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Abstract

Given a graph on n vertices and an assignment of colours to the edges, a rainbow Hamilton
cycle is a cycle of length n visiting each vertex once and with pairwise different colours on the
edges. Similarly (for even n) a rainbow perfect matching is a collection of n/2 independent
edges with pairwise different colours. In this note we show that if we randomly colour the edges
of a random geometric graph with sufficiently many colours, then a.a.s. the graph contains a
rainbow perfect matching (rainbow Hamilton cycle) if and only if the minimum degree is at least
1 (respectively, at least 2). More precisely, consider n points (i.e. vertices) chosen independently
and uniformly at random from the unit d-dimensional cube for any fixed d ≥ 2. Form a sequence
of graphs on these n vertices by adding edges one by one between each possible pair of vertices.
Edges are added in increasing order of lengths (measured with respect to the `p norm, for any
fixed 1 < p ≤ ∞). Each time a new edge is added, it receives a random colour chosen uniformly
at random and with repetition from a set of dKne colours, where K = K(d) is a sufficiently
large fixed constant. Then, a.a.s. the first graph in the sequence with minimum degree at least 1
must contain a rainbow perfect matching (for even n), and the first graph with minimum degree
at least 2 must contain a rainbow Hamilton cycle.

1 Introduction

Let X = (X1, X2, . . . , Xn) be n i.i.d. points in [0, 1]d chosen with the uniform distribution, where
d ≥ 2 is fixed. Fix 1 < p ≤ ∞. Unless otherwise stated, distances and lengths in [0, 1]d are
measured with respect to the `p norm. We construct the random geometric graph G (X; r) of
radius r as follows. The vertices of G (X; r) are indexed by [n], and each pair of different vertices
i, j ∈ [n] are joined by an edge if and only if Xi and Xj are within (`p-normed) distance r. The
length of an edge ij is defined to be ‖Xi − Xj‖p, and is always at most r by construction. With
probability 1 all points in X are different, and fall in general position. Therefore, we will often
identify vertex i and point Xi (i.e. we regard X as the vertex set), and assume all edges have
different lengths. Random geometric graphs (or more precisely a slight variation of the model
defined above) were first introduced by Gilbert [12], and have been widely investigated ever since.
They provide a theoretical model for wireless ad-hoc networks, and have relevant applications in
statistics. We refer the reader to Penrose’s monograph [16] and a more recent survey by Walters [17]
for further details and references on the subject.
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We consider the natural coupling in which all G (X; r) with r ∈ [0,∞) share one common vertex
set X. We call this coupling the random geometric graph process, and denote it by

(
G (X; r)

)
r≥0

.

Intuitively, the process starts at time r = 0 with an empty graph on vertex set X (almost surely,
assuming that all vertices are at different positions). Then, as we increase r from 0 to ∞, we add
edges one by one in increasing order of length. By construction, each snapshot of the process at
a given time r is distributed precisely as a copy of G (X; r). Finally, G (X; r) is deterministically
the complete graph for all r ≥ D, where D = ‖(1, 1, d. . ., 1)‖p = d1/p is the distance between two
opposite corners of [0, 1]d.

A lot of work has been done to describe the connectivity properties of random geometric graphs
in this process and the emergence of spanning subgraphs (such as perfect matchings and Hamilton
cycles). A celebrated result of Penrose [15] asserts that a.a.s.1 the first edge added during the
process that gives minimum degree at least k also makes the graph k-connected. More precisely,
let

r̂δ≥k = r̂δ≥k(X) = min {r ≥ 0 : G (X; r) has minimum degree at least k} and

r̂k -conn = r̂k -conn(X) = min {r ≥ 0 : G (X; r) is k-connected} .

Then, for every constant k ∈ N,

lim
n→∞

Pr (r̂δ≥k = r̂k -conn) = 1. (1)

In view of this, Penrose (cf. [16]) asked whether a.a.s. that first edge in the process that gives
minimum degree at least 2 (and ensures 2-connectivity) is also responsible for the emergence of a
Hamilton cycle. A first step in this direction was achieved by Dı́az, Mitsche and Pérez [6], who
showed (for dimension d = 2) that, given any constant ε > 0, a.a.s. G (X; (1 + ε)r̂δ≥2) contains
a Hamilton cycle. Some of their ideas were recently extended by three research teams (Balogh,
Bollobás and Walters; Krivelevich and Müller; and Pérez-Giménez and Wormald), who indepen-
dently settled Penrose’s question in the affirmative (but only two papers [4] and [14] were finally
published). In particular, a more general packing result in [14] implies that

a.a.s.

{
G (X; r̂δ≥2) contains a Hamilton cycle, and

G (X; r̂δ≥1) contains a perfect matching (for even n).
(2)

Clearly, this claim is the best possible, since any graph with minimum degree less than 1 (less
than 2) cannot have a perfect matching (respectively, Hamilton cycle).

In this paper we consider an edge-coloured version of the random geometric graph. (Throughout
the manuscript, we will use the term edge colouring (and other terms alike) to denote an assignment
of colours to the edges, not necessarily proper in a graph-theoretical sense.) Let Z = (Zij)1≤i<j≤n
be a random vector of colours, chosen independently and with replacement from a set of colours of
size c. We use this vector Z to colour the edges of the random geometric graph: each edge ij of
G (X; r) (1 ≤ i < j ≤ n) is assigned colour Zij . We denote this model by G (X;Z; r). Similarly, we
consider the coupled process

(
G (X;Z; r)

)
r≥0

in which, as we increase r from 0 to ∞, we add new
edges in increasing order of length, and each new edge ij is coloured according to Zij .

Given a graph with colours assigned to the edges, we say the graph (or its edge set) is rainbow
if all edges receive different colours. Recently, there have been many papers written on the subject
of rainbow spanning structures in randomly edge coloured random graphs and digraphs (see e.g. [1,
2, 3, 5, 8, 9, 10, 11, 13]). Let Gc(n, p) denote the binomial random graph G(n, p) where each edge

1We say that a sequence of events Hn holds asymptotically almost surely (a.a.s.) if limn→∞Pr(Hn) = 1.
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has independently been assigned a uniformly random colour from a set of size c. For graphs H with
maximum degree ∆ = ∆(H) and n vertices, Ferber, Nenadov and Peter [10] showed that a.a.s.
Gc(n, p) contains a rainbow copy of H, provided that p = n1/∆ polylog(n) and c = (1 + o(1))e(H).
Here, the number of colours is asymptotically optimal, whereas the bound on p most likely is
not. For Hamilton cycles tighter results are known. In [5], Cooper and Frieze determined that
a.a.s. Gc(n, p) contains a rainbow Hamilton cycle if p ≥ 42 log n/n and c ≥ 21n. This was later
improved by Frieze and Loh [11] and recently even further improved by Ferber and Krivelevich [8]

who showed that it holds when c = (1 + o(1))n and p = logn+log logn+ω(1)
n . Here, the number of

colours is asymptotically optimal and the bound on p is optimal. Bal and Frieze [3] examined the
case when the number of colours is exactly optimal, showing that Gn(n, p) a.a.s. contains a rainbow

Hamilton cycle as long as p = Ω
(

logn
n

)
.

In this manuscript, we investigate the emergence of rainbow spanning structures in the random
geometric graph. Our main contribution is to extend (2) to a rainbow context. We show that a.a.s.
the first edge in the edge-coloured random geometric graph process

(
G (X;Z; r)

)
r≥0

that gives
minimum degree at least 2 also creates a rainbow Hamilton cycle, provided that the number of
colours is at least c = dKne, where K = K(d) > 0 is a sufficiently large constant. Similarly, under
the same assumptions (with n even), the first edge in the process that ensures that the minimum
degree is at least 1 creates a rainbow perfect matching. To state the result more precisely, let

r̂RPM = r̂RPM(X,Z) = inf {r ≥ 0 : G (X;Z; r) contains a rainbow perfect matching} and

r̂RHC = r̂RHC(X,Z) = inf {r ≥ 0 : G (X;Z; r) contains a rainbow Hamilton cycle} ,

where we use the convention that inf ∅ = ∞. Note that whenever r̂RPM < ∞ (r̂RHC < ∞) the
infimum in the above definition is actually a minimum, and it is precisely the length of the first
edge in the process

(
G (X;Z; r)

)
r≥0

that creates a rainbow perfect matching (respectively, rainbow

Hamilton cycle).

Theorem 1. Given a fixed integer d ≥ 2, there exists a sufficiently large constant K = K(d) > 0
satisfying the following. Let X = (X1, X2, . . . , Xn) be n i.i.d. points in [0, 1]d chosen uniformly
at random, and let Z = (Zij)1≤i<j≤n be a random vector of colours, choosen independently and
with replacement from a set of colours of size dKne. Consider the random geometric graph process(
G (X; r)

)
r≥0

(for any fixed `p-normed distance, 1 < p ≤ ∞) with a random colouring of the edges
given by Z. Then,

lim
n→∞

Pr
(
r̂RHC(X,Z) = r̂δ≥2(X)

)
= 1,

and for even n
lim
n→∞

(n even)

Pr
(
r̂RPM(X,Z) = r̂δ≥1(X)

)
= 1.

Remark 2. For p = 1, we can only claim that

lim
n→∞

Pr
(
r̂RHC(X,Z) = r̂2-conn(X)

)
= 1 and lim

n→∞
(n even)

Pr
(
r̂RPM(X,Z) = r̂1-conn(X)

)
= 1, (3)

and in fact it is not known whether (1) holds (see [15] and [16]). We include a justification of (3)
in Section 5 for completeness.

Combining Theorem 1 and Theorem 8.4 in [16], we immediately obtain the limiting probabilities
of having a rainbow perfect matching and having a rainbow Hamilton cycle, assuming that the
number of colours is sufficiently large.
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Corollary 3. Under the same assumptions of Theorem 1, put

r =
d

√
(2/d) log n+ (3− d− 2/d) log log n+ x

22−dθn
,

and let f = log
(

21−2/d(θd)3−2/dθ′d−2/(d
2

))
, where θ and θ′ are the volumes of the d-dimensional

and (d− 1)-dimensional unit `p-balls, respectively. Then

lim
n→∞

(n even)

Pr
(
G (X;Z; r) has a rainbow perfect matching

)
=


0 x→ −∞;

exp
(
−e−α−f

)
x→ α;

1 x→∞.

Corollary 4. Under the same assumptions of Theorem 1, put

r =
d

√
(2/d) log n+ (4− d− 2/d) log log n+ y

22−dθn
,

and let f , θ and θ′ be as in Corollary 3. Then if d ≥ 3,

lim
n→∞

Pr
(
G (X;Z; r) has a rainbow Hamilton cycle

)
=


0 y → −∞;

exp
(
−2e−α−f/d

)
y → α;

1 y →∞.

Otherwise if d = 2,

lim
n→∞

Pr

(
G (X;Z; r) has a
rainbow Hamilton cycle

)
=


0 y → −∞;

exp
(
−e−α/2

(
e−α/2 + 2

√
θ

θ′

))
y → α;

1 y →∞.

In Section 2, we will discuss how we partition [0, 1]d into a grid of small d-dimensional cubic
cells. Having this partition will simplify our task by allowing us to locally search for short rainbow
paths or cycles within each cell or small cluster of cells. In Section 3, we will show how to find these
paths or cycles. In Section 4, we will show how to connect the pieces together into one rainbow
Hamilton cycle. A simple adaptation of the argument can be used to build a rainbow perfect
matching. Finally, in Section 5 we will discuss the case p = 1, and pose some open questions in
Section 6.

2 Tessellation and graph of cells

The main goal in this section is to prove Lemmas 13 and 14, which will be crucial in the construc-
tion of the rainbow Hamilton cycle and perfect matching. We will adapt and extend many ideas
from [14]. Throughout the paper, d ≥ 2 and the `p-norm (1 < p ≤ ∞) in Rd are fixed. Note that
the volume θ of the unit d-dimensional `p-ball satisfies

2d/d! ≤ θ ≤ 2d (4)

since the `p-ball contains the `1-ball and is contained in the `∞-ball, which have volume 2d/d! and
2d respectively. We will also make frequent use of the following inequality throughout the argument,
often without explicitly mentioning it. For any X ∈ Rd,

‖X‖∞ ≤ ‖X‖p ≤ d‖X‖∞. (5)
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Moreover, we will pick a sufficiently small constant ε = ε(d) > 0 so that several requirements in the
argument are met. Later we will choose K sufficiently large with respect to this ε (recall dKne is
the number of colours). We remark that our choice of ε does not depend on p or other parameters
that may be introduced later in the statements.

We use the standard o(), O(), Θ() and Ω() asymptotic notation as n → ∞ with the following
extra considerations. We do not assume any sign on a sequence an satisfying an = o(1) or an = O(1),
but on the other hand a sequence satisfying an = Θ(1) or an = Ω(1) is assumed to be positive for
all but finitely many n. Furthermore, the constants involved in the bounds of the definitions of O(),
Θ() and Ω() may depend on d, but not on p or ε. Whenever these constants depend on our choice
of ε (in addition to d), we use the alternative notation Oε(), Θε() and Ωε() instead. Our asymptotic
statements are always uniform for all 1 < p ≤ ∞ as a consequence of bounds (4) and (5).

Let ω = ω(n) → ∞ be some function tending to infinity sufficiently slowly (in particular,
ω = o(log log n)). We define r0 and r1 by

θnr0
d = (2d−1/d) log n+ 2d−2(3− d− 2/d) log log n− ω and

θnr1
d = (2d−1/d) log n+ 2d−2(4− d− 2/d) log log n+ ω.

Then, by Theorem 8.4 in [16], the respective lengths r̂δ≥1 and r̂δ≥2 of the critical edges of the
process

(
G (X; r)

)
r≥0

that give minimum degree 1 and 2 satisfy

r0 ≤ r̂δ≥1 ≤ r̂δ≥2 ≤ r1 ∼ r0 a.a.s. (6)

Our argument will use edges of length at most r0 to construct most of the rainbow perfect matching
or Hamilton cycle, and only use a few longer edges of length up to r̂δ≥1 or r̂δ≥2 at some exceptional
places.

Let s′ = (2εdθ)1/dr0/2. We tessellate [0, 1]d into d-dimensional cubic cells of side length

s =
⌈
(s′)−1

⌉−1 ∼ s′ = Θ(ε1/dr0),

that is, of volume
sd ∼ εd21−dθr0

d ∼ ε log n/n,

arranged in a grid fashion. Let C denote the set of cells. There are Θε(n/ log n) = o(n) cells in
C, where we recall that the constant hidden in the Θε(·) notation depends on ε (and d). Clearly
(assuming that ε is sufficiently small given d and by (4)), the vertices inside each cell induce a
clique in G (X; r0), and in fact a stronger property holds in view of the following definition.

Definition 1. The graph of cells GC is a graph with vertex set C (i.e. the set of cells of the
tessellation), and two cells are adjacent in GC if they are at (`p-normed) distance at most r0−2ds =
(1−Θ(ε1/d))r0.

This implies that for any pair of adjacent cells and any pair of points Xi, Xj ∈ X that belong
to these cells, Xi and Xj must be adjacent in the graph G (X; r0). (This is true regardless of the
`p-norm being used, in view of (5).) The degree of a cell C in the graph of cells GC is at most the
number of cells contained in a ball of radius r0 centered at the center of C. As each cell has volume
Θ(εr0

d) and the ball of radius r0 has volume θr0
d, we deduce that

the maximum degree of the graph of cells is ∆(GC) = O(1/ε). (7)

Note that the number of points of X that fall into each cell is distributed as Bin(n, sd) with
expectation sdn ∼ ε log n. Then, we can easily bound the maximum number of points in a cell.
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Lemma 5. A.a.s. no cell in C contains more than log n vertices of X.

Proof.

Pr
[
Bin(n, sd) ≥ log n

]
≤
(

n

dlog ne

)
sddlogne ≤

(
ne

dlog ne

)dlogne(
(1 + o(1)) · ε log n

n

)dlogne

=
(
eε+ o(1)

)dlogne
= o(1/n),

since eε < e−1 (assuming ε is sufficiently small). Thus, a union bound over all Oε(n/ log n) cells
shows that a.a.s. none has more than log n many points.

Similarly, we can perform analogous calculations to bound the number of vertices of X that
fall inside of a ball of radius `r1 centered around a vertex X ∈ X, take a union bound over all n
choices of X, and conclude the following.

Lemma 6. Given any constant ` ∈ N, the maximum degree of the power graph G (X; r1)` is a.a.s.
O(log n).

Definition 2. We say a cell is dense if it has at least ε3 log n points of X in it, and is otherwise
sparse.

Note that this definition is different from the corresponding notions in [14] and [4], which only
require dense cells to contain a large but constant number of points of X. We will show we cannot
have too many sparse cells or too large connected sets of sparse cells in the graph of cells GC (or in
its `-th power GC

`, for a fixed ` ∈ N). We shall also take into account whether these cells are “close”

to the boundary of the cube [0, 1]d. To make this precise, define F βj = [0, 1]j−1 × {β} × [0, 1]d−j

for β ∈ {0, 1} and j ∈ {1, 2, . . . , d}. These are the 2d facets (i.e. (d − 1)-dimensional faces) of the
boundary of [0, 1]d.

Lemma 7.

1. A.a.s. the number of sparse cells is at most n1−ε/2.

2. Moreover, for any arbitrary constants A > 0 and ` ∈ N, a.a.s. the power graph GC
`

(a) has no connected set S of at least (1 + ε)/ε cells which are all sparse;

(b) has no connected set S of at least d−i
d (1 + ε)/ε cells which are all sparse and such

that some cell in S lies within distance Ar0 from at least i facets of [0, 1]d (for i ∈
{0, 1, . . . , d− 1});

(c) has no sparse cell within distance Ar0 from d facets of [0, 1]d.

Remark 8.

1. The property “of at least d−i
d (1 + ε)/ε cells” in the statement can be replaced by “of total

volume at least (1 + ε) d−i
2d−1 θr0

d”, and the claim is still valid.

2. Note that this lemma provides an analogue of Lemma 4 in [14]. However, the latter gives a
d−i
d (1 + α)/ε bound on the size of S, for α arbitrarily small (possibly much smaller than any

fixed function of ε). Here, we cannot achieve that, given our more restrictive definition of
dense cell (i.e. sparse cells are more abundant). However, the current statement will suffice
for our purposes. In particular, Lemma 4 in [14] is used in the proof of Lemma 5 in [14]
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with α = Θ(ε1/d), which is greater than ε (if ε is sufficiently small), and thus this situation
is covered by our present statement. Hence, Lemma 5 in [14] is still valid with our definition
of dense cells, since we can replace all uses of Lemma 4 [14] in the proof by its counterpart
in this manuscript.

Proof of Lemma 7. Recalling that the number of points in any fixed cell is distributed as Bin(n, sd),
the probability that a cell is sparse is (with the convention that (a/0)0 = 1 for all a ∈ R)

dε3 logne−1∑
k=0

(
n

k

)
sdk
(

1− sd
)n−k

≤
dε3 logne−1∑

k=0

(
ensd

k(1− sd)

)k
e−s

dn

≤ dε3 log ne
(
e+ o(1)

ε2

)ε3 logn

e−(ε+o(1)) logn

= n−ε+ε
3 log(e/ε2)+o(1)

≤ n−ε(1−ε/2) (for large n),

provided that ε is chosen so that ε log(e/ε2) < 1/2. (Note that this is possible since ε log(e/ε2)→ 0
as ε→ 0. In particular, this condition implies that ε < 1 and so the number of sparse cells is a.a.s.
at most n1−ε/2 by Markov’s inequality.) On the second line above, we have used the fact that for
any constant z, the function x ln

(
z
x

)
is increasing for 0 < x < z

e (which follows from elementary
calculus) so we have for all k ≤ ε3 log n that(

ensd

k(1− sd)

)k
≤
(
ensd

k

)k
≤
(

ensd

ε3 log n

)ε3 logn

=

(
e+ o(1)

ε2

)ε3 logn

This proves part 1.
Fix A > 0, ` ∈ N and i ∈ {0, 1, . . . , d − 1}. In order to prove 2(b), it is enough to show that

GC
` contains no connected set of exactly dd−id (1 + ε)/εe sparse cells within distance Ar0 from i

facets of [0, 1]d. Observe that the events that two or more cells are sparse are negatively correlated.
Therefore,

the probability that k given cells are sparse is at most n−kε(1−ε/2). (8)

If we also choose ε small enough so that (1 − ε/2)(1 + ε) > 1, the probability that a given set of
d((d− i)/d)(1 + ε)/εe cells are all sparse is o(n−(d−i)/d). Since there are only Oε

(
(n/ log n)(d−i)/d)

possible connected sets of d((d− i)/d)(1 + ε)/εe cells in the power graph GC
` lying within distance

Ar0 from i facets of [0, 1]d, we can take the union bound and complete the proof of part 2(b).
Part 2(a) follows as a particular case of part 2(b) taking i = 0. Finally, the expected number of
sparse cells within distance Ar0 from d facets of [0, 1]d is at most Oε(1) times n−ε(1−ε/2), which is
o(1). This immediately yields part 2(c) and completes the proof.

Given a set of cells S ⊆ C, we denote by GC [S] the subgraph of the graph of cells induced by S.

Definition 3. Let D be the set of dense cells, and let G be the set of cells in the largest component
of GC [D] (i.e. the subgraph of GC induced by dense cells). If there are two or more such largest
components, pick one according to any arbitrary deterministic rule (we will see that a.a.s. G is very
large, so the choice of G is unique). Call cells in G good. Cells that are not good, but are adjacent in
the graph of cells to some good cell are called bad. Bad cells must be sparse by construction. Cells
that are not adjacent to good cells are called ugly. Note that ugly cells may be dense or sparse.
Let B and U denote the set of bad and ugly cells, respectively.
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As a crucial ingredient in our argument, we will use Lemma 5 in [14], which shows that a.a.s.
ugly cells (which are called “bad” in that paper) appear in small clusters far enough from each
other. (Note that this result is stated for dimension d = 2, and then extended to general d ≥ 2 in
Section 4 of [14].) Unfortunately, the definition of dense cell we use in the present manuscript is
more restrictive than the one in [14] (they only require a dense cell to contain at least M points, for
a large constant M > 0; whilst here we require at least ε3 log n points). In order to overcome this
minor obstacle, we simply observe that our Lemma 7 extends Lemma 4 in [14] to a less restrictive
notion of sparse cell (although with a slightly weaker bound). In view of Remark 8(2), the proof
of Lemma 5 in [14] is also valid in our setting by trivially replacing Lemma 4 in [14] by Lemma 7
of the present paper. Hence, adapting Lemma 5 in [14] to our current notation, we obtain the
following statement.

Lemma 9 ([14]). A.a.s. all connected components of GC [U ] have `∞-diameter at most 4d2s.

Next, we obtain useful bounds on the number of bad and ugly cells.

Lemma 10. A.a.s. there are at most n1−ε/2 bad cells and at most nO(ε1/d) ugly cells.

In particular, this implies that a.a.s. our choice of G in Definition 3 was unique.

Proof. Since bad cells are sparse by definition, the first part of the statement follows trivially from
Lemma 7(1).

To prove the second part, consider a cell C = [a1, a1 + s]× · · · × [ad, ad + s] which is at distance
at most r0 from exactly i facets of the cube [0, 1]d, for some 0 ≤ i ≤ d. Without loss of generality,
assume these facets are precisely F 0

1 , . . . , F
0
i . Let P = (a1 + s, . . . , ad + s) (i.e. P is the point in

C with largest coordinates), and let B = B(0; r0 − 4ds) denote the `p ball with centre 0 ∈ Rd and
radius r0 − 4ds. By construction, the set

S = P +
(
B ∩

(
[0,∞)i × Rd−i

))
contains precisely those points within distance r0−4ds of P and “above” P with respect to the first
i coordinates. Moreover, S is fully contained in the cube [0, 1]d, and every cell C ′ 6= C intersecting
S must belong to the set N of cells that are adjacent to C in the graph of cells GC . Therefore, the
number of cells in N satisfies

|N |+ 1 ≥ vol(S)/sd

= 2−iθr0
d(1− 4ds/r0)d/sd

≥
(

2d−i−1/d+ o(1)
)
ε−1(1− 4d2s/r0)

≥
(

2d−i−1/d
)
ε−1(1− αε1/d) (eventually) (9)

for some constant α = α(d) > 0, where we used r0/s ∼ 2(εd2θ)−1/d and the fact that (1 − x)d ≥
1− dx for 0 ≤ x ≤ 1. Furthermore, let EC be the event that C is ugly and is adjacent in GC to at
most (4d2)d − 1 other ugly cells. This event implies that there must be a set N ′ of at least

|N | − (4d2)d ≥
(

2d−i−1/d
)
ε−1(1− 2αε1/d) (10)

sparse cells adjacent to C. Note that the last line follows since we can choose ε sufficiently small,
given d (and α). Thus, by (8) and summing over all Oε(1) possible choices of such N ′, we obtain
that the probability of EC is at most

Oε(1) · n−(2d−i−1/d)(1−2αε1/d)(1−ε/2) ≤ n−(2d−i−1/d)(1−Θ(ε1/d)) (eventually),
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assuming that ε is sufficiently small. Hence, summing over i and over the Oε
(
(n/ log n)(d−i)/d)

possible choices of C, we show that the expected number of cells that are ugly and are adjacent in
GC to at most (4d2)d other ugly cells is

d∑
i=0

Oε

(
(n/ log n)(d−i)/dn−(2d−i−1/d)(1−Θ(ε1/d))

)
= nO(ε1/d),

since d − i ≤ 2d−i−1. By Markov’s inequality and in view of Lemma 9 (which implies that a.a.s.
there are no ugly cells that are adjacent to more than (4d2)d other ugly cells), we conclude that

a.a.s. there are at most nO(ε1/d) ugly cells. This finishes the proof of the second statement.

Lemma 11. Given any constant A > 0, a.a.s. every two ugly cells lying in different components
of GC [U ] are at (`p-normed) distance at least Ar0 apart.

Proof. We will assume that the a.a.s. conclusions of Lemmas 7 and 9 hold, and deterministically
prove that any pair of nonadjacent cells in GC at distance less than Ar0 cannot both be ugly. Thus,
consider any two different cells C = [a1, a1+s]×· · ·×[ad, ad+s] and C ′ = [a′1, a

′
1+s]×· · ·×[a′d, a

′
d+s]

that are not adjacent in the graph of cells GC , but are at distance less than Ar0 from each other.
Suppose that there are exactly i facets of the d-cube [0, 1]d (for some 0 ≤ i ≤ d) at distance less
than r0 from C or C ′. Assume, without loss of generality, that these facets are precisely F 0

1 , . . . , F
0
i .

In particular, both C and C ′ must be at distance at most (A+ 1)r0 + 2ds ≤ (A+ 2)r0 from these
i facets (for ε sufficiently small given d), and at distance at least r0 from any other facet.

We will proceed in a similar fashion as in the proof of Lemma 10 in order to describe a large set
of cells that are adjacent to C or C ′. Let P = (a1 + s, . . . , ad + s) and P ′ = (a′1 + s, . . . , a′d + s) be
respectively the points in C and C ′ with largest coordinates. The hyperplane in Rd orthogonal to
vector P ′ − P (with respect to the Euclidean inner product) and passing through the origin splits
Rd into two halfspaces

H = {Q ∈ Rd : 〈Q,P ′ − P 〉 ≤ 0} and H ′ = {Q ∈ Rd : 〈Q,P ′ − P 〉 ≥ 0}.

Consider the set
Bi = B ∩

(
[0,∞)i × Rd−i

)
where B = B(0; r0 − 4ds) denotes the `p ball with centre 0 ∈ Rd and radius r0 − 4ds. Since Bi has
volume 2−iθr0

d(1− 4ds/r0)d, at least one of the sets Bi ∩H or Bi ∩H ′ has volume at least half of
this. Assume it is Bi ∩H ′ (by otherwise reversing the roles of P and P ′). Define the sets

S = P +Bi and S′ = P ′ +Bi ∩H ′.

Since C and C ′ are not adjacent in GC , P and P ′ must be at distance greater than r0 − 2ds. In
particular, P ′ /∈ S. Moreover, by our choice of H ′, any other point in S′ is further away from P
than P ′ is, so S and S′ must be disjoint sets. Let N be the set of cells different than C and C ′

intersecting S ∪ S′. By construction, every cell in N must be adjacent in the graph of cells GC to
C or C ′. Moreover, since vol(S ∪ S′) ≥ (3/2) vol(S), we can use (9) to infer

|N |+ 2 ≥ vol(S ∪ S′)/sd ≥ (3/2)
(

2d−i−1/d
)
ε−1(1− αε1/d) ≥ (4/3)

d− i
d

ε−1,

for ε sufficiently small given d, where we used that d− i ≤ 2d−i−1. In view of Lemma 9 (assuming
its a.a.s. conclusion is true), if both C and C ′ are ugly, all but at most 2(4d2)d cells in N must
be sparse. Then, we obtained a set of at least (4/3)d−id ε−1 − 2(4d2)d ≥ (5/4)d−id ε−1 sparse cells

within distance at most (A + 2)r0 from each other (i.e. pairwise adjacent in the power graph GC
`

for ` = dA+ 2e). This contradicts the a.a.s. conclusion of Lemma 7.
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Lemma 12. A.a.s. the following holds. Given any ugly cell C, let G′ ⊆ G be the set of good cells
at `∞-distance at most 3r0 from C. Then, the subgraph of GC induced by G′ is connected and has
diameter (as a graph) at most 2(20d)d.

Proof. Let t′ = r0/(3d). Tesselate [0, 1]d by d-dimensional cubes of side t = d(t′)−1e−1 ∼ r0/(3d).
We call these cubes boxes to distinguish them from the cells. Note that a cell may intersect a box
and not be fully contained in it. Regardless of that, each box contains at least

(t/s− 2)d ≥ ε−1/
(
θ(2d)d+1

)
(11)

cells. We say that two different boxes B and B′ are adjacent if the set B ∪ B′ is topologically
connected (i.e. they share at least one point). (Recall that the term adjacent has a different
meaning for cells.) If two different cells C and C ′ intersect the same box or two adjacent boxes,
then C and C ′ must be at `p-distance at most 2dt ∼ 2r0/3, and thus must be adjacent in the graph
of cells GC .

Fix an ugly cell C. We will assume that all the a.a.s. properties leading to the conclusions of
Lemmas 7, 9, 10 and 11 hold, and deterministically prove the statement for cell C. Let R1 ⊆ [0, 1]d

be the union of all boxes at `∞-distance between 1.1r0 and 3r0 − t from cell C. Since the side of
a box is t < r0/5, then R1 is topologically connected. Moreover, [0, 1]d \ R1 has two connected
components R0 and R2 with, say, C ⊆ R0. (It is worth noting that these properties of R1 hold
regardless of how close cell C is from some facets of [0, 1]d, but this may cease to be true if we
replaced `∞ by some other `p in the definition of R1.) Let G0 and G2 be the set of good cells
contained in R0 and R2 (respectively), and let G1 be the set of good cells that intersect R1. Every
good cell in G must belong to exactly one of the sets G0, G1 and G2. Observe that every cell in G0

is at `∞-distance at most 1.1r0 + t ≤ 1.3r0 from C, and every cell in G2 is at `∞-distance at least
3r0− t ≥ 2.8r0 from C. Therefore, if C0 ∈ G0 and C2 ∈ G2, then C0 and C2 must be at `∞-distance
at least 1.5r0− ds ≥ r0. In particular, no cell in G0 is adjacent to any cell in G2 with respect to the
graph of cells GC .

Claim 1. Every box B ⊆ R1 contains a good cell.

Since R1 is a topologically connected union of boxes and pairs of cells contained in adjacent
boxes are adjacent in the graph of cells, Claim 1 implies that G1 must induce a connected subgraph
of GC . Recall that the graph induced by the set G = G0 ∪G1 ∪G2 is also connected by the definition
of good cells. Hence, since there are no edges between G0 and G2 in the graph of cells, we deduce
that G0 ∪G1 also induces a connected graph. Let G′ be the set of good cells at `∞-distance at most
3r0 from cell C. Observe that G0 ∪ G1 ⊆ G′. Moreover, and every cell C ′ ∈ G′ \ (G0 ∪ G1) must
intersect a box B′ which is adjacent to a box B ⊆ R1, so C ′ is adjacent in the graph of cells to
some cell in G0 ∪ G1. Hence, G′ induces a connected graph as well.

We proceed to bound the diameter (as a graph) of GC [G′]. Consider any two cells C ′, C ′′ ∈ G′
and a path of cells C ′ = C1, C2, . . . , Cj = C ′′ in G′ of minimal length. If two cells in the path
intersect the same box, then they are adjacent in the graph of cells, so they must be consecutive in
the path by our minimal length assumption. Similarly, we cannot have more than two consecutive
cells in the path intersecting one same box. Therefore, we deduce that the number j of cells in the
path is at most twice the number of boxes that may be potentially intersected by cells in G′, which
is at most

2((6r0 + s)/t+ 2)d ≤ 2(20d)d.

This gives the desired upper bound on the diameter of the graph.
It only remains to prove Claim 1. In order to do so, suppose our ugly cell C is at distance

at most r0 from exactly i facets of the cube [0, 1]d, for some 0 ≤ i ≤ d. By (10) in the proof of
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Lemma 10, we can find a set N ′ of at least
(
2d−i−1/d

)
ε−1(1−2αε1/d) sparse cells within `p-distance

at most r0 from C, where α = α(d) is a positive constant.
Pick any box B ⊆ R1. Every cell contained in B is at `∞-distance (and thus at `p-distance)

at least 1.1r0 from C, so it cannot belong to N ′. Suppose that all cells contained in B are sparse.
Then, by (11), we have at least(

2d−i−1/d
)
ε−1(1− 2αε1/d) + ε−1/(θ(2d)d+1) ≥

(
2d−i−1/d

)
ε−1(1 + ε) ≥ d− i

d
(1 + ε)ε−1

sparse cells at `∞-distance at most 3r0 from C. Thus, these sparse cells are within `p-distance
d(6r0 + s) ≤ 7d(r0− 2ds) from each other and at distance at most d(3r0 + s) + r0 ≤ (4d+ 1)r0 from
i facets of [0, 1]d. This contradicts the a.a.s. conclusion of Lemma 7 (with parameters A = (4d+ 1)
and ` = 7d). Therefore, every box B in R must contain at least one dense cell, which must be also
good in view of Lemmas 9 and 11. This proves Claim 1, and completes the proof of the lemma.

We say that a collection P of paths in a graph covers a vertex if the vertex belongs to some
path in P. The next lemma provides us with an appropriate collection of paths P that covers the
ugly vertices and will be a crucial ingredient in the construction of a rainbow Hamilton cycle.

Lemma 13. Let XU denote the set of vertices in X that belong to ugly cells. Given any constant
A > 0, a.a.s. there is a collection P of vertex-disjoint paths in G (X; r̂δ≥2) such that:

1. P covers all vertices of XU ;

2. P covers at most two vertices inside of each non-ugly cell;

3. every vertex in X that is covered by P is at graph-distance at most 2(20d)d from some vertex
in XU with respect to the graph G (X; r̂δ≥2);

4. for each path P ∈ P, there is a good cell CP such that the two endvertices of P lie in cells
that are adjacent (in the graph of cells) to CP ;

5. every two different paths in P are at `p-distance at least Ar0 from each other.

Proof. Given any component K of the graph GC [U ] induced by the ugly cells, let XK denote the
set of all vertices in X contained in cells of K. Assume that the a.a.s. conclusions of (1), (6) and
Lemmas 9, 11 and 12 hold. Then, for each component K of GC [U ], we will deterministically find a
path P = PK in G (X; r̂δ≥2) such that:

1′. P covers all vertices in XK;

2′. P covers at most two vertices inside of each non-ugly cell;

3′. P only covers vertices within graph-distance 2(20d)d from XK with respect to G (X; r̂δ≥2);

4′. the two endvertices of P are contained in cells that are both adjacent (in GC) to the same
good cell CP .

Set A′ = A + 8(20d)d. In view of Lemma 11, for any two components K and K′ of GC [U ], the
corresponding sets of vertices XK and XK′ must be at distance at least A′r0 from each other.
Therefore, the paths PK and PK′ must be at distance at least A′r0 − 4(20d)d r̂δ≥2 ≥ Ar0 from each
other (since r̂δ≥2 ≤ 2r0, by (6)). Combining this and properties (1′–4′) above, the collection P of
all such paths PK will trivially satisfy all the conditions of the lemma. It only remains to prove the
existence of these paths.
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Pick any connected component K of GC [U ]. If XK is empty, there is nothing to be done.
Otherwise, the vertices in XK induce a clique in G (X; r0) ⊆ G (X; r̂δ≥2) (by Lemma 9). Moreover,
since G (X; r̂δ≥2) is 2-connected (by (1)), we can find four different vertices u, u′ ∈XK and v, v′ ∈
X \ XK (unless |XK| = 1, in which case we set u = u′) such that uv and u′v′ are edges of
G (X; r̂δ≥2). Therefore, we can connect all vertices in XK by a path P0 with endvertices u and u′,
and extend this path to a longer path vP0v

′ in G (X; r̂δ≥2). Note that all edges in that path have
length at most r0 except for possibly uv and u′v′, which have length at most r̂δ≥2. Let D and D′

be respectively the cells containing v and v′ (possibly D = D′). Note that D and D′ may be good
or bad cells but not ugly since v, v′ ∈X \XK, so in particular they must be adjacent in the graph
of cells to some good cell. If D = D′, then the path P = vP0v

′ already satisfies properties (1′–4′),
with CP being any good cell adjacent to D = D′. Similarly, if D and D′ are adjacent in GC and
D′ is a good cell, then we pick any vertex v′′ 6= v′ in cell D′ (it must exist, since D′ is dense), and
set P = v′′vP0v

′. The obtained path also meets our requirements, with CP being any good cell
adjacent to D′. The symmetric case can be dealt with analogously. Thus, we can restrict ourselves
to the case in which D 6= D′ and moreover D and D′ are both bad or non-adjacent. In particular,
each one of them is adjacent to some good cell not in {D,D′}. Under these assumptions, we will
extend vP0v

′ to a longer path with the desired properties, by adding at most 2(20d)d − 1 extra
edges of length at most r0.

Fix any arbitrary ugly cell C ∈ K, and let G′ be the set of good cells at `∞-distance at most
3r0 from C. By Lemma 9, the union of all cells in K has `∞-diameter at most 4d2s. Therefore, D
and D′ must be at `∞-distance at most r̂δ≥2 + 4d2s ≤ 3r0/2 from cell C (by (6) and our choice
of ε sufficiently small). From our assumptions, each of D and D′ must be adjacent in GC to some
good cell (not in {D,D′}) at `∞-distance at most 3r0/2 + r0 ≤ 3r0 from C. That is, D and D′

must be adjacent to some cell in G′ \ {D,D′}. In view of Lemma 12, there exists a path of cells
D′, D1, D2, . . . , DjD in the graph GC such that cells D1, D2, . . . , Dj belong to G′ \ {D,D′} and
1 ≤ j ≤ 2(20d)d. Choose one vertex vi ∈ X inside each cell Di (1 ≤ i ≤ j). Then, the path
P = vP0v

′v1v2 · · · vj−1 satisfies our desired properties (with cell CP = Dj).

Finally, we provide a (simpler) analogue of Lemma 13 that will be used for the construction of
the rainbow perfect matching.

Lemma 14. Let XU denote the set of vertices in X that belong to ugly cells. Given any constant
A > 0, a.a.s. there is a collection P of vertex-disjoint paths in G (X; r̂δ≥1) such that:

1′′. P covers all vertices of XU ;

2′′. every path in P has an even number of vertices, and contains at most one vertex not in XU ;

3′′. every two different paths in P are at `p-distance at least Ar0 from each other.

Proof (sketch). We proceed similarly as in the proof of Lemma 13, so we just sketch the main
differences. For each component K of GC [U ], the vertices in XK induce a clique in G (X; r0) ⊆
G (X; r̂δ≥1) (by Lemma 9). If the number of vertices in XK is even, we simply connect them all
by a path PK. If it is odd, we use the fact that G (X; r̂δ≥1) is a.a.s. 1-connected (by (1)) to find
vertices u ∈ XK and v ∈ X \XK at distance at most r̂δ≥1 from each other (i.e. uv is an edge of
G (X; r̂δ≥1)). Then we pick a path that connects all vertices in XK and has u as an endpoint, and
extend it to PK by adding edge uv.

12



3 Finding rainbow paths and cycles

In this section, we will build a rainbow spanning graph of G (X;Z; r̂δ≥k), for k ∈ {1, 2}, consisting
of small (path and cycle) components, which will be used later in the construction of a rainbow
perfect matching (k = 1) or a rainbow Hamilton cycle (k = 2). We will proceed in a greedy fashion,
and build the rainbow small pieces in a specific order, since the calculations will only work if we
reveal the colours of certain edges before others.

At this stage, we expose all the points of X (which determine which cells are ugly, bad and
good), and assume henceforth that the a.a.s. conclusions of all statements in Section 2 hold. In
particular, all probabilistic statements in the sequel will refer only to the random assignment
Z = (Zij)1≤i<j≤n of colours to edges. In the case that our final goal is to build a rainbow Hamilton
cycle in G (X;Z; r̂δ≥2), we pick a collection P of vertex-disjoint paths satisfying properties 1–5 in
Lemma 13 with A = 3 (or A = 1000 for that matter, as we only need to guarantee that paths
in P are far enough from each other). Otherwise, in order to obtain a rainbow perfect matching
in G (X;Z; r̂δ≥1), we pick a collection P of vertex-disjoint paths satisfying properties 1′–3′ in
Lemma 14. Note that in the latter case, since r̂δ≥1 ≤ r̂δ≥2, all the edges in the paths of P also
belong to G (X; r̂δ≥2) and moreover P satisfies conditions 1, 2, 3 and 5 (but not necessarily 4) in
Lemma 13. These are in fact all the assumptions on P that we will need in this section.

Definition 4. We will refer to the paths in P as ugly paths (since they cover all the vertices in
ugly cells). Let X ′ be the set of all vertices in ugly paths, and let X ′′ = X \X ′.

Note that non-ugly (i.e. good or bad) cells may contain both vertices of X ′ and vertices of X ′′.
However, by property 2 of Lemma 13, each of these cells contains at most two vertices of X ′. In
view of this and since bad cells are sparse and good cells are dense, we conclude that each bad cell
contains at most ε3 log n vertices of X ′′, and each good cell contains at least ε3 log n − 2 vertices
of X ′′. We will first analyze the colours of the edges in the ugly paths, and then “delete” the
corresponding vertices (i.e. X ′) from all bad and good cells in C. A high-level description of our
construction can be summarized in the following steps.

1. First we reveal the colours of the edges in the paths of P (i.e. the ugly paths). We will show
that a.a.s. we do not get any repeated colours, so the ugly paths form a rainbow forest.

2. Next we consider bad cells one by one. In each bad cell, we fix some arbitrary Hamilton path
on the vertices of X ′′ contained in that cell (ignore those in X ′), reveal the colours of all
the edges on this path, and then greedily discard edges with previously used colours in the
process (i.e. in that same or previous bad cells or in ugly paths). We will see that a.a.s., only
at most a few edges are removed from the path, leaving behind a small number of paths.
These paths together with the ugly ones are all rainbow by construction.

3. Next we run through good cells one by one (we again restrict our attention to vertices of X ′′

in those cells and ignore those in X ′). Within a particular good cell, we run through the
vertices revealing the colours of the edges to other vertices in the same cell. We will construct
a rainbow Hamilton cycle within each good cell, and a.a.s. these cycles will have no colour
collisions with each other or any of the previously constructed parts.

4. Finally we hook up all the parts to build either a rainbow perfect matching or a rainbow
Hamilton cycle. This requires adding some extra edges that connect vertices in different cells
(one of which is always good). Fortunately, we have plenty of these edges available and many
unused colours, so we can a.a.s. find the required edges with no colour collisions.
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In the remainder of the section, we will focus on steps 1–3, which produce a rainbow collection of
vertex-disjoint paths and cycles covering all vertices in X. The final step is described in Section 4.

3.1 Ugly paths

We will show that the number of edges in ugly paths is so small that we do not expect colour
collisions among them, so in particular the collection of ugly paths is a rainbow forest. Given a
graph G, let E(G) denote the edge set of G.

Lemma 15. Assume that X satisfies all the a.a.s. statements in Section 2, and pick a collection
P of (ugly) paths satisfying conditions 1,2,3,5 of Lemma 13. Then a.a.s.

⋃
P∈PE(P ) is rainbow

with respect to the random edge colouring Z.

Proof. Recall that XU is the set of vertices in ugly cells, and X ′ is the set of vertices in ugly
paths. Let X̂U be the set of vertices in X within graph-distance 2(20d)d from some vertex in

XU with respect to the graph G (X; r̂δ≥2). By condition 3 of Lemma 13, we have X ′ ⊆ X̂U .
We wish to obtain a bound on |X ′|. Note that |XU | ≤ n0.4 by Lemmas 5 and 10 (assuming ε is
sufficiently small). Moreover, by Lemma 6, every vertex of XU has at most O(log n) vertices within
graph-distance ` = 2(20d)d in G (X; r̂δ≥2) ⊆ G (X, r1) (see also (6)). Therefore,

|X ′| ≤ |X̂U | = O(n0.4 log n), (12)

and the total number of edges in ugly paths is at most |X ′| − 1. Then, the probability that no
colour is repeated across these edges is at least(

1− |X
′|

Kn

)|X′|
= exp

(
O

(
(n0.4 log n)2

Kn

))
= 1− o(1).

So in particular, a.a.s. all the edges in ugly paths receive distinct colours.

Therefore, we can expose all the colours of the edges in the ugly paths and save them for future
use. In other words, we are entitled to use any of these edges for our rainbow perfect matching or
Hamilton cycle, but cannot use any of their colours anywhere else.

3.2 Bad cells

In this section, we restrict our atention to vertices in X ′′ contained in bad cells (and ignore X ′).
Recall that the set of vertices in any cell induces a clique in G (X ′′; r0), so we may use any possible
edge between two vertices in a cell. Our goal is to show that a.a.s. every bad cell contains a rainbow
spanning linear forest with at most 4/ε many path components. Further, the colours used across
all of these forests are distinct and also separate from the colours used on the paths in P.

Lemma 16. Under the same assumptions as in Lemma 15, a.a.s. for every bad cell C ∈ B the
complete graph on the vertices of X ′′ inside of C contains a spanning forest FC consisting of at
most 4/ε many paths (possibly isolated vertices) such that

⋃
C∈B E(FC) ∪

⋃
P∈PE(P ) is rainbow.

Proof. By Lemma 10, we may assume that there are at most n1−ε/2 many bad cells. We now
proceed greedily, moving through all the bad cells one by one. In a given bad cell C, we ignore any
vertices which belong to a path of P (there are at most 2 such vertices), and connect the remaining
vertices by any arbitrary Hamilton path PC . Then, delete any edge from this path which receives a
colour used already in PC or in a previous bad cell or in a path of P. Call the resulting graph FC ,
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which is a spanning linear forest by construction and satisfies the required rainbow conditions. It
only remains to prove that we did not delete too many edges from path PC , so that FC has at most
4/ε components. Thus far, we have used at most O(n1−ε/2 log n) colours: at most O(n0.4 log n) on
paths of P (by (12)) and at most ε3 log n ≤ log n other colours in each of the previous bad cells.
So the probability that an edge is deleted from PC is O(n1−ε/2 log n/(Kn)) = O(log n/nε/2). Since
these events are independent, the probability of deleting more than 3/ε edges in a cell is at most(

dlog ne
d3/εe

)
·
(
O

(
log n

nε/2

))3/ε

≤ n−3/2+o(1) = o(1/n).

Hence, a.a.s. it will not happen for any cell in B in the greedy process.

As we already mentioned, we keep these paths and forbid their colours for future use.

3.3 Good cells

In this section we will prove the following lemma which shows that each good cell contains a rainbow
Hamilton cycle which does not use any previously used colours. As in Section 3.2, we restrict our
attention to the vertices of X ′′ contained in each cell.

Lemma 17. Under the same assumptions as in Lemma 15, a.a.s. for every good cell C ∈ G
the complete graph on the vertices of X ′′ inside of C contains a Hamilton cycle HC such that⋃
C∈G E(HC) ∪

⋃
C∈B E(FC) ∪

⋃
P∈PE(P ) is rainbow (where

⋃
C∈B E(FC) is the linear forest ob-

tained in Lemma 16).

Proof. We visit all good cells one at a time. Inside of each good cell, we build a rainbow Hamilton
cycle restricted to vertices of X ′′ only (and where each pair of vertices is regarded as a potential
edge). Good cells are dense, so each cell contains at least ε3 log n−2 vertices of X ′′ (by condition 2
of Lemma 13). More specifically, we do the following within each good cell: we examine each
edge one at a time, revealing its colour. We keep an edge if its colour: (i) has not been used on⋃
C∈B E(FC) or

⋃
P∈PE(P ), (ii) has not been used in a rainbow Hamilton cycle from a previous

good cell, and (iii) has not been seen previously in this cell. Otherwise, we delete the edge. At
each step, the number of unusable colours for an edge is at most n + o(n) (at most n colours are
referred to in (ii) and we may add o(n) to account for (i) and (iii)). Hence, an edge is not present
within a good cell with probability at most (1 + o(1))/K. Suppose a good cell has x ≥ ε3 log n− 2
vertices of X ′′ in it. The probability that, when we reveal the edges incident to some fixed vertex,
we see that dx/2e of them are unusable is at most(

x

dx/2e

)(
1 + o(1)

K

)x/2
≤ 2x

(
1 + o(1)

K

)x/2
≤ (5/K)(ε3/2) logn = o(1/n)

so long as we choose our constants such that (ε3/2) log(K/5) > 1. (Note that earlier arguments
required ε to be sufficiently small, but K can be chosen large enough with respect to this ε.)
Thus, by the union bound over all vertices of X ′′ in dense cells, we conclude that a.a.s. each good
cell contains a rainbow Dirac graph (a graph on s vertices with minimum degree at least s/2).
Such graphs are Hamiltonian [7] and so a.a.s. each good cell contains a rainbow Hamilton cycle.
Moreover, by construction, any colour used in such a cycle is not used in any other such cycle, nor
in any path or forest constructed in ugly and bad cells.
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4 Connecting the good, the bad and the ugly

In this section, we complete the proof of Theorem 1. We will first show that a.a.s. G (X;Z; r̂δ≥2)
contains a rainbow Hamilton cycle, and then adapt the argument for the corresponding statement
about a rainbow perfect matching.

We assume hereafter that X is fixed and satisfies all the a.a.s. statements in Section 2. Moreover,
we pick a collection P of ugly paths that meets all the requirements in Lemma 13 (with A = 3),
and assume that the a.a.s. conclusions of Lemmas 15, 16 and 17 hold. This implies that we have a
rainbow graph with edge set

⋃
C∈G E(HC)∪

⋃
C∈B E(FC)∪

⋃
P∈PE(P ) that covers all vertices of X

and is made of path and cycle components. Furthermore, all edges in the ugly paths are of length at
most r̂δ≥2, whilst the remaining ones are of length at most ds ≤ r0 (since they join pairs of vertices
inside the same cell), so in particular the above graph is a rainbow subgraph of G (X;Z; r̂δ≥2).
We will obtain a rainbow Hamilton cycle by adding a few extra edges (and deleting some others
accordingly) that join together the cycle and path components and preserve the rainbow condition.
These new edges will be chosen so that their endpoints lie in different but adjacent cells in the
graph of cells GC (so they have length at most r0), and at least one of their endpoints is in X ′′

(i.e. not in an ugly path). In particular, the colours of these new edges have never been revealed
during the greedy process that lead us to Lemmas 15, 16 and 17, and thus remain random.

Pick a spanning tree T of GC [G] (the large component induced by the good cells in the graph of
cells). Then its maximum degree satisfies ∆(T ) ≤ ∆(GC) = O(1/ε). Now by definition, each bad
cell is adjacent (in GC) to some cell in G. Thus we may define a tree T ′ on vertex set G ∪ B by
connecting each bad cell to one of the good cells it is adjacent to in GC . Then the cells of B appear
as leaves in T ′. Again we have the bound ∆(T ′) = O(1/ε) since T ′ is a subgraph of GC . Finally,
consider the collection of ugly paths P we picked from Lemma 13. Recall that each path P ∈ P
has a corresponding good cell CP . We define tree T ′′ by adding each P ∈ P as new a leaf of T ′

attached to good cell CP . Since paths in P are far apart (by property 5 of Lemma 13), no good
cell has more than one such pendant edge attached and so we again have ∆(T ′′) = O(1/ε).

We now use T ′′ as a template to create the rainbow Hamilton cycle. For any ugly path P , we
need to find an edge in the cycle HCP

of the good cell CP adjacent to P (in T ′′), remove that edge
and attach path P to the endpoints of that edge. This extends HCP

to a larger cycle that covers
P . Similarly, for each bad cell C ∈ B, we will attach each of the paths of FC to the cycle HC′ of
the good cell C ′ that is adjacent to C in T ′′. We refer to these paths as bad paths. Note that in
this operation each bad path of FC is attached to the endpoints of a different edge of HC′ , which is
immediately deleted. This uses at most 4/ε edges of HC′ (by Lemma 16). Finally, we will attach
the cycles within adjacent (in T ′′) good cells to each other. This operation requires deleting one
edge in each cycle and joining the endpoints of the resulting paths together so that we obtain one
longer cycle. Iterating this procedure for all edges of T ′′ produces a Hamilton cycle in G (X; r̂δ≥2)
provided that we have enough edges in the cycles of the good cells.

It remains to show that we can a.a.s. connect all the pieces together in the manner described
in the above paragraph and at the same time satisfy the rainbow condition. The potentially most
delicate steps in our construction are when we hook up ugly/bad paths to cycles inside good cells.
Consider such an ugly/bad path P with endpoints u, v contained in cell C, and let C ′ be the good
cell adjacent to C in T ′′. We will show that we can find some edge u′v′ in the cycle HC′ of the good
cell such that the new edges uu′ and vv′ connecting path P to cycle HC′ are assigned previously
unused colours. We call u′v′ the hook edge for the ugly/bad path P . Then, the hook edge u′v′ can
be removed and replaced by the ugly/bad path together with the new edges uu′ and vv′. Recall
that, since cell C ′ is good, it contains x ≥ ε3 log n− 2 vertices of X ′′, and therefore cycle HC′ has
x potential hook edges. To ensure independence, we only consider every second edge in the cycle.
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Moreover, at most O(1/ε2) edges are perhaps already used as hook edges to attach some other
ugly/bad paths to cycle HC′ , (since the degree of T ′′ is O(1/ε) and each bad cell contains at most
4/ε bad paths). In any case, there are at least ε3 log n/2−O(1/ε2) ≥ ε3 log n/3 edges in the cycle
we can still use. The probability that no such edge has the property we seek (i.e. that the edges
connecting the endpoints of the edge to the endpoints of the ugly/bad path are not both of unused
colours) is at most(

1−
(
K − 1 + o(1)

K

)2
)ε3 logn/3

≤
(

2

K

)ε3 logn/3

= exp

(
−ε

3 log(K/2)

3
log n

)
= o

(
1

n

)
so long as we ensure that K is large enough so that log(K/2)ε3/3 > 1. Recall that we have o(n)
ugly/bad paths in total. Hence, a union bound over all the ugly/bad paths implies that we will a.a.s
succeed at finding a hook edge for each such path. The argument to merge cycles HC and HC′ of two
good cells C and C ′ together is similar. This time we need to find two hook edges uv in HC and u′v′

in HC′ such that the new edges uu′ and vv′ receive previously unused colours. We have Ωε(log2 n)

choices of pairs of hook edges and so the failure probability is at most
(

2
K

)Ωε(log2 n)
= o

(
1
n

)
. This

completes the proof of the first part of Theorem 1.
Finally, we will show that a.a.s. G (X; r̂δ≥1) contains a perfect matching (for even n). The

argument will reuse most of the ideas in the construction of a rainbow Hamilton cycle earlier in
this section, so we will only sketch the main differences. This time, we will assume that P satisfies
conditions (1′′–3′′) from Lemma 14, and deterministically build a perfect matching. Recall that our
new assumptions on P also imply that conditions 1,2,3,5 (but not necessarily 4) in Lemma 13 are
true, so we are entitled to assume all the claims in Section 3. Additionally, the ugly paths in P
have an even number of vertices and (by construction) only use edges of length at most r̂δ≥1.

We proceed as before but using T ′ instead of T ′′ as a template and thus ignoring ugly paths.
That is, we hook up each bad path to the cycles in the corresponding good cell and also the
cycles within any two good cells that are adjacent in T ′. However, we do not attach ugly paths to
anything (in fact, we may not be able to do so, since P may not satisfy property 4 in Lemma 13).
This procedure a.a.s. creates a big rainbow cycle H in G (X;Z; r0) ⊆ G (X;Z; r̂δ≥1) that covers
all vertices except for those in ugly paths, and moreover H ∪

⋃
P∈P P is rainbow. If we restrict

asymptotics to even n, then cycle H has even length since all paths of P have an even number of
vertices. By removing alternating edges adequately from H and the ugly paths, we obtain a rainbow
perfect matching in G (X; r̂δ≥1) as desired. This implies the second statement of Theorem 1, and
finishes the proof.

5 Case p = 1

In this section, we consider the case p = 1, and sketch how to adapt the argument of Theorem 1
in order to obtain (3). Recall that for p = 1, it is not known whether or not (1) holds (this is due
to some technical parts of the argument in [15] that break down for p = 1). However, we can still
claim that, for p = 1 and any constant η > 0,

(1− η)r0 ≤ r̂1-conn ≤ r̂2-conn ≤ (1 + η)r1 a.a.s.

This follows from the fact that (1) and (6) are valid for every p > 1 and by continuity of θ = θ(p)
at p ≥ 1. Then we can pick η sufficiently small, and replace r0, r̂δ≥1, r̂δ≥2 and r1 by (1 − η)r0,
r̂1-conn, r̂2-conn and (1 + η)r1, respectively, in the proof of Theorem 1. The argument is still valid
with virtually no adaptation, and yields (3).
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6 Open questions

In this paper, we showed that a.a.s. the first edge in the edge-coloured random geometric graph
process

(
G (X;Z; r)

)
r≥0

that gives minimum degree at least 2 (or 1) and such that at least n (or

n/2) colours have appeared also creates a rainbow Hamilton cycle (or perfect matching), provided
that the number of colours is at least c = dKne, where K = K(d) > 0 is a sufficiently large
constant. This condition on c ensures that at least n (or n/2) colours have appeared long before
the minimum degree becomes 2 (or 1).

Thus the most intriguing open question is to prove that these statements hold for any number
of colours, c. Of course for Hamilton cycles, we must have c ≥ n and for perfect matchings, we
must have c ≥ n/2. This problem may be particularly interesting in the case of perfect matchings
when d = 2 and c = n/2. In this case, the first appearance of a perfect matching and of n/2
distinct colours occurs once (1+o(1))n2 log n many edges have arrived. The case of Hamilton cycles
when d = 4 and c = n is interesting for the analogous reason. The first results on packing rainbow
Hamilton cycles (that is, finding a collection of edge disjoint Hamilton cycles) in Gc(n, p) were
recently obtained in [9]. We believe that using some of the ideas in [14], it should be relatively easy
to extend our argument to find a constant number of edge-disjoint rainbow Hamilton cycles and
perfect matchings in G (X;Z; r) as well. It would be interesting to consider further extensions in
which the number of rainbow Hamilton cycles or perfect matchings in the packing grows to infinity
as a function of n.
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