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Abstract

Modularity is a graph characteristic which measures the strength of division of a
network into clusters (or communities). Networks with high modularity usually
have distinguishable clusters with dense connections between the vertices within
clusters and sparse connections between vertices of different clusters. In this paper,
we investigate the value of modularity in several well-known random graph models.

Keywords: modularity, random d-regular graphs, preferential attachment, spatial
preferential attachment.



1 Modularity

One important property of many complex networks is their community struc-
ture, that is, the organization of vertices in clusters, with many edges joining
vertices of the same cluster and comparatively few edges joining vertices of
different clusters [6]. In social networks communities may represent groups by
interest, in citation networks they correspond to related papers, in the Web
communities are formed by pages on related topics, etc. Modularity [14] is at
the same time a global criterion to define communities, a quality function of
community detection algorithms, and a way to measure the presence of com-
munity structure in a network. Many community detection algorithms are
based on finding partitions with high modularity [4,8].

The main idea behind modularity is to compare the actual density of edges
inside communities with the density one would expect to have if the vertices
of the graph were attached at random, regardless of community structure.
Formally, for a given partition A = {A1, . . . , Ak} of the vertex set V (G), let

qA =
∑
A∈A

(
e(A)

|E(G)|
−

(
∑

v∈A deg(v))2

4|E(G)|2

)
, (1)

where e(A) = |{uv ∈ E(G) : u, v ∈ A}| is the number of edges in the graph
induced by the set A. Note that qA is always smaller than one. Also, if A =
{V (G)}, then qA = 0. The modularity of a graph G is q∗(G) = maxA qA(G). If
q∗(G) approaches 1 (which is the maximum), we observe a strong community
structure; conversely, if q∗(G) is close to zero, we are given a graph with no
community structure.

Unfortunately, modularity is not a well studied parameter for the existing
random graph models, at least from a rigorous, theoretical point of view. In
this paper, we investigate modularity in random d-regular graphs, the prefer-
ential attachment model [2], the average degree graphs, and the spatial pref-
erential attachment model [1]. Due to space constraints we omit the proofs of
the theorems here, the complete proofs can be found in [15].
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Table 1
Upper bounds U1 and U2 for q∗(Gn,d)

d 3 4 5 6 7 8 9 10

U1 0.9386 0.8900 0.8539 0.8261 0.8038 0.7855 0.7702 0.7570

U2 0.8038 0.6834 0.6024 0.5435 0.4984 0.4624 0.4330 0.4083

2 Random d-regular graphs

In this section we consider the probability space of random d-regular graphs
with uniform probability distribution. This space is denoted Gn,d, and asymp-
totics are for n → ∞ with d ≥ 2 fixed, and n even if d is odd.

2.1 Lower bounds

Let us briefly discuss the following known lower bound for the modularity
of Gn,d. It is known that a.a.s. for any d ∈ N \ {1, 2}, Gn,d is Hamiltonian.
Authors of [9] propose breaking this cycle into ⌈

√
n⌉ paths of length at most

⌈
√
n⌉. This partition gives, a.a.s., q∗(Gn,d) ≥ 2

d
−O(1/

√
n) = 2+o(1)

d
.

Also, as pointed out in [10], there exists a universal constant c > 0 such
that a.a.s. q∗(Gn,d) ≥ c/

√
d.

2.2 Upper bounds

Known upper bound.

The following upper bound was obtained by McDiarmid and Skerman
in [9].

Theorem 2.1 A.a.s. q∗(Gn,d) ≤ U1(d) := max{1/2 + η/2, 3/4}, where 0 <
η < 1 is such that 24/d < (1 − η)1−η(1 + η)1+η.

The numerical values for U1 are presented in Table 1. Investigating random
d-regular graphs continues in [10], a very recent paper. In fact, some of our
results for this model mentioned below are obtained independently there.

Numerical upper bound.

For a given d ∈ N \ {1, 2}, let

f(x,y, d) := x(y/2 − 1) log(x) + (1 − x)(d− 1) log(1 − x) + d log(d)/2

− xy log(y)/2 − x(d− y) log(d− y) − (d− 2xd + xy) log(d− 2xd + xy)/2.



Let y3 = y3(x, d) be the largest value of y ∈ (0, d) such that f(x, y, d) =
0 (one can easily show that such a value exists). And let U2 = U2(d) :=

supx∈(0,1)

(
y3(x,d)

d
− x

)
. The following theorem holds [15].

Theorem 2.2 Let d ∈ N \ {1, 2} and ε > 0 be an arbitrarily small constant.
Then a.a.s. q∗(Gn,d) ≤ U2 + ε/d, where U2 = U2(d) is defined as above.

The numerical values of U2 for small values of d can be found in Table 1.

Explicit upper bound.

Theorem 2.2 provides an upper bound that can be easily numerically com-
puted for a given d ∈ N \ {1, 2}. Now we present a weaker but an explicit
bound that can be obtained using the expansion properties of random d-
regular graphs that follow from their eigenvalues.

Theorem 2.3 Let d ∈ N \ {1, 2} and ε > 0 be an arbitrarily small constant.
Then, a.a.s. q∗(Gn,d) ≤ 2√

d
.

3 Constant average degree graphs

In this section we analyze graphs with constant average degree. We extend
the results of [13], where it was proven that trees with maximum degree
∆ = o( 5

√
n) have asymptotic modularity 1. First, we relax the condition

on maximum degree; second, we allow our graphs to be disconnected [15].

Theorem 3.1 Let {Fn} be a sequence of forests, Fn is a forest on n vertices

with no isolated ones and ∆ = ∆(Fn) = o(n). Then q∗(Fn) ≥ 1−O
(√

∆
n

)
=

1 − o(1) as n → ∞.

The assumption ∆ = o(n) cannot be eliminated, since the asymptotic
modularity of trees with ∆ = Ω(n) is strictly less than 1 [13].

For graphs with bounded average degree the following theorem holds [15].

Theorem 3.2 Let {Gn} be a sequence graphs, Gn is a connected graph on

n vertices with the average degree 2|E(Gn)|
n

≤ D for some constant D, and

∆ = ∆(Gn) = o(n). Then q∗(Gn) ≥ 2
D
−O

(√
∆
n

)
= 2

D
− o(1).

4 Preferential Attachment model

The Preferential Attachment (PA) model, introduced by Barabási and Al-
bert [2], was an early stochastic model of complex networks. The idea is that



Table 2
Lower bounds for q∗(Gn

m)

m 7 8 9 10 100 1000

L1 0.156 0.136 0.136 0.123 0.0397 0.0126

L2 0.142 0.125 0.111 0.100 0.0100 0.0010

at each step a new vertex is added together with m edges connecting this
vertex to m previous vertices, the probability to choose a previous vertex is
proportional to its current degree. The precise definition of the model (which
is denoted by Gn

m) is given in Bollobás and Riordan in [3].

4.1 Lower bound

The following theorem easily follows from Theorems 3.1 and 3.2 and the fact

that a.a.s. ∆(Gn
m) = O

(
n

1
2
+2ε

)
for any ε > 0.

Theorem 4.1 For any ε > 0 a.a.s. q∗(Gn
m) ≥ 1

m
−O

(
n−1/4+ε

)
= 1

m
− o(1).

As in the case of random d-regular graphs, it is natural to conjecture that
the above lower bound is not sharp. Indeed, we can prove the following,
stronger, lower bound.

Theorem 4.2 A.a.s. q∗(Gn
m) ≥ E

(∣∣∣Bin(m, 1/2) −m/2
∣∣∣) /m + o(1). That

is, a.a.s.

q∗(Gn
m) ≥

{
(21−m/m)

∑m/2
i=1 i

(
m

m/2+i

)
if m is even,

(21−m/m)
∑(m+1)/2

i=1 (i− 1/2)
(

m
(m−1)/2+i

)
if m is odd,

In particular, a.a.s. q∗(Gn
m) = Ω (1/

√
m).

Table 2 presents numerical values for the lower bounds L1 = L1(m) = 1/m
from Theorem 4.1 and L2 = L2(m) from Theorem 4.2 for a few values of m.
Note that L2 is weaker for m ≤ 6 and stronger for larger values.

4.2 Upper bound

The edge expansion of a graph G is defined as ρ = minS⊂V (G),|S|≤|V |/2
e(S,V \S)

|S| .

In [12] it was shown that for any ε > 0 we have that a.a.s. ρ(Gn
m) ≥ m

2
− 3+ε

4
.

Using this observation one can easily obtain the following non-trivial upper
bound for q∗(Gn

m).



Theorem 4.3 For any ε > 0 a.a.s. q∗(Gn
2 ) ≤ 15+ε

16
. Moreover, for any m ≥ 3

a.a.s. q∗(Gn
m) ≤ 15

16
.

5 Spatial Preferential Attachment model

5.1 Definition

Let S = [0, 1]m be the unit hypercube in Rm, equipped with the torus metric
derived from any of the Lp norms. The parameters of the model consist of
the link probability p ∈ [0, 1], and two positive constants A1 and A2, which, in
order to avoid the resulting graph becoming too dense, must be chosen so that
pA1 < 1. The SPA model generates stochastic sequences of directed graphs
(Gt : t ≥ 0), where Gt = (Vt, Et), and Vt ⊆ S. Let deg−(v, t) be the in-degree
of the vertex v in Gt, and deg+(v, t) its out-degree. The sphere of influence
S(v, t) of the vertex v at time t ≥ 1 is the ball centered at v with volume

|S(v, t)| = min
{

A1deg
−(v,t)+A2

t
, 1
}

.

The process begins at t = 0, with G0 being the null graph. At each
step t, a new vertex vt is chosen uniformly at random from S, and added to
Vt−1 to create Vt. Next, independently, for each vertex u ∈ Vt−1 such that
vt ∈ S(u, t− 1), a directed link (vt, u) is created with probability p.

The SPA model produces scale-free networks, which exhibit many of the
characteristics of real-life networks [1,5]. In [7], it was shown that the SPA
model gave the best fit, in terms of graph structure, for a series of social
networks derived from Facebook.

5.2 Results

As the modularity is defined for undirected graphs, we consider Ĝn that is a
graph obtained from Gn by replacing each directed edge (u, v) by undirected
edge uv (note that Ĝn is always a simple graph).

We use the following properties of the SPA model to estimate the modular-
ity. A.a.s. for every pair i, t such that 1 ≤ i ≤ t ≤ n we have that deg−(vi, t) =

O
(

(t/i)pA1 log2 n
)

, deg+(vi, t) = O
(

log2 n
)

, and also |E(Gn)| = Θ(n).

The following theorem shows that modularity of the SPA model is asymp-
totically one, unlike d-regular and preferential attachment graphs.

Theorem 5.1 Let p ∈ (0, 1], A1, A2 > 0, and suppose that pA1 < 1. Then,

a.a.s., q∗(Ĝn) = 1 −O
(
nmax{−1/m,−1+pA1}/2 log9/2 n

)
= 1 − o(1).
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