296 2010
6 515 976 1767 3053 5054
7 1899 3614 6616 11620
8 7045 13479 24918
9 26348 50657
10 99276

Table 1. Upper bounds of R(Kk, K`)

This note is devoted to small numbers but let us stay with an asymptotic be-
haviour for a moment and mention the following conjecture that seems to be the
most important one in this area. It is clear that

R(Kk, Kk) ≤
(
R(Kk, Kk)

2

)
,

since Builder can present edges of KR(Kk,Kk) (in any sequence) and Painter cannot
avoid a monochromatic copy of Kk. The following intriguing conjecture was posed
by Kurek and Ruciński [7].
Conjecture 1.1 ([7]).

lim
k→∞

(
R(Kk,Kk)

2

)
R(Kk, Kk)

=∞

The main breakthrough related to this conjecture, due to Conlon [2], is the result
that shows that there exists a constant c > 1 such that(

R(Kk,Kk)
2

)
R(Kk, Kk)

≥ ck



SMALL ON-LINE RAMSEY NUMBERS—A NEW APPROACH 3

for infinitely many values of t. Also in [2], a more specific upper bound forR(Kk, Kk)
was provided, showing that there exists a constant c > 0 such that

R(Kk, Kk) ≤ k−c log k/ log log k4k.

1.1. Our results. In this note, we revisit the algorithm for calculating small on-line
Ramsey numbers. In [11], a refinement of the brute force approach was used, which
systematically searches for a solution to a problem among all available options. Since
it was not possible to examine all possibilities, many validity criteria were used to
determine which portion of the solution space needed to be searched. Having said
that, the main idea was to handle all possible configurations that can occur during
the game after t moves, starting from t = 1 and building up. In this note, a new
approach is proposed that reduces the running time of the algorithm dramatically. As
a warmup test, we re-checked thatR(K3, K4) = 17 in 30 minutes. Hence, the running
time decreased by a factor of more than 2 · 106 comparing to the previously used
approach! Unfortunately, despite the fact that we made such a good improvement,
the new approach is not enough to determine new values but provides only new
lower bounds for complete graphs. Using high performance computing networks, we
determined the following lower bounds:

26 ≤ R(K4, K4) ≤ 36, (2)
25 ≤ R(K3, K5) ≤ 31, (3)
20 ≤ R(K3, K3, K3) ≤ 24. (4)

(R(G,H, I) is a natural generalization of R(G,H) to three colours.) Computations
for R(K4, K4) required 600 CPU hours, R(K3, K5) required 4,100 CPU hours, and
R(K3, K3, K3) required 16,300 CPU hours. We also checked other graphs on 3 or 4
vertices, including non-symmetric cases. Our results are presented in Table 2. Recall
that the paw is a graph on 4 vertices obtained by attaching an edge to a vertex of
the triangle; the diamond consists of a complete graph K4 with one edge removed.
(For this and other standard definition the reader is directed to, for example, the
textbook of West [16].)

P3 K3 P4 C4 K1,3 paw diamond K4

P3 3 5 4 6 4 6 7 10
K3 8 8 11 8 9 12 17
P4 5 8 6 8 10 15
C4 10 8 11 14 ≥ 20
K1,3 5 8 11 15
paw 10 13 19

diamond 16 ≥ 21
K4 ≥ 26

Table 2. Values of R(G,H) for connected graphs on 3 or 4 vertices



4 PRZEMYSŁAW GORDINOWICZ AND PAWEŁ PRAŁAT

The program used and more statistics can be downloaded from [14]. The referees
checked the mathematical part but not the computer code (that is, the results have
not been verified completely by the referees). Let us mention that R(C4, C4) = 10
was obtained independently in [3] by a direct proof. Short cycles vs. short paths
were investigated in [4].

2. Algorithm

We already know that R(K3, K4) = 17. However, in order to demonstrate the
main ideas of the algorithm and to benchmark it, let us suppose that our goal is
to re-verify this. As already mentioned, in fact, the upper bound of 17 follows
immediately from (1) so the goal of the algorithm is to provide the lower bound.

2.1. Brief description. It is convenient to assume that Builder uses her best strat-
egy. Then, regardless of the strategy used by Painter, after 17 moves there is either
a red copy of K3 or a blue copy of K4. What can be said about the board one move
earlier? It is clear that after 16 moves, provided the game is not over yet, the board
contains a red copy of K3 \ e and a blue copy of K4 \ e that are “glued” on a missing
edge (see Figure 1; dashed edges correspond to red ones, solid edges to blue ones,
and the doted edge to the missing one). This configuration is clearly a sufficient one

Figure 1. Configuration one move before the end of the game

to finish the game in one more round (Builder simply presents the “missing” edge).
On the other hand, if no such configuration is present, then Painter have a safe move
and the game will not be finished in the next round. Hence, this configuration is
necessary in order to be able to finish the game in one more move. Our goal will
be to determine the family of all configurations that guarantee Builder to win in 17
moves. Let C17 be the set consisting of two configurations: a red K3 and a blue K4.
We keep generating sets Ck inductively, starting from k = 16 and reaching k = 1 at
the end of this process. The set Ck will consist of configurations with the following
property: if the board contains some configuration from Ck, then Builder has a strat-
egy to finish the game in at most 17− k rounds. Finally, if C1 contains the following
two configurations, one consisting of a red edge only and another one consisting of
a blue edge only, then our goal is achieved. (In the final set C1, “missing” edges are
ignored; in other words, we focus exclusively on coloured edges.) It is obvious that
Painter cannot avoid both configurations after Builder presents the first edge and so



SMALL ON-LINE RAMSEY NUMBERS—A NEW APPROACH 5

R(K3, K4) ≤ 17. Moreover, if these two configurations are not both present in any
Ck for some k ≥ 2, then Builder cannot force Painter to give up earlier and, in fact,
R(K3, K4) = 17.

2.2. Inductive step. Formally, a configuration A = (G, c) ∈ Ck, that represents a
given situation on the board after k moves, consists of a graph G = (V,E) and a
function c : E(G)→ {0, 1, 2}; c(e) = 1 implies that an edge e is red, c(e) = 2 implies
that e is blue, c(e) = 0 indicates that e is not yet presented. Other edges (not in
E(G)) may or may not be present at this point of the game. In order to simplify the
notation, we will write e ∈ E(A) instead of e ∈ E(G), v ∈ V (A) instead of v ∈ V (G),
GA instead of G, and cA instead of c.

Suppose that all sets Cj for j > i are already determined and we would like to
find all elements of Ci. What do we expect from a configuration C ∈ Ci? We need to
be sure that, starting from C, Builder is able to present an edge so that, regardless
what Painter does, some configuration from

⋃
j>i Cj is achieved. On the other hand,

Painter should be able to achieve some configuration from Ci+1; indeed, if this is
not possible, then Builder can finish the game earlier and, as a result, C is already
present in some Cj for j > i. It follows that it is enough to select two configurations,
A ∈ Ci+1 and B ∈

⋃
j>i Cj, and then, for every pair of edges ea ∈ E(A) and eb ∈ E(B)

of different colour (cA(ea), cB(eb) ∈ {1, 2} and cA(ea) 6= cB(eb)), we create a new
configuration C that is obtained by removing ea from A, removing eb from B, and
“gluing” these two configurations by identifying the removed edges (ea and eb)—see
Figure 2(a–b). (Note that there are two ways to “glue” the two edges, which might
or might not be isomorphic.) When the game reaches configuration C, Builder can
simply present an edge ea = eb and Painter is forced to go to configuration A or B.

Note that it might happen that not only endpoints of ea and eb are identified with
each other. However, in order for vertex va from A to be identified with vertex vb from
B it is required that no edge in C corresponds to edges in A and B that are coloured
differently. See Figure 2 for an example: on Figure 2(b) only endpoints of ea, eb
are identified, Figure 2(c) has one more pair identified that is illegal, Figure 2(d)
presents a legal merging while Figure 2(e) shows a configuration that is obtained
as a result of this merging. Formally, for two configurations A, B, and two edges
ea = {va, v′a} ∈ E(A), eb = {vb, v′b} ∈ E(B) of different colour (that is, either
cA(ea) = 1 and cB(eb) = 2, or cA(ea) = 2 and cB(eb) = 1), we search for all minimal
configurations C such that there are two one-to-one functions fa : V (A) → V (C)
and fb : V (B)→ V (C) such that

• fa(va) = fb(vb) and fa(v
′
a) = fb(v

′
b) (or fa(va) = fb(v

′
b) and fa(v

′
a) = fb(vb)),

• cC({fa(va), fa(v′a)}) = 0,
• for every u, v ∈ V (A), if {u, v} 6= ea and cA({u, v}) > 0, then cA({u, v}) =
cC({fa(u), fa(v)}),
• for every u, v ∈ V (B), if {u, v} 6= eb and cB({u, v}) > 0, then cB({u, v}) =
cC({fb(u), fb(v)}).



6 PRZEMYSŁAW GORDINOWICZ AND PAWEŁ PRAŁAT

(a) Two configurations with selected
edges (b) “Glued” configuration

(c) Illegal merging (d) Legal merging

(e) Result of merging

Figure 2. Generating and merging configuration

Moreover, it is obvious that any configuration C ∈ Ck has no more than k coloured
edges, as only such configurations can be achieved after k moves. Formally, we would
like to make sure that m1

V (C)V (C) + m2
V (C)V (C) ≤ k for any configuration C ∈ Ck,

where mc
XY denotes the number of edges between vertices from sets X and Y that

are coloured in colour c, that is,

mc
XY = |{{x, y} : x ∈ X ∧ y ∈ Y ∧ x 6= y ∧ cC ({x, y}) = c}| .

2.3. The algorithm. We get the following algorithm for verifying whetherR(G,H)
is at most some value of k—see procedure Ramsey on page 7.

Clearly, the algorithm creates many configurations that are identical, up to iso-
morphism. To remove unnecessary configurations, we use Brendan McKay’s nauty
software package [8] for computing automorphism groups of graphs and digraphs



SMALL ON-LINE RAMSEY NUMBERS—A NEW APPROACH 7

Procedure Ramsey (Is R(G,H) ≤ k? ).
Input: Ck consists of two configurations, a red copy of G and a blue copy of H.
Output: 1 if R(G,H) ≤ k and 0 otherwise.
1: for i := k − 1 downto 1 do
2: for each configuration A ∈ Ci+1 do
3: for each configuration B ∈

⋃
j>i Cj do

4: for each pair of edges ea ∈ E(A) and eb ∈ E(B) of different colour
do

5: create new configurations C1, C2 identifying endpoints of ea and eb
6: for each configuration D obtained after merging vertices in Cx do
7: if D contains no more than i coloured edges then
8: put D into Ci
9: if C1 contains a configuration consisting of a red edge only and a configuration

consisting of a blue edge only then
10: return 1
11: else
12: return 0

(see [9, 10] for more details). Moreover, since the game is played on infinite board, a
vertex with no coloured edge adjacent to it carries no constraint for either player and
so can be removed from a configuration. An algorithm in this form took roughly 3,000
CPU hours to verify that R(K3, K4) > 16 (more than 450 times faster comparing to
the previously used approach).

2.4. Improvements. Below, we discuss a few crucial improvements of this algo-
rithm. We first describe a part that generates all minimal configurations C. Sup-
pose that A ∈ Ci+1, B ∈

⋃
j>i Cj, and two edges ea = {va, v′a} ∈ E(A), eb =

{vb, v′b} ∈ E(B) of different colour are given. Every configuration C will have at
most |V (A)|+ |V (B)| − 2 vertices so we may start with an empty graph (E(C) = ∅)
on |V (A)| + |V (B)| − 2 vertices and a trivial function cC . Once a configuration is
generated and is ready to be put in Ci, we simply remove all isolated vertices that are
irrelevant. We fix fa : V (A)→ V (C), any one-to-one function, and update E(C), cC
so that the desired conditions for configuration A are satisfied (that is, configuration
C consists now of a copy of a graph from A and |V (B)| − 2 isolated vertices). Our
goal will be to generate all possible one-to-one functions fb : V (B)→ V (C), starting
with assigning fb(vb) = fa(va) and fb(v

′
b) = fa(v

′
a) (or, in an independent instance,

fb(vb) = fa(v
′
a) and fb(v

′
b) = fa(va)), such that the desired conditions are satisfied.

Each discovered function will yield a minimal configuration C so we may focus on
the process of generating fb.

A trivial approach would be to try all functions fb, assigning vertices of V (C) to
V (B) one by one. Every time a new vertex is assigned, we verify conditions on the
already assigned part (which usually requires updating E(C) and cC) and cut the
branch if at least one condition fails. An important improvement that we introduced



8 PRZEMYSŁAW GORDINOWICZ AND PAWEŁ PRAŁAT

is to try to predict which branches are going to create more than i coloured edges
(before it actually happens!) and cut these branches in advance so that this fraction
of the solution space does not need to be searched. We are allowed to do that,
since no configuration from these branches will be added to Ci anyway. We use
our knowledge about the configuration B, and for each vertex in V (C), we keep an
information about the number of adjacent coloured edges already assigned to them
and the number of coloured edges that are adjacent to vertices of B that wait to
be assigned. Many ad-hoc arguments as well as some variants of the well-known
Hungarian method are used to get a good estimation for the minimum number of
edges that will be present in C but are not assigned yet. (The Hungarian method
is a combinatorial optimization algorithm that solves the assignment problem in
polynomial time.) An algorithm in this form took roughly 15 CPU hours to verify
that R(K3, K4) > 16 (improvement by a factor of more than 200).

More formally, suppose that at some step of the algorithm we have assigned vertices
of some subset X ⊆ V (B); let Y = fb(X) and Z = f−1a (Y ). Any final configuration
C will satisfy for c ∈ {1, 2}

mc
V (C)V (C) ≥ mc

Y Y + sc + tc,

where tc and sc are any lower bounds for the number of edges between X and its
complement, and within the complement of X, respectively (in any final configura-
tion). Clearly, we are interested in getting as large values of tc and sc as possible but
trivially we get

sc ≥ max
{
mc

(V (A)\Z)(V (A)\Z),m
c
(V (B)\X)(V (B)\X)

}
,

tc ≥
∑
y∈Y

max
{
mc
{f−1

a (y)}(V (A)\Z),m
c
{f−1

b (y)}(V (B)\X)

}
.

The above bounds can be calculated efficiently. Moreover, the bound for tc can be
improved using more sophisticated (optimal assignment) approach. For c ∈ {1, 2},
each element u ∈ V (C) \ Y and each v ∈ V (B) \X let

tcuv =
∑
y∈Y

max
{
mc
{y}{u},m

c
{f−1

b (y)},{v}

}
.

Note, that any extension of function fb which maps whole configuration B into C
will produce at least tc c-coloured edges where tc is the optimal transversal of the
matrix T c = [tcuv] (if needed, we may add isolated vertices to V (B) to make sure
T c is a square matrix). Of course, it may be not possible as optimal assignment
of vertices V (B) to V (C) may produce some colour conflict, but this bound can
be calculated faster. In the algorithm we mix the above two approaches with some
heuristic decision whether compute value of tc precisely or just use the quick bound.

The next improvement uses a straightforward observation but is an important one.
When two edges ea = {va, v′a} ∈ E(A) and eb = {vb, v′b} ∈ E(B) of different colours
are processed, it is desirable to test only a non-isomorphic pairs of configurations with
an edge selected. Of course, one can simply test all pairs and remove isomorphic
copies once Ci is generated but discovering isomorphic cases in advance saves a lot



SMALL ON-LINE RAMSEY NUMBERS—A NEW APPROACH 9

of time. This improvement can be easily done using nauty software package one
more time. For example, for every red edge in configuration A, we create a copy of
this configuration with the selected edge re-coloured to, say, light red, and then we
remove all unnecessary (isomorphic) configurations. We do the same for every blue
edge in configuration B and now we are ready for “gluing” configurations on “light”
edges, dealing with important pairs of edges only.

Let us also mention about the following improvement. It is clear that a config-
uration A ∈ Ci can be safely removed if there exists a sub-configuration B ∈ Cj,
j ≥ i of A (that is, GB is a subgraph of GA and cB(e) = cA(e) for every e ∈ E(B)).
Unfortunately, this step turned out to be time consuming and we could not do it
for every case investigated; some manual adjustments needed to be done. In any
case, at least the following operation was performed: a configuration C ∈ Ci was
removed if C \ e ∈

⋃k
j=i Cj for some e ∈ E(C) or C is a super-configuration of some

configuration from Ck ∪ Ck−1.
Finally, let us discuss the role of “missing” edges, that is, edges for which c(e) = 0.

The role of these edges is to point out places on the game board that are available
for Builder to play on. However, it is clear that if these places are already used by
her (and Painter already coloured introduced edges), then it is better for Builder
and she is in fact closer to her win than before. In other words, a configuration
C ∈ Ci with some “missing” edges replaced by coloured ones must be in some later
set Cj, j > i. Hence, on the one hand, these “missing” edges can be removed which
reduces the number of non-isomorphic configurations in Ci. On the other hand,
these “missing” edges make the merging process to be more restrictive and, as a
result, fewer configurations are created. This trade-off is tricky to handle so some
parts have to be adjusted manually by trial and error method. For example, to verify
that R(K3, K4) > 16, we decided to keep “missing” edges until C11 is generated and
from that point on we started neglecting them. An algorithm in this form took only
30 CPU minutes, that is, the running time decreased by a factor of more than 2 · 106
comparing to the original approach used in [11] for the same task.

3. Acknowledgment

This work used the facilities of the Shared Hierarchical Academic Research Com-
puting Network SHARCNET. SHARCNET (www.sharcnet.ca) is a consortium of
colleges, universities and research institutes operating a network of high-performance
computer clusters across south western, central and northern Ontario. The infras-
tructure of SHARCNET consists of a group of 64-bit high performance Opteron and
Xeon clusters with close to 20,000 CPUs.

References

[1] J. Beck, Achievement games and the probabilistic method, Combinatorics, Paul Erdős is Eighty,
Bolyai Soc. Math. Stud., vol. 1, (1993), 51–78.

[2] D. Conlon, On-line Ramsey numbers, SIAM J. Discrete Math., 23 (2009), 1954–1963.
[3] J. Cyman and T. Dzido, A note on on-line Ramsey numbers for quadrilaterals, Opuscula

Mathematica 34 (2014) 463–468.



10 PRZEMYSŁAW GORDINOWICZ AND PAWEŁ PRAŁAT

[4] J. Cyman, T. Dzido, J. Lapinskas and A. Lo, On-line Ramsey number of paths and cycles,
Electronic Journal of Combinatorics 22 (2015) #P1.15.

[5] E. Friedgut, Y. Kohayakawa, V. Rödl, A. Ruciński, and P. Tetali, Ramsey games against
one-armed bandit, Combin. Probab. Comput., 12 (2003), 515–545.

[6] J. Grytczuk, H. Kierstead, and P. Prałat, On-line Ramsey Numbers for Paths and Stars,
Discrete Mathematics and Theoretical Computer Science 10 (2008), 63–74.

[7] A. Kurek and A. Ruciński, Two variants of the size Ramsey number, Discuss. Math. Graph
Theory 25 (2005), no. 1-2, 141–149.

[8] B.D. McKay, nauty Users Guide (Version 2.5), http://cs.anu.edu.au/˜bdm/nauty/.
[9] B.D. McKay, Practical Graph Isomorphism, Congressus Numerantium, 30 (1981) 45–87.
[10] B.D. McKay and A. Piperno, Practical Graph Isomorphism, II, J. Symbolic Computation

(2013) 60 94–112.
[11] P. Prałat, R(3, 4) = 17, Electronic Journal of Combinatorics 15 (2008), #R67, 13pp.
[12] P. Prałat, A note on off-diagonal small on-line Ramsey numbers for paths, Ars Combinatoria

107 (2012), 295–306.
[13] P. Prałat, A note on small on-line Ramsey numbers for paths and their generalization, Aus-

tralasian Journal of Combinatorics 40 (2008), 27–36.
[14] P. Gordinowicz and P. Prałat, programs written in C/C++ can be downloaded from

http://www.math.ryerson.ca/˜pralat/ or http://im0.p.lodz.pl/˜pgordin/.
[15] S. Radziszowski, Small Ramsey Numbers, Electron. J. Combin. Dynamic Survey DS1, revision

#14 (2014), 94pp.
[16] D.B. West, Introduction to Graph Theory, 2nd edition, Prentice Hall, 2001.

Institute of Mathematics, Technical University of Lodz, Łódź, Poland
E-mail address: pgordin@p.lodz.pl

Department of Mathematics, Ryerson University, Toronto, ON, Canada, M5B
2K3

E-mail address: pralat@ryerson.ca


