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Abstract. We study a duopoly market on which there is uncertainty of a product quality.

Consumers adaptively learn about quality of products when they buy them (direct learning)

or from other consumers with whom they are interacting in a social network modelled as a

SPA graph (indirect learning). We show that quality uncertainty present in such a market

leads to endogenous segmentation of consumers’ preferences towards suppliers. Additionally,

we show that in this setting, even if both companies have the same expected quality, the

company with lower variance of quality will gain higher market share.

1 Introduction

In economics textbooks a discussion of network effects is usually limited to positive or negative

externalities caused by preferential attachment process. In this paper we argue that below the

surface of these evident and well known phenomena there is a layer of more subtle and less un-

derstood ones. Specifically the subject of our study is perception of product quality by consumers

embedded in a network of social interactions induced by a SPA graph. We show how presence of

quality uncertainty in this setting leads to diversification of quality expectations and endogenous

differentiation of consumer preferences towards suppliers.

The significance of quality expectations for market mechanism has been originally revealed in

the seminal paper of George Akerlof (1970). Using a market for second hand cars as an example,

Akerlof has shown how presence of quality uncertainty leads to adverse selection of low quality

products and degeneration or even failure of a market. More specifically, he considered a market

comprised of two types of agents — car owners and potential car buyers. The first group was

offering cars for sale, asking for prices reflecting their actual quality, but bids from the second

group were based on the average quality of the cars on the market, as the true quality distribution

was hidden from them. The mismatch of supply and demand discouraged owners of better than

average cars causing them to withdraw from the market. This, in turn, triggered a feedback loop

of gradual deterioration of quality of cars on sale until the market collapsed in the end.

The discovery of this apparently simple mechanism of adverse selection has proven to be one of

the most fruitful insights in modern economics, spawning development of vast literature and helping

to explain market phenomena as diverse as drastic loss of value suffered by brand-new vehicles on

their first days of use, difficulties of elderly people or young motorcyclists to get insurance cover,

dearth of credit markets in underdeveloped countries or high unemployment among minorities.

Its profound influence was eventually recognized by awarding Akerlof and his collaborators the

Nobel Memorial Prize in Economic Sciences in 2001. With such prominence and after nearly half a

century of research, one would hardly expect any novelty on the topic. So the paper of Izquierdo and

Izquierdo (2007) came as a surprise by providing a new insight into the phenomena and suggesting

that influence of uncertain quality on markets is still not entirely understood.

Akerlof (1970) and his followers considered information asymmetry between the transacting

parties to be the necessary prerequisite for a market degradation to occur. This assumption has

been considered so fundamental that the 2001 Nobel Prize was awarded to Akerlof, Spence and

Stiglitz “for their analyses of markets with asymmetric information.” Quite unexpectedly therefore
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Izquierdo and Izquierdo (2007) claimed that the same effect could be induced by quality uncertainty

alone. To prove it they proposed an agent-based model in which consumers estimated quality of a

product based upon experiences of their own and of their acquaintances. As they have demonstrated

under the assumed adaptive quality estimation process the symmetry of supply and demand breaks

down and market degenerates, down to a point of non-existence of equilibrium, in the same way

as in the model of Akerlof (1970). The effect is more pronounced when there is only individual

quality estimation, whereas social interaction mitigates it. In contrast to the model of Akerlof

(1970) no a priori assumption of information asymmetry is required as it is replaced by endogenous

differentiation of quality expectations in the population of consumers.

It may surprise at first that the mechanism described by Izquierdo and Izquierdo (2007) has not

been revealed earlier during nearly half a century of research. However under scrutiny one will notice

a fundamental difference in a way quality expectations are formed in the two models. Car buyers in

Akerlof (1970) follow what is known as the rational expectations hypothesis (REH). In short REH

assumes that agents know the “true” structural form of the data generating process parameters

of which they estimate and their subjective expectations are consistent with this knowledge. This

approach assumes car buyers to have precise knowledge of the average quality of cars on sale at

any moment (although not on quality of each individual item). In contrast consumers of Izquierdo

and Izquierdo (2007) follow the adaptive expectations hypothesis (AEH), which does not assume

this accurate a priori knowledge. Instead, agents apply a simplistic first-order prediction error

correction formula with exponentially decaying weights.

AEH and REH are the two extremes on the spectrum of expectation formulation methods.

AEH as the earlier approach was commonly used in economics (for a classic example see Nerlove

1958) until the critique by Muth (1960) who shown its non-optimal statistical properties as the

“backward-looking” biased estimator. Use of AEH was discouraged afterwards and replaced by

REH as subsequently proposed by Muth (1961) and advocated by Lucas (1972) and Sargent (1973).

The fact that REH has been integrated into the paradigm of the mainstream neoclassical economics

does not discredit the adaptive approach nonetheless. In fact REH is often criticized for making too

strong, psychologically unrealistic assumptions of agents rationality and their ability to perceive

and process information (Evans and Honkapohja 2001). Another problem is that in many models

REH results in multiple equilibria but does not indicate how to resolve the conundrum. For these

reasons AEH is being actively researched as a viable alternative and many hybrid learning tactics

combining AEH and REH are proposed (Frydman and Phelps 2013).

We hence find effects spotted by Izquierdo and Izquierdo (2007) as intriguing enough to deserve

further exploration, although in a slightly modified setting. Both the discussed models required

disgruntled agents, car sellers in Akerlof (1970) and consumers in Izquierdo and Izquierdo (2007),

to retreat from the market for its contraction to occur. While this assumption could be justified

in some circumstances, in many others it would be unrealistic. A person would rather look for

substitutes than give up consumption altogether. Therefore in our model we assume a market

with alternative suppliers of a homogeneous good and we allow consumers to switch suppliers to

maximize satisfaction.

Note that although technically we consider a case of oligopoly, we are not interested in strategic

interplay of suppliers. We use term “oligopoly” not in a classical sense but merely to signal that a

key assumption of our model is ability of consumers to distinguish between multiple suppliers. The

subject of our study is dynamics of consumer preferences under quality uncertainty and adaptive

expectations. The ability of consumers to discriminate suppliers is a necessary prerequisite for it,

but does not restrict the context to the textbook definition of oligopoly. Our conclusions are general

and extend onto any market where consumers are able to perceive quality variability and discern

suppliers, regardless of market power exercised by the latter. So they readily apply to monopolistic

or perfect competition, as long as the key assumption of supplier distinction holds. In other words
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our aim is to study dynamics of quality expectations in isolation and we assume both supply and

demand to be totally inelastic.

The remaining part of the paper is organized as follows. In Section 2 we describe the model of

the market with quality uncertainty in detail. For better understating it will be presented in two

variants for (a) finite and (b) continuous state space. In Section 3 we present results of the base

analysis of an isolated consumer which do not take into account effects of social interaction. In

Section 4 we extend the analysis with network effects induced by a socially realistic SPA connection

graph. Section 5 presents the summary of the results and concludes.

2 Model

In this section, we define the model that we investigate. In order to validate robustness of presented

results we present two variants of it. The first variant is a minimal specification that exhibits base

properties we want to explore and better understand; it uses a finite state-space representation.

The other variant has uncountable state-space and so it is more realistic, but obviously more

challenging to handle.

2.1 Finite state-space model

Let G = (A,C) be a directed graph of connections between agents from set A. A connection

c ∈ C ⊆ A× A is an ordered tuple (a1, a2) ∈ C indicating that agent a1 has influence on opinion

of agent a2. As mentioned, the graph is directed. It will be assumed at some point that G is a

random geometric graph generated by the Spatial Preferential Attachment model that received

some attention recently, see Section 4.1.

Suppose that there are two companies in the model, each providing some product or service.

Customer buying product from company i ∈ {1, 2} observes its value equal to a sample being

random variable Qi. It is assumed that samplings are independent. We take that Qi is defined as

an identity on the probability space (Ω, 2Ω , Pi), where Ω = {−1, 0, 1}. We will say that −1 is a

bad value of the product, 0 is a normal value of the product and 1 is an excellent value of the

product. For this probability space we naturally define a probability mass function pi : Ω →]0, 1[

(we assume that each state has strictly positive probability). In the model, we consider discrete

time-steps. Each agent a ∈ A, in each time-step t, has evaluation of quality of company i as

eta,i ∈ {−1, 0, 1}, i.e. the agent believes that the company has bad, normal or excellent quality

product. A vector of evaluations of agent a in time t is denoted as eta.

We start with time-step t = 0. Assume that e0a,i is a random i.i.d. drawn from Qi. The dynamics

of the model is defined by the following procedure:

1. increase time-step t← t+ 1;

2. select a ∈ A uniformly at random;

3. agent a selects company i to buy from as a draw from random variable S(eta) specified below;

4. agent a observes quality of selected company i as qi being a random sample from Qi;

5. individual learning : agent a updates her beliefs eta,i as a draw from random variable Γ (eta,i, qi)

where Γ is specified below;

6. social learning : each agent b for which (a, b) ∈ C updates her beliefs etb,i as a draw from random

variable ∆(eta,i, qi), where ∆ is specified below.

Definition of random variable S is the following:

– if eta,i = eta,j then

Pr(S = i) = Pr(S = j) = 1/2;
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– if eta,i > eta,j then

Pr(S = i) = β and Pr(S = j) = 1− β, where β ∈ [0.5, 1);

Definition of random variable Γ is the following:

Pr(Γ = qi) = γ and Pr(Γ = eta,i) = 1− γ, where γ ∈ (0, 1).

Definition of random variable ∆ is the following:

Pr(∆ = qi) = δ and Pr(Γ = eta,i) = 1− δ, where δ ∈ [0, 1).

2.2 Continuous state space

For simplicity, here we will discuss only the differences in specification of this model in comparison

to the previous, finite state-space model. The model is analysed on the same graph G and has the

same specification of dynamics. We provide new parameter names in this model, but there is a

direct correspondence between these parameters and the parameters in finite state-space variant.

As before, we consider two companies. Customer buying a product from company i observes

its value equal to sample from random variable Qi ∼ N (µi, σ
2
i ). The parameter pair (µi, σi)

corresponds to pair (pi(−1), pi(1)) in the finite state space model.

We may assume that initially (that is, at time t = 0) agents have beliefs that are based on their

first time purchases, i.e. e0i,a is a sample from Qi. Alternatively, we may assume that each agent

start with a given value of e0i,a, say, e0i,a = µi. The selection function S(eta) is specified as:

S(eta) = arg max
i
{eti,a + εi},

where εi ∼ N(0, ω2) and are independent. Parameter ω corresponds to parameter β in finite

state-space model.

After company i is selected agent a observes a sample of quality Qi denoted as qi.

Beliefs in the continuous state space model are deterministically updated. Individual learning

is governed by the rule:

et+1
i,a ← (1− λ1)eti,a + λ1qi,

where λ1 ∈ (0, 0.5) is an individual learning parameter. Social learning follows the rule:

et+1
i,b ← (1− λ2)eti,b + λ2qi,

where λ2 ∈ [0, 0.5) is a social learning parameter. Observe that λ1 corresponds to γ, and λ2 to δ

in the finite state-space model.

3 Baseline analysis without network effects

In this section, we investigate both models in a simple scenario where network does not affect the

behaviour of agents (that is, δ = 0 or λ2 = 0, depending on the variant considered).

3.1 Finite state-space model

If δ = 0, then our model can be thought of as a single customer model where an evolution of

customer’s state is given by a Markov process. The transition matrix M9×9 can be explicitly

analytically derived.3 Observe that the process is irreducible and positive recurrent, given the

3 We omit it in the text as it is large but easy to derive.
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assumed domains of parameters. Therefore, it has a unique steady state π that is a solution of the

following system of equations: {
πT (M − I) = 0

πT1 = 1

Additionally, we can observe that then γ only influences the speed of convergence of the process

as M − I = γX, where X does not depend on γ. Under such observations π can be expressed as a

function of five parameters: β, p1(−1), p1(1), p2(−1), and p2(1).

In order to assess the model we use the following metrics of the steady state:

– Mean evaluation of company i by the customer: E(ea,i);

– Probability that company i is evaluated better than company j: Pr(ea,i > ea,j);

– Probability that company i is evaluated equally to company j: Pr(ea,i = ea,j).

Since the model is symmetric with respect to companies 1 and 2, in the following analysis we

concentrate on company 1. In Figures 1, 2 and 3 we show these metrics for the case when we

assume that offers of companies are symmetric, i.e. pi(−1) = pi(1), which means that E(Qi) = 0

for both companies (the plots show averages over β uniformly distributed in intervals specified in

subplot captions). We argue that this case is interesting because it represents the situation where

both companies are equally good but only differ in the dispersion of their qualities. In this text we

will solely concentrate on this scenario.

One can conclude from plots that in the steady state:

F1) Pr(ea,i = −1) > Pr(ea,i = 1) so E(ea,i) < 0; on the average customers have negatively biased

opinion; this bias is potentially significant and reaches ≈ −0.6, when the range of possible

results is [−1, 1];

F2) pi(1) < pj(1)⇒ E(ea,i) > E(ea,j); company with higher variance has lower market share; this

is the crucial finding of no-network model: it pays off to give customers service with predictable

quality;

F3) for high β, p1(1), p2(1) we have bimodality, i.e. mini∈{1,2} Pr(ea,i > ea,3−i) > Pr(ea,1 = ea,2);

most likely client has a clear preference for one product or the other.

As a side note (not investigated in detail in this paper), let us observe that the system exhibits

significantly nonlinear behaviour; shape of relationships of measured quantities changes with β.

The key question raised in this paper is how network structure affects the results F1–F3 (i.e.,

what happens when δ = 0 is replaced by δ > 0). In particular:

– how does the in-degree of a given agent influence bias of her preferences;

– do customers that are connected in a graph have correlated preferences;

– how does δ influence bias in evaluation of performance of companies;

– how does δ influence the presence of bimodality of preferences.

3.2 Continuous state-space model

We move to continuous state-space model but continue investigating the variant with no network

effects, that is, when λ2 = 0. We present two approaches to highlight tools that can be used

in such situations. The first one is asymptotic in nature and provides a statement that holds

asymptotically almost surely (and so can be considered to be more rigorous). The second one is

based on simulations and can be applied for finite (but usually large) number of agents (and so

can be considered to be more realistic).
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Fig. 1. E(ea,1): mean of evaluation of company 1 for symmetric offers (mu1).
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Fig. 2. Pr(ea,1 > ea,2): probability that company 1 has better evaluation than company 2 (b1).
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Differential equations approach As typical in random graph theory, all results in this subsec-

tion are asymptotic; that is, for n = |A| tending to infinity. We say that an event holds asymptot-

ically almost surely (a.a.s.) if it holds with probability tending to one as n→∞.

The general setting that is used in the differential equation method (Wormald 1999) is a se-

quence of random processes indexed by n (which in our case is the number of agents). The aim is

to find asymptotic properties of the random process and the conclusion we aim for is that variables

defined are well concentrated, which informally means that a.a.s. they are very close to certain

deterministic functions. These functions arise as the solution to a system of ordinary first-order

differential equations. One of the important features of this approach is that the computation of

the approximate behavior of processes is clearly separated from the proof that the approximation

is correct.

First, let us discretize the space of potential states agents can be in. Fix a real number z > 0,

an integer k, and let us restrict ourselves to (2k + 1) values of possible believes for a company

c ∈ {1, 2}: µc − zk/k, µc − z(k − 1)/k, . . . , µc, . . . , µc + z(k − 1)/k, µc + zk/k. Each time some

belief is updated, it is immediately rounded up or down to the nearest possible value (for a given

company c).

For −k ≤ i, j ≤ k, let Xi,j(t) be a random variable counting the number of agents of type (i, j)

with belief about product 1 equal to µ1 + zi/k and with belief about product 2 equal to µ2 + zj/k.

Let q(i, j) be the probability that agent of type (i, j) buys product 1; that is,

q(i, j) = P
(
µ1 + zi/k +N(0, ω) ≥ µ2 + zj/k +N(0, ω)

)
= P

(
N(0, 2ω) ≥ (µ2 − µ1) + z(j − i)/k

)
.

The probability that she buys product 2 is, of course, q(j, i) = 1− q(i, j). Now, let r(s, i, µ, σ2) be

the probability that an agent changes her believes from µ+ zs/k to µ+ zi/k after buying product

with the corresponding quality distribution N(µ, σ2) (and after rounding, of course); that is, for

−k < i < k

r(s, i, µ, σ2) = P
(
µ+

z(i− 1/2)

k
≤ (1− λ1)

(
µ+

zs

k

)
+ λ1N(µ, σ2) ≤ µ+

z(i+ 1/2)

k

)
= P

(z(i− s(1− λ1)− 1/2)

kλ1
≤ N(µ, σ2)− µ ≤ z(i− s(1− λ1) + 1/2)

kλ1

)
= P

(z(i− s(1− λ1)− 1/2)

kλ1
≤ N(0, σ2) ≤ z(i− s(1− λ1) + 1/2)

kλ1

)
.

For the two extreme values (i = −k and i = k) we have

r(s,−k, µ, σ2) = P
(
N(0, σ2) ≤ z(i− s(1− λ1) + 1/2)

kλ1

)
r(s, k, µ, σ2) = P

(z(i− s(1− λ1)− 1/2)

kλ1
≤ N(0, σ2)

)
.

Our goal is to estimate the conditional expectation E [Xi,j(t+ 1)−Xi,j(t) | X] (given the set

X of all variables Xi,j(t)). Note that an agent of type (i, j) is selected with probability Xi,j(t)/n.

Conditioning on this event, the probability she stays within this group is equal to

q(i, j) · r(i, i, µ1, σ
2
1) + q(j, i) · r(j, j, µ2, σ

2
2).

For s 6= i, an agent of type (s, j) is selected with probability Xs,j(t)/n, and conditioning on that,

she becomes of type (i, j) with probability

q(s, j) · r(s, i, µ1, σ
2
1).
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Similarly, for y 6= j, an agent of type (i, y) is selected with probability Xi,y(t)/n, and conditioning

on that, she becomes of type (i, j) with probability

q(y, i) · r(y, j, µ2, σ
2
2).

It follows that

E [Xi,j(t+ 1)−Xi,j(t) | X] = −Xi,j(t)

n

+

k∑
s=−k

Xs,j(t)

n
q(s, j)r(s, i, µ1, σ

2
1)

+

k∑
y=−k

Xi,y(t)

n
q(y, i)r(y, j, µ2, σ

2
2).

For simplicity, as this is just an illustration of the general method, we may assume that, say,

X0,0 = n, and other values are 0 (that is, initially every agent believes that product 1 has quality

µ1 and product 2 has quality µ2). Any other scenario can be investigated the same way affecting

only the initial value for the system of differential equations we are about to set up.

Now, one can scale everything down (both the time n and the number of members of each

group, n) to get the system of differential equations. Here, function fi,j(x) is used to model random

variable Xi,j(xn)/n. We get the system of (2k + 1)2 equations: for −k ≤ i, j ≤ k,

f ′i,j(x) = −fi,j(x)

+

k∑
s=−k

fs,j(x)q(s, j)r(s, i, µ1, σ
2
1)

+

k∑
y=−k

fi,y(x)q(y, i)r(y, j, µ2, σ
2
2),

with the initial value f0,0(0) = 1 and fi,j(0) = 0 if |i|+ |j| > 0.

Finally, the differential equations method (introduced and developed by Wormald 1999) can be

used to show that our random variables are well-concentrated around their expectations. Using the

general purpose theorem (Theorem 5.1 in Wormald 1999), we get that a.a.s. for any −k ≤ i, j ≤ k,

and any t, we have

Xi,j(t) = (1 + o(1))fi,j(t/n)n.

In order for the discretized model to approximate with good accuracy the original, continuous

model, one should take: i) z large enough so that, for any company c ∈ {1, 2}, in the original model,

the number of agents that get belief below µc − z or above µc + z is negligible; ii) k large enough

to capture a large spectrum of beliefs. As a result, plotting all (2k+ 1)2 functions is an impossible

task but the following three functions should describe well the behaviour of the system:

f=(x) :=

k∑
i=−k

fi,i(x) (fraction of agents that equally like both products)

f>(x) :=

k∑
i=−k

i−1∑
j=−k

fi,j(x) (fraction of agents that like product 1 more)

f<(x) :=

k∑
i=−k

k∑
j=i+1

fi,j(x) (fraction of agents that like product 2 more)
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Fig. 4. Example of the dynamics of the model. Black line represents f=, red line f>, and green line f<.

On the left plot we consider a symmetric case: σ1 = σ2 = 1 (red and green lines overlap). On the right plot

an asymmetric case is considered: σ1 = 1 and σ2 = 1.25. In both plots µ1 = µ2, λ1 = 0.5 and ω = 0.1. In

approximation we used z = 5 and k = 100. Initial beliefs are equal to µc, for both companies.

Figure 4 presents an example of the dynamics of the process. If σ2 > σ1, then the company with

a product having lower variability gains higher market share. Interestingly, the transient behavior

of this simulation is that initially company 2 gains market share, but then starts losing it as f=
drops and f> continues to increase. As k increases f= will tend to 0 in general. Economically this

might have twofold implications: (1) it might be profitable to launch even a product that is known

to be inferior than competition because profits that can be reaped in the initial period might

justify it and (2) investors should look at initial success of a product with care as it might be only

transient characteristic of a system.

Finally, let us stress again that we present an application of the differential equations method in

a very simple setting but it can be easily generalized to more sophisticated scenarios. For example,

when agents are not selected uniformly at random from set A (see step 2.) but, instead, with

probability that is affected by type (i, j) a given agent is of. Or perhaps agents select company

to buy from (see step 3.) with probability that depends on how many other agents have similar

believes. In these examples, this method seems to be the only tool one can use. On the other hand,

in our example, one can avoid using it as it is straightforward to predict (a.a.a., as always) how

many agents at time xn (for some constant x) made ` purchases (` = 0, 1, . . . ). Then, each agent

can be investigated independently (based on the assigned value of `) using Markov processes, as

for the finite state-space model (but with (2k + 1) states instead of 9). Putting things together,

we can calculate the expected number of agents of a given type and the concentration will follow

from standard tools (such as Chernoff bound), since the corresponding events are independent.

Simulation approach The simulation was run for 1’000’000 iterations which was enough for it

to reach steady-state. In Figures 5 and 6 we can observe that expected evaluation of company 1

is negative and that it decreases with σ1 and increases with σ2. Additionally increase of ω reduces

those differences (as customers behave more randomly).

In Figure 7 we show distribution of beliefs of agents for σ1 = σ2 = 1, λ1 = 0.1 and λ2 = 0. For

this parameterization we have that E(ea,i) ≈ −0.27 and correlation between ea,1 and ea,2 equals

to approximately −0.65. The crucial thing is that as depicted on the plot we observe bimodality

in the beliefs of agents — both in one belief and for combination of two beliefs.
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4 Results for SPA-connected agents

In this section we extend the analysis onto network effects induced by the SPA model that is a

stochastic and geometric model of complex networks. Here it is used to model social connections

between agents. We first start with specification of SPA model and then present analysis of model

performance.

4.1 Spatial Preferential Attachment model

The Spatial Preferential Attachment (SPA) model, introduced in Aiello et al. (2009), is designed as

a model for the World Wide Web and combines geometry and preferential attachment, as its name

suggests. Setting the SPA model apart is the incorporation of “spheres of influence” to accomplish

preferential attachment: the greater the degree of a vertex, the larger its sphere of influence, and

hence the higher the likelihood of the vertex gaining more neighbours.

We now give a precise description of the SPA model. Let S = [0, 1]m be the unit hypercube in

Rm, equipped with the torus metric derived from any of the Lk norms. This means that for any

two points x and y in S,

d(x, y) = min
{
||x− y + u||k : u ∈ {−1, 0, 1}m

}
.

The torus metric thus “wraps around” the boundaries of the unit square; this metric was chosen

to eliminate boundary effects. The parameters of the model consist of the link probability p ∈ [0, 1],

and two positive constants A1 and A2, which, in order to avoid the resulting graph becoming too

dense, must be chosen so that pA1 < 1. The SPA model generates stochastic sequences of directed

graphs (Gt : t ≥ 0), where Gt = (Vt, Et), and Vt ⊆ S. Let deg−(v, t) be the in-degree of the vertex

v in Gt, and deg+(v, t) its out-degree. We define the sphere of influence S(v, t) of the vertex v at

time t ≥ 1 to be the ball centered at v with volume |S(v, t)| defined as follows:

|S(v, t)| = min

{
A1deg−(v, t) +A2

t
, 1

}
. (1)

The process begins at t = 0, with G0 being the null graph. Time step t, t ≥ 1, is defined to

be the transition between Gt−1 and Gt. At the beginning of each time step t, a new vertex vt is

chosen uniformly at random from S, and added to Vt−1 to create Vt. Next, independently, for each

vertex u ∈ Vt−1 such that vt ∈ S(u, t − 1), a directed link (vt, u) is created with probability p.

Thus, the probability that a link (vt, u) is added in time-step t equals p |S(u, t− 1)|.
The SPA model produces scale-free networks, which exhibit many of the characteristics of

real-life networks (see Aiello et al. 2009; Cooper et al. 2014). In Janssen et al. (2013a), it was

shown that the SPA model gave the best fit, in terms of graph structure, for a series of social

networks derived from Facebook. In Janssen et al. (2013b), some properties of common neighbours

were used to explore the underlying geometry of the SPA model and quantify vertex similarity

based on distance in the space. However, the distribution of vertices in space was assumed to

be uniform Janssen et al. (2013b) and so in Janssen et al. (2016) non-uniform distributions were

investigated which is clearly a more realistic setting. Finally, in Ostroumova Prokhorenkova et al.

(2017) modularity of this model was investigated, which is a global criterion to define communities

and a way to measure the presence of community structure in a network.

Specifically, in Aiello et al. (2009) (Theorem 1.1) it was proved that the SPA model generates

a graph with a power law in-degree distribution with exponent 1 + 1/(pA1). On the other hand,

the average out-degree is asymptotic to pA2/(1− pA1) (see Theorem 1.3 in Aiello et al. 2009). In

this text we take m = 2, k = 2 (two-dimensional Euclidean space), and a graph of |A| = 10, 000

agents, A1 = 1, A2 = 6 and p = 0.5. This means that in our simulation power law has coefficient

3 and the average out-degree (and so also in-degree) is 6.
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4.2 Results: finite state-space model

The model is still Markov process, however its state space has now size 9|A|. Moreover, the process

is still irreducible and positive recurrent given the assumed domains of parameters. Therefore, it

has a unique steady state π.

Table 1. Influence of variables on target characteristics approximated by linear regression; experiment

setup: γ ∈ {0.25, 0.5}, δ ∈ {0, 0.25, 0.5}, β ∈ {0.6, 0.7, 0.8, 0.9} and pi(−1) = pi(1) ∈ {0.1, 0.2, 0.3, 0.4}.
Estimates significant at 0.001 marked with *.

variable mean p1(−1) = p1(1) p2(−1) = p2(1) β γ δ

degcor1 0.0583 0.0888* -0.0875* 0.2584* -0.0036 0.1723*

E(ea,1) -0.1346 -0.4789* 0.2230* -0.5920* -0.0495 0.2300*

Pr(ea,1 > ea,2) 0.3219 -0.1408* 0.5299* 0.0735* 0.0035 -0.0201

Pr(ea,1 = ea,2) 0.3566 -0.3869* -0.3878* -0.1352* -0.0050 0.0450

edgecor1 0.0594 0.0151 -0.0131 0.0245* 0.0712* 0.2064*

In the following analysis by degcor1 we denote correlation of in-degree of agent a and her ea,1
and by edgecor1 we denote correlation of ea,1 and eb,1 for all agents a and b that are connected by

an edge.

In Table 1 we concentrate our analysis on means and want to understand the influence of

parameter δ on the results. The analyzed data were collected from 384 runs of the simulation

for Cartesian product of p1, p2 ∈ {0.1, 0.2, 0.3, 0.4}, β ∈ {0.6, 0.7, 0.8, 0.9}, γ ∈ {0.25, 0.5} and

δ ∈ {0, 0.25, 0.5}. We report the parameters of the influence of input variables on simulation

outputs estimated using linear regression metamodel.

On the average, agents with higher in-degrees have higher evaluations of product qualities.

Remembering that it is on the average negative it means that higher in-degree reduces bias in

evaluation of product quality. Also we observe that agents that are connected by edge have on

the average positive correlation of opinions. The analysis of parameters at δ variable shows that

it has relatively low impact of the structure of preferences in the population (Pr(ea,1 > ea,2) and

Pr(ea,1 = ea,2) variables) — the structure of bimodality is approximately similar to no-network

case. However, higher values of δ strongly reduce bias of estimates (E(ea,1)) and increase correlation

of opinion with degree and between agents that are connected in the network.

4.3 Results: continuous state-space model

Table 2. Influence of variables on target characteristics approximated by linear regression; experiment

setup: λ1 ∈ {0.25, 0.5}, λ2 ∈ {0, 0.25, 0.5}, ω, σ1, σ2 ∈ {0.1, 0.2, 0.3, 0.4}. Estimates significant at 0.001

marked with *.

variable mean σ1 σ2 ω λ1 λ2

degcor1 0.0731* 0.3940* -0.1352* -0.3431* 0.1650* 0.2022*

E(ea,1) -0.0458* -0.3502* 0.0873* 0.2460* -0.1357* 0.0536*

Pr(ea,1 > ea,2) 0.5010* -0.6479* 0.6559 0.0064 -0.0045 0.0038

edgecor1 0.2027 0.0190 -0.0187 -0.0353 0.0620 0.5657*

The results are analogous to the finite state-space case. In Table 2 we still concentrate our

analysis on means but this time we want to observe the influence of parameter λ2 on the re-

sults. The analyzed data were collected from 384 runs of the simulation for Cartesian product
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of σ1, σ2 ∈ {0.1, 0.2, 0.3, 0.4}, ω ∈ {0.6, 0.7, 0.8, 0.9}, λ1 ∈ {0.25, 0.5} and λ2 ∈ {0, 0.25, 0.5}. We

report the parameters of the influence of input variables on simulation outputs estimated using

linear regression metamodel.

On the average, agents with higher in-degree have higher evaluation of product quality. Remem-

bering that it is on the average negative it means that higher in-degree reduces bias in evaluation

of product quality. Also we observe that agents that are connected by edge have on the average

positive correlation of opinions. The analysis of parameters at λ2 variable shows that it has rela-

tively low impact of the structure of preferences in the population (Pr(ea,1 > ea,2) variable) — the

structure of bimodality is approximately similar to no-network case. However, higher λ2 reduces

bias of estimates (E(ea,1)) and increases correlation of opinion with degree and between agents

that have a connection in a graph.

5 Concluding remarks

Influence of quality uncertainty on markets has been traditionally studied in context of asymmetric

information and rational expectations, an approach rooted in the seminal publication of Akerlof

(1970). In this setting, uncertain quality causes a market to degenerate or even vanish altogether.

Izquierdo and Izquierdo (2007) have demonstrated that equivalent results are obtained on markets

without an a priori assumption of information asymmetry but with consumers having adaptive

expectations of quality. In this paper we contributed to this stream of research by proposing

a model of a market with multiple suppliers and consumers adaptively switching suppliers to

maximize satisfaction. We made several interesting observations.

First, we noticed that under assumption of adaptive expectations quality uncertainty is a suf-

ficient condition for endogenous differentiation of consumer preferences towards suppliers. As de-

picted on the joint density plot on Fig.7 this effect takes shape of a bimodal distribution of expected

quality with majority of consumers having clear preference for one of the suppliers and almost

none being indifferent. Interestingly the effect is observed regardless if network effects are taken

into account or not. Traditionally in economic modelling this kind of horizontal differentiation of

preferences is attributed to exogenous factors such as purposeful diversification of product char-

acteristics by sellers to increase their market power. As we have shown similar effects may occur

spontaneously and without intentional effort, by means of random variations of a product quality.

Next, we found out that lowering quality variability provides a competitive advantage to sup-

pliers, as those who second-order dominate quality distribution of the competitors, systematically

increase their market share to eventually take over the market (Fig.4). Note that we did not assume

consumers to be risk averse so this effect emerged as the endogenous property of the model. This

finding may have important practical implications as it provides credible justification for imple-

menting quality assurance policies such as TQM or Six Sigma which are sometimes criticised for

being merely costly “fads” having no theoretical underpinning (Linderman et al. 2003; Schroeder

et al. 2008).

Finally by embedding consumers in a socially realistic SPA network we have the following

findings: (a) agents with higher in-degree are better informed, (b) there is a correlation of beliefs of

agents that are connected in a network, (c) higher rate of learning from neighbours reduces average

bias of expectations. The analysis of dynamics of this process shows that the time to reach steady-

state in the model is dramatically accelerated by social interaction as more signals are reaching the

customers per one time period. This discovery reinforces the above practical conclusions regarding

quality assurance policies as it indicates that the observed effects may strongly influence real

markets, where information about bad quality product can spread fast and be hard to erase later.

This effect is explained by our model and has been witnessed many times by companies in social

media like Facebook or Twitter.
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In next steps we will test robustness of our results under more “rational” Bayesian quality

estimators. Another interesting question to be addressed is if lower quality could be compensated

by its lower volatility i.e. is there a trade-off between expected quality and its variance. Numerical

experiments confirm such possibility but this remains to be proven.
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