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Abstract
Consider the following model of strong-majority bootstrap percolation on a graph. Let r ≥ 1

be some integer, and p ∈ [0, 1]. Initially, every vertex is active with probability p, independently
from all other vertices. Then, at every step of the process, each vertex v of degree deg(v)
becomes active if at least (deg(v)+r)/2 of its neighbours are active. Given any arbitrarily small
p > 0 and any integer r, we construct a family of d = d(p, r)-regular graphs such that with
high probability all vertices become active in the end. In particular, the case r = 1 answers a
question and disproves a conjecture of Rapaport, Suchan, Todinca and Verstraete [45].

1 Introduction

Given a graph G = (V,E), a set A ⊆ V , and j ∈ N, the bootstrap percolation process Bj(G;A) is
defined as follows: initially, a vertex v ∈ V is active if v ∈ A, and inactive otherwise. Then, at
each round, each inactive vertex becomes active if it has at least j active neighbours. The process
keeps going until it reaches a stationary state in which every inactive vertex has less than j active
neighbours. We call this the final state of the process. Note that we may slow down the process by
delaying the activation of some vertices, but the final state is invariant. If G is a d-regular graph,
then there is a natural characterization of the final state in terms of the k-core (i.e., the largest
subgraph of minimum degree at least k): the set of inactive vertices in the final state of Bj(G;A)
is precisely the vertex set of the (d− j + 1)-core of the subgraph of G induced by the initial set of
inactive vertices V \ A (see e.g. [36]). We say that Bj(G;A) disseminates if all vertices are active
in the final state.

Define Bj(G; p) to be the same bootstrap percolation process, where the set of initially active
vertices is chosen at random: each v ∈ V is initially active with probability p, independently from all
other vertices. This process (which can be regarded as a type of cellular automaton on graphs) was
introduced in 1979 by Chalupa, Leath and Reich [24] on an infinite rooted tree, the so called Bethe
lattice, as a simple model of dynamics of ferromagnetism, and has been widely studied ever since on
many families of deterministic or random graphs. The following obvious monotonicity properties
hold: for any A′ ⊆ A′′ ⊆ V , if Bj(G;A′) disseminates, then Bj(G;A′′) disseminates as well; similarly,
if i ≤ j and Bj(G;A) disseminates, then Bi(G;A) must also disseminate. Therefore, the probability
that Bj(G; p) disseminates is non-increasing in j and non-decreasing in p. In view of this, one
may expect that, for some sequences of graphs Gn, there may be a sharp probability threshold p̂n
such that: for every constant ε > 0, a.a.s.1 Bj(Gn; pn) disseminates, if pn ≥ (1 + ε)p̂n; and a.a.s.
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it does not disseminate, if pn ≤ (1 − ε)p̂n. If such a value p̂n exists, we call it a dissemination
threshold of Bj(Gn; pn). Moreover, if limn→∞ p̂n = p̂ ∈ [0, 1] exists, we call this limit p̂ the critical
probability for dissemination, which is non-trivial if 0 < p̂ < 1. A lot of work has been done to
establish dissemination thresholds or related properties of this process for different graph classes.
For instance, the first rigorous results on bootstrap percolation on the infinite lattice Zm were
obtained by van Enter [52] and Schonmann [48]. For the finite grid [n]m, the first results were given
by Aizenman and Lebowitz [2] for the case m = 2. Later, Holroyd [35] found a sharp threshold
for [n]2 with the 2-active-neighbour update rule: he showed that the dissemination threshold is
π2

18 logn + o(1/ log n) as n→∞. For the 3-dimensional case, the first results were given by Cerf and
Cirillo [22], and then Balogh, Bollobás and Morris [12] obtained a sharp threshold. For the general
m-dimensional case, the threshold function was determined by Cerf and Manzo [23] up to a constant
factor; more recently, Balogh, Bollobás, Duminil-Copin and Morris [10] gave sharp thresholds for
the dissemination of Bj([n]m; p) for any constant dimension m ≥ 2 and every 2 ≤ j ≤ m. The case
of m → ∞ (in fact, m � log n and j = 2) was analysed in [11]. In the case of the 2-dimensional
grid, even more precise results are known; see [32] and [44]. Other graph classes that have been
studied are trees, hypercubes and hyperbolic lattices (see e.g. [14, 9, 13, 47]).

In the context of random graphs, Janson,  Luczak, Turova and Vallier [37] considered the model
Bj(G;A) with j ≥ 2, G = G (n, p)2 and A being a set of vertices chosen at random from all sets
of size a(n). They showed a sharp threshold with respect to the parameter a(n) that separates
two regimes in which the final set of active vertices has a.a.s. size o(n) or n − o(n) (i.e. ‘almost’
dissemination), respectively. Moreover, there is full dissemination in the supercritical regime pro-
vided that G (n, p) has minimum degree at least j. Balogh and Pittel [15] analysed the bootstrap
percolation process on random d-regular graphs, and established non-trivial critical probabilities
for dissemination for all 2 ≤ j ≤ d − 1. Bootstrap percolation was studied in many other ran-
dom graph models, including random graphs with more general degree sequences [4], power-law
random graphs [5], inhomogeneous random graphs [6], hyperbolic random graphs [21], preferential
attachment graphs [1] and, very recently, geometric inhomogeneous random graphs [38].

More general bootstrap percolation models on Zm (or similarly also on Zmn , the m-dimensional
discrete torus) have been studied as well. Of particular relevance is the so called U-bootstrap
percolation: in this case, the update rule depends on an arbitrary finite collection of finite subsets
U = {X1, . . . , Xq} ⊆ Zm \ {0}, and works as follows: given a set A ⊆ Zm of initially active sites,
set A0 = A, and define for each t ≥ 0,

At+1 = At ∪ {x ∈ Zm : x+X ⊆ At for some X ∈ U}.

Denote also by [A] =
⋃
t≥0At the closure of A, that is, the set of sites that eventually become

active. Whereas the general classification of U-bootstrap percolation in higher dimensions is still
wide open, for m = 2 precise results are known: the first results were given in [19] and [7]. As their
main result, the collection U can be classified into three families, that we define below. For each
u ∈ S1, let Hu := {x ∈ Z2 : 〈x,w〉 < 0} be the discrete half-plane whose boundary is perpendicular
to u. A unit vector u ∈ S1 is called a stable direction if [Hu] = Hu, and we denote by S = S(U) ⊆ S1

the collection of stable directions. Then, an update family U is called to be

• subcritical, if every semicircle in S1 has infinite intersection with S,

• critical, if there exists a semicircle in S1 that has finite intersection with S, and if every open
semicircle in S1 has non-empty intersection with S, and

2G (n, p) is the probability space consisting of all graphs on n vertices with vertex set [n], and with each pair of
vertices being connected by an edge with probability p, independently of all others.
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• supercritical, if there exists an open semicircle in S1 that is disjoint from S.

Summarizing then the results of [19] and [7], the dissemination threshold p̂n for any supercritical
family U is polynomial (that is, p̂n = n−Θ(1)); while for any critical family U , it is polylogarithmic
(that is, p̂n = (log n)−Θ(1)); and for any subcritical family U , the threshold p̂n is bounded away
from zero. Moreover, by Theorem 1 of [7], a subcritical family U satisfies p̂n = 1 if and only if
S = S1. Later, in [16] the previous bounds for critical families were strengthened: for every critical
update family U , the threshold was found up to a constant factor. In fact, the form of the threshold
depends on whether or not U is balanced, which is defined as follows. Let Q1 ⊆ S1 denote the set
of rational directions on the circle (that is, the set of all u ∈ S1 such that u has rational or infinite
gradient with respect to the standard basis vectors), and for each u ∈ Q1, let `+u be the subset
of the line `u := {x ∈ Z2 : 〈x, u〉 = 0} consisting of the origin and the sites to the right of the
origin as one looks in the direction of u. Similarly, let `−u := (`u \ `+u ) ∪ {0}. Define then α+(u)
(α−(u), respectively) as the minimum (possibly infinite) cardinality of a set Z ⊆ Z2 such that
[Hu ∪Z] contains infinitely many sites of `+(u) (`−(u), respectively). For such u, the difficulty of u
is α(u) := min{α+(u), α−(u)} if both α+(u) <∞ and α−(u) <∞, and α(u) :=∞ otherwise. The
difficulty of U is then defined as

α = α(U) := min
C∈C

max
u∈C

α(u),

with C denoting the collection of open semicircles of S1. The family U is then balanced if there
exists a closed semicircle C such that α(u) ≤ α for all u ∈ C, and unbalanced otherwise. Theorem
1.5 of [16] says the following: if U is a balanced critical family, then the dissemination threshold

is (Θ(1/ log n))1/α, whereas if U is an unbalanced critical family, then the dissemination threshold

is Θ
(
(log log n)2/ log n

)1/α
. In a few cases, more precise results are known: the authors of [26]

determined the leading constant of the dissemination threshold for symmetric, balanced, threshold
models. In the unbalanced case, sharp thresholds are known for some specific models: for instance,
for the update family U that consists of all two-element subsets of {(−1, 0), (0, 1), (0,−1)} (which is
known as the Duarte model), it was very recently shown in [17] that the dissemination threshold is

(1
8 +o(1)) (log logn)2

logn (a weaker statement had been previously obtained by [41]). Similarly, in another
special case, the (1, 2)-model of Gravner and Griffeath, in which U consists of all three-element

subsets of {(−2, 0), (−1, 0), (0, 1), (0,−1), (1, 0), (2, 0)}, a sharp threshold of ( 1
12 +o(1)) (log logn)2

logn was
recently established in [27] (a weaker result had been previously obtained by [31] using somewhat
non-rigorous methods and by [53], correcting an assertion of [31]). Even more precise results
containing second and third order terms were very recently obtained by [28].

Another line of research is bootstrap percolation with inhibition, that is, with vertices whose
presence hinders the diffusion. In [33] the following model was studied: consider the model in which
a low density p of sites of Z2 are initially active, and then a proportion q of them is removed, the
others being initially inactive. The update rule is as follows: inactive sites change their states to
active once they have at least 2 active nearest neighbours, whereas removed or active sites never
change their status. The authors of [33] show that if q/p2 is at least a large constant, then most
sites remain inactive forever, whereas if q/p2 is at most a small constant, then eventually most sites
will be active. A similar model with inhibition was more recently studied in [29].

Yet another recent line of research on bootstrap percolation is the following: given a graph
together with an initial infection probability such that percolation is likely to occur, one would also
like to know how long percolation takes. The time of bootstrap percolation with dense initial sets
was studied in [20], generalizing previous results of [18], and the time of bootstrap percolation in
two dimensions was analysed in [8].
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Aside from its mathematical interest, bootstrap percolation was extensively studied by physi-
cists: it was used to describe complex phenomena in jamming transitions [51], magnetic systems [46]
and neuronal activity [50], and also in the context of stochastic Ising models [30]. For more appli-
cations of bootstrap percolation, see the survey [3] and the references therein.

Strong-majority model. In this paper, we introduce a natural variant of the bootstrap perco-
lation process. Given a graph G = (V,E), an initially active set A ⊆ V , and r ∈ Z, the r-majority
bootstrap percolation process Mr(G;A) is defined as follows: starting with an initial set of active
vertices A, at each round, each inactive vertex becomes active if the number of its active neigh-
bours minus the number of its inactive neighbours is at least r. In other words, the activation
rule for an inactive vertex v of degree deg(v) is that v has at least d(deg(v) + r)/2e active neigh-
bours. As in ordinary bootstrap percolation, we are mainly interested in characterising the set
of inactive vertices in the final state of and determining whether it is empty (i.e. the process dis-
seminates) or not. Note that for a d-regular graph G, Mr(G;A) is exactly the same process as
Bd(d+r)/2e(G;A), and therefore the final set of inactive vertices of Mr(G;A) is precisely the vertex
set of the b(d − r)/2 + 1c-core of the graph induced by the initial set of inactive vertices. If G is
not regular, the two models are not comparable. The process Mr(G; p) is defined analogously for a
random initial set A of active vertices, where each vertex belongs to A (i.e. is initially active) with
probability p and independently of all other vertices. Note that Mr(G;A) and Mr(G; p) satisfy the
same monotonicity properties with respect to A, to r, and to p that we described above for ordinary
bootstrap percolation, and thus we define the dissemination threshold p̂ (if it exists) analogously
as before. Additionally, for any (random or deterministic) sequence of graphs Gn, define

p̂+ = inf{p ∈ [0, 1] : a.a.s. Mr(Gn; p) disseminates} and

p̂− = sup{p ∈ [0, 1] : a.a.s. Mr(Gn; p) does not disseminate}.

Trivially, 0 ≤ p̂− ≤ p̂+ ≤ 1; and, in case of equality, the dissemination threshold p̂ must exist and
satisfy p̂ = p̂− = p̂+. The r-majority bootstrap percolation process is a generalisation of the non-
strict majority and strict majority bootstrap percolation models, which correspond to the cases
r = 0 and r = 1, respectively. The study of these two particular cases has received a lot of attention
recently. For instance, Balogh, Bollobás and Morris [13] obtained the dissemination threshold
p̂ = 1/2 for the non-strict majority bootstrap percolation process M0(G; p) on the hypercube [2]n,
and extended their results to the m-dimensional grid [n]m for m ≥ (log log n)2(log log log n). Also,
Stefánsson and Vallier [49] studied the non-strict majority model for the random graph G (n, p).
(Note that, since G (n, p) is not a regular graph, this process cannot be formulated in terms of
ordinary bootstrap percolation). For the strict majority case, we first state a consequence of the
work of Balogh and Pittel [15] on random d-regular graphs mentioned earlier. Let Gn,d denote
a graph chosen uniformly at random (u.a.r. for short) from the set of all d-regular graphs on n
vertices (note that n is even if d is odd). Then, for any constant d ≥ 3, the dissemination threshold
of the process M1(Gn,d; p) is equal to

p̂(d) := 1− inf
y∈(0,1)

y

F (d− 1, 1− y)
, (1)

where F (d, y) is the probability of obtaining at most d/2 successes in d independent trials with
success probability equal to y. Moreover,

p̂(3) = 1/2, min{p̂(d) : d ≥ 3} = p̂(7) ≈ 0.269, and lim
d→∞

p̂(d) = 1/2. (2)
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The case of strict majority was studied by Rapaport, Suchan, Todinca and Verstraete [45] for various
families of graphs. They showed that, for the wheel graph Wn (a cycle of length n augmented
with a single universal vertex), p̂+ is the unique solution in the interval [0, 1] to the equation
p̂+ + (p̂+)2 − (p̂+)3 = 1

2 (that is, p̂+ ≈ 0.4030); and they also gave bounds on p̂+ for the toroidal
grid augmented with a universal vertex. Moreover, they proved that, for every sequence Gn of 3-
regular graphs of increasing order (that is, |V (Gn)| < |V (Gn+1)| for all n ∈ N) and every p < 1/2,
a.a.s. the process M1(Gn; p) does not disseminate (so p̂− ≥ 1/2). Together with the result from (2)
that p̂(3) = 1/2, their result implies, roughly speaking, that, for every sequence of 3-regular graphs,
dissemination is at least as ‘hard’ as for random 3-regular graphs. In view of this, they conjectured
the following:

Conjecture 1 ([45]). Fix any constant d ≥ 3, and let Gn be any arbitrary sequence of d-regular
graphs of increasing order. Then, for the strict majority bootstrap percolation process on Gn, we
have p̂− ≥ p̂(d). That is, for any constant 0 ≤ p < p̂(d), a.a.s. the process M1(Gn; p) does not
disseminate.

Observe that, if the conjecture were true, then for every sequence of d-regular graphs of growing
order, p̂− ≥ p̂(d) ≥ p̂(7) ≈ 0.269. This motivated the following question:

Question 2 ([45]). Is there any sequence of graphs Gn such that their dissemination threshold (for
strict majority bootstrap percolation) is p̂ = 0?

Further results for strict majority bootstrap percolation on augmented wheels were given in [42],
and some experimental results for augmented tori and augmented random regular graphs were
presented in [43]. The underlying motivation in both papers (in view of Question 2) was the
attempt to construct sequences of graphs Gn such that a.a.s. M1(Gn; p) disseminates for small
values of p (i.e., sequences Gn with a small value of p̂+). However, to the best of our knowledge,
for all graph classes investigated before the present paper, the values of p̂+ obtained were strictly
positive. We disprove Conjecture 1 by constructing a sequence of d-regular graphs such that p̂+

can be made arbitrarily small by choosing d large enough (see Theorem 3 and Corollaries 5 and 7
below). Moreover, by allowing d → ∞, we achieve p̂+ = 0, and thus we answer Question 2 in the
affirmative. It is worth noting that, if one considers the non-strict majority model (r = 0) instead
of the strict majority model (r = 1), then Question 2 has a trivial answer as a result of the work
of [10] on the m-dimensional grid [n]m. Indeed, their results imply that the process M0([n]m; p)
has dissemination threshold p̂ = 0. (In fact, they establish a sharp threshold for dissemination at
p̂(n) = λ/ log(m−1) n→ 0, for a certain constant λ > 0, where logm(n) = log(logm−1(n))). However,
the aforementioned results do not extend to the strict majority model.

In order to categorise both models in the framework of the concepts introduced before, observe
also that non-strict majority bootstrap percolation on Z2 is critical, since in this case only the
directions u corresponding to the x and y-axis are stable, and hence all semicircles in S1 have
finite, non-empty intersection with S. For all non-stable directions u, α(u) = 0, whereas for the
two directions corresponding to the x and y-axis, one element has to be added in order to activate
infinitely many elements of `+u (`−u , respectively). Clearly, each open semicircle in S1 contains at
least one of the two directions, and thus α = 1, and the model is balanced. By Theorem 1.5 of [16]
the model M0([n]m; p) has dissemination threshold Θ(1/ log n) (the aforementioned result of [10]
clearly is more precise). In the case of strict majority bootstrap percolation, however, all directions
u are stable, and hence this process is subcritical, and by Theorem 1 of [7], p̂n = 1. (Note that
there is an easy direct proof of this as well: observe that if all the vertices in the cube {1, 2}m or
any of its translates in the grid [n]m are initially inactive, then they remain inactive at the final
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state. If p < 1, then each of these cubes is initially inactive with positive probability, so a.a.s. there
exists an initially inactive cube and we do not get dissemination.)

Our sequence of regular graphs. To state our results precisely, we first need to define a
sequence of regular graphs that disseminates ‘easily’. For each n ∈ N and k = k(n) ∈ N, consider
the following graph L (n, k): the vertices are the n2 points of the toroidal grid [n]2 with coordinates
taken modulo n; each vertex v = (x, y) is connected to the vertices v + w, where w ∈ K :=
{−k, . . . ,−1, 0, 1, . . . , k} × {−1, 1}. Assuming that 2k + 1 ≤ n (so that the neighbourhood of a
vertex does not wrap around the torus), we have that |K| = 2(2k+1) = 4k+2, and thus our graph
L (n, k) is (4k + 2)-regular. Therefore, in the process M2r(L (n, k), p), an inactive vertex needs
at least 2k + r + 1 active neighbours to become active. Note that if we consider the analogue of
the graph L (n, k) but with vertex set Z2 instead of [n]2, then the activation update rule we just
described corresponds to a subcritical family U , since every direction is stable, and by Theorem 1
of [7] we have p̂ = 1. It is easy to see that also in our toroidal model L (n, k) we have p̂n = 1. In
spite of that, we will show that, even if we take a very small p, the process M2r(L (n, k), p) ‘almost’
disseminates in the following sense: at the final state of M2r(L (n, k), p), a.a.s. most of the vertices
of [n]2 are active, and inactive vertices form tiny connected clusters surrounded by active vertices
(see Proposition 12).

Next, for even n and r = r(n) ∈ N, we also consider the (random) graph L ∗(n, k, r), consisting
of adding r random perfect matchings to L (n, k). These matchings are chosen u.a.r. from the set
of perfect matchings of [n]2 conditional upon not creating multiple edges (i.e. the perfect matchings
are pairwise disjoint and do not use any edge from L (n, k)). Note that L ∗(n, k, r) is (4k+ r+ 2)-
regular. Moreover, the process Mr(L ∗(n, k, r); p) has the same activation rule as M2r(L (n, k); p):
namely, an inactive vertex becomes active at some round of the process if it has at least 2k+ r+ 1
active neighbours. In view of this and since L (n, k) is a subgraph of L ∗(n, k, r), we can couple
the two processes in a way that the set of active vertices of M2r(L (n, k); p) is always a subset of
that of Mr(L ∗(n, k, r); p). We will show that for every p > 0 (and even p = p(n) → 0 not too
fast as n → ∞) and every not too large r ∈ N, there is k ∈ N such that a.a.s. Mr(L ∗(n, k, r); p)
disseminates. On a high level, our analysis comprises two phases: in phase 1, we will consider
M2r(L (n, k); p) and show that most vertices become active in this phase. In phase 2, we incorporate
the effect of the r perfect matchings and consider then Mr(L ∗(n, k, r); p) to show that all remaining
inactive vertices become active. This 2-phase analysis is motivated by the fact that the final
set of inactive vertices of Mr(L ∗(n, k, r); p) is a subset of the final set of inactive vertices of
M2r(L (n, k); p), in view of the aforementioned coupling between the two processes.

We will use the graph L ∗(n, k, r) with r = 1 to disprove Conjecture 1 and answer Ques-
tion 2 in the affirmative. Let us point out that, since the added perfect matching is random, the
graph L ∗(n, k, 1) is not vertex-transitive in general, and therefore we cannot describe the process
Mr(L ∗(n, k, 1); p) in terms of the U-bootstrap percolation framework. In particular, the corre-
sponding update rule for the set of active vertices cannot be categorised into any of the subcritical,
critical or supercritical update families defined above. It would be interesting to find a suitable se-
quence Gn of regular graphs on vertex set [n]2 for which the update rule of the r-majority bootstrap
percolation process corresponds to a critical or supercritical update family (in that case, disproving
Conjecture 1 would be immediate from the results in [19]). Yet it does not seem an easy task to
construct such a sequence Gn.

Notation and results. We use standard asymptotic notation for n → ∞. All logarithms in
this paper are natural logarithms. We make no attempt to optimize the constants involved in our
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claims.

Our main result is the following:

Theorem 3. Let p0 > 0 be a sufficiently small constant. Given any p = p(n) ∈ [0, 1], k = k(n) ∈ N
and r = r(n) ∈ N satisfying (eventually for all large enough even n ∈ N),

200
(log log n)2/3

(log n)1/3
≤ p ≤ p0,

1000

p
log(1/p) ≤ k ≤ p2 log n

3000 log(1/p)
, and 1 ≤ r ≤ pk

20
, (3)

consider the r-majority bootstrap percolation process Mr(L ∗(n, k, r); p) on the (4k + r + 2)-regular
graph L ∗(n, k, r), where each vertex is initially active with probability p. Then, Mr(L ∗(n, k, r); p)
disseminates a.a.s.

Remark 4.

1. By our assumptions on p, it is easy to verify that d1000
p log(1/p)e < b p2 logn

3000 log(1/p)c (see (14) in

the proof of Proposition 12), and so the range for k is non-empty, and the statement is not
vacuously true. In particular, k = d1000

p log(1/p)e satisfies the assumptions of the theorem.

2. Note that the lower bound required for k in terms of p is almost optimal: in Theorem 2
of [45], the authors showed (for the 1-majority model) that for any sequence of d-regular
graphs (of increasing order) with d < 1/p (in the case of odd d) or d < 2/p (in the case
of even d), a.a.s. dissemination does not occur. (For the r-majority model with r ≥ 2,
dissemination is even harder.) Hence, setting k = d1000

p log(1/p)e, our sequence of Θ(k)-
regular graphs L ∗(n, k, r) has the smallest possible degree up to an additional Θ(log(1/p))
factor for achieving dissemination.

As a consequence of Theorem 3, we get the following two corollaries. The first one follows from
an immediate application of Theorem 3 with

p = 200 (log logn)2/3

(logn)1/3
, k = b p2 logn

3000 log(1/p)c and r = b400 log log nc,

together with the monotonicity of the process Mr(L ∗(n, k, r); p) with respect to p and r.

Corollary 5. There is d = Θ
(
(log n · log logn)1/3

)
, and a sequence Gn of d-regular graphs of

increasing order such that, for every

200
(log log n)2/3

(log n)1/3
≤ p ≤ 1 and 1 ≤ r ≤ 400 log log n,

the process Mr(Gn; p) disseminates a.a.s.

Remark 6.

1. Setting r = 1, this corollary answers Question 2 in the affirmative.

2. Note that the smallest admissible value of p in the statements of Theorem 3 and Corollary 5

is Θ
( (log logn)2/3

(logn)1/3

)
, which coincides with the dissemination threshold of a critical unbalanced

model with difficulty α = 3 (see Theorem 1.5 in [16]). However, as pointed out in an ear-
lier discussion, our model Mr(L ∗(n, k, r); p) cannot be described within the framework of
U-bootstrap percolation, and it is not immediately clear whether that framework could be used
to derive a similar result that yields an answer to Question 2.
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The second corollary concerns the case in which all the parameters are constant.

Corollary 7. For any constants 0 < p ≤ 1 and r ∈ N, there exists d0 ∈ N satisfying the following.
For every natural d ≥ d0, there is a sequence Gn of d-regular graphs of increasing order such that
the r-majority bootstrap percolation process Mr(Gn; p) a.a.s. disseminates.

Proof (assuming Theorem 3). Fix r ∈ N. In view of the monotonicity of the process Mr(Gn; p)
with respect to p, we only need to prove the statement for any sufficiently small constant p > 0.
In particular, we assume that p ≤ p0 (where p0 is the constant in the statement of Theorem 3)
and also that r + 3 ≤ pk/20, where k0 = d1000

p log(1/p)e. For any fixed natural k ≥ k0 and any
i ∈ {0, 1, 2, 3}, we apply Theorem 3 with the same values of p and k but with r + i instead of
r. We conclude that there is a sequence Gn of d = (4k + r + 2 + i)-regular graphs (of increasing
order) such that Mr+i(Gn; p) disseminates a.a.s. (and thus Mr(Gn; p) also disseminates a.a.s., by
monotonicity). Note that every natural d ≥ 4k0 + r+ 2 was considered, and hence the proof of the
corollary follows.

In particular, since limd→∞ p̂(d) = 1/2 (cf. (2)), Corollary 7 implies that, for every sufficiently
large constant d, there is a sequence of d-regular graphs of increasing order such that (for the
1-majority model) p̂+ < p̂(d), which disproves Conjecture 1.

Organisation of the paper. In Section 2 we show that, given certain configurations, the set
of active vertices of Mr(L (n, k);A) grows deterministically. Section 3 deals with Phase 1 using
tools from percolation theory. Section 4 then analyses the effect of the added perfect matchings,
and concludes with the proof of the main theorem by combining the previous results with the right
parameters.

2 Deterministic growth

In this section, we assume that G = L (n, k), and show that, under the right circumstances, the
set of active vertices grows deterministically in Mr(L (n, k);A). For convenience, we will describe
(sets of) vertices in L (n, k) by giving their coordinates in Z2, and mapping them to the torus [n]2

by the canonical projection. This projection is not injective, since any two points in Z2 whose
coordinates are congruent modulo n are mapped to the same vertex in [n]2, but this will not pose
any problems in the argument.

Given an integer 1 ≤ m ≤ k, we say a vertex v is m-good (or just good) if each one of the
following four sets contains at least 2dk/me active vertices:

v+{1, 2, . . . , k}×{1}; v+{1, 2, . . . , k}×{−1}; v−{1, 2, . . . , k}×{1}; v−{1, 2, . . . , k}×{−1}.

Otherwise, call the vertex m-bad.
For any nonnegative integers a and b, we define the set Skm(a, b) ⊆ [n]2 as

Skm(a, b) =
⋃

|i|≤m+a+1

[−xi, xi]× {i},

where the sequence xi satisfies
xm+a+1 = b

xi = xi+1 + k m ≤ i ≤ m+ a

xi = xi+1 + idk/me 0 ≤ i ≤ m− 1

x−i = xi 0 ≤ i ≤ m+ a+ 1.

(4)
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(See Figure 1 for a visual depiction of Skm(a, b).) Observe that, since k ≥ m, dk/me ≤ 2k/m, and

3⌈k/m⌉
k

(a + 1) times k

k
k

2b + 1

⌈k/m⌉
2⌈k/m⌉

. . .

Figure 1: Skm(a, b) with m = 5, k = 5, a = 2 and b = 7.

therefore

x0 = b+ (a+ 1)k +

m−1∑
i=1

idk/me = b+ (a+ 1)k + dk/mem(m− 1)

2
≤ b+ (m+ a)k,

so
Skm(a, b) ⊆ [−b− (m+ a)k, b+ (m+ a)k]× [−m− a− 1,m+ a+ 1]. (5)

In particular,

Skm(0, 0) ⊆ [−2mk, 2mk]× [−2m, 2m] and |Skm(0, 0)| ≤ 25m2k. (6)

Moreover, since xi ≥ xi+1 + 1 for m ≤ i ≤ m+ a (i.e. the length of each row increases by at least
one unit to the left and to the right) and a symmetric observation for rows −m ≤ i ≤ −m− a, we
get

Skm(2a, 0) ⊇ [−a, a]× [−a, a]. (7)

A set of vertices U ⊆ [n]2 is said to be active if all its vertices are active. Note that Skm(a, b) ⊆
Skm(a + 1, b). The next lemma shows that, if Skm(a, b) is active and all vertices in Skm(a + 1, b) are
good (or already active), then eventually Skm(a+ 1, b) becomes active too.

Lemma 8. Given any integers a, b ≥ 0, 1 ≤ m < k and r ≤ dk/me, suppose that Skm(a, b) is active
and all vertices in Skm(a+ 1, b) are m-good or active in the r-majority bootstrap percolation process.
Then, deterministically Skm(a+ 1, b) eventually becomes active.

Proof. Put k′ = dk/me ≥ 2. Note that any vertex with at least 2k + k′ active neighbours has at
most 2k + 2 − k′ inactive neighbours, and thus becomes active since (2k + k′) − (2k + 2 − k′) =
2(k′ − 1) ≥ k′ ≥ r. Our first goal is to show that we can make active one extra vertex to the right
and to the left of each row in Skm(a, b). Let xi be as in (4). For each 0 ≤ i ≤ m + a + 1, consider
the vertex vi = (xi + 1, i). Observe that vi ∈ Skm(a + 1, b), so it must be active or good. If vi is
active, then we are already done. Suppose otherwise that vi is good. By the definition of Skm(a, b),
vi has at least min{k+ (i−1)k′, 2k} neighbours in Skm(a, b) one row below, and max{k− ik′, 0} one
row above, so in particular at least 2k − k′ neighbours in Skm(a, b), which are active. Additionally,
since vi is good, it has at least 2k′ extra active neighbours above and to the right, so it becomes
active. By symmetry, we conclude that, for every |i| ≤ m+a+1, vertices (−xi−1, i) and (xi+1, i)
become active. Therefore, all vertices in Skm(a, b+ 1) become active.

A close inspection of (4) yields the following chain of inclusions:

Skm(a, b) ⊆ Skm(a, b+ 1) ⊆ · · ·Skm(a, b+ k) ⊆ Skm(a+ 1, b). (8)

9



In view of this, the same argument can be inductively applied to show that for every 0 ≤ j ≤ k−1,
if all vertices in Skm(a, b + j) are active, then we eventually reach a state in which all vertices in
Skm(a, b + j + 1) become active as well. (Note that the argument requires that the newly added
vertices vi satisfy vi ∈ Skm(a+ 1, b), which follows from (8).)

Finally, observe that all vertices in [−b, b]×{−m− a− 2,m+ a+ 2} have 2k+ 1 neighbours in
Skm(a, b+k) (either in the row below or the row above). Since these vertices are good, they have at
least 4k′ active neighbours not in Skm(a, b+ k), and thus they become active too. We showed that
all vertices in Skm(a+ 1, b) became active, and the proof of the lemma is finished.

We consider two other graphs L1(n) and L∞(n) on the same vertex set [n]2 as L (n, k). Two
vertices (x, y) and (x′, y′) in [n]2 are adjacent in L1(n) if{

x′ = x

y′ − y ≡ ±1 mod n;
or

{
y′ = y

x′ − x ≡ ±1 mod n.

Similarly, (x, y) and (x′, y′) are adjacent in L∞(n) if

(x, y) 6= (x′, y′) and

{
x′ − x ≡ 0,±1 mod n

y′ − y ≡ 0,±1 mod n.

In other words, L1(n) is the classical square lattice n × n, and L∞(n) is the same lattice with
diagonals added. Given any two vertices u, v ∈ [n]2, the `1-distance and `∞-distance between u
and v respectively denote their graph distance in L1(n) and L∞(n). (These correspond to the
usual `1- and `∞-distances on the torus.) Also, we say that a set U ⊆ [n]2 is `1-connected (or `∞-
connected) if the subgraph of L1(n) (or L∞(n)) induced by U is a connected graph. Given two
sets U,U ′ ⊆ [n]2, we say U ′ is a translate of U if there exists (x, y) ∈ Z2 such that U ′ = (x, y) + U
(recall that we interpret coordinates modulo n).

Roughly speaking, the next lemma shows that if a set is good, all vertices close to the set are
good, and the set itself contains a certain active subset, then the whole set becomes active.

Lemma 9. Let k,m, r ∈ Z satisfying 1 ≤ m < k and r ≤ dk/me. Suppose that U ⊆ [n]2 has the
following properties: U is `1-connected; all vertices in [n]2 within `1-distance at most 32mk2 from
U are m-good (or active); and U contains an active set S which is a translate of Skm(0, 0). Then,
eventually U becomes active in the r-majority bootstrap percolation process.

Proof. Without loss of generality, we assume that S = Skm(0, 0) (by changing the coordinates
appropriately). Then, by (6), S is contained inside the square Q = [−2mk, 2mk]×[−2mk, 2mk]. We
weaken our hypothesis that S ⊆ U , and only assume that Q∩U 6= ∅. Let S′ = Skm(14mk, 0). By (5),
S′ ⊆ [−15mk2, 15mk2]×[−15mk2, 15mk2]. Therefore, every vertex in S′ must lie within `1-distance
30mk2 + 4mk ≤ 32mk2 from U , and thus must be good (or already active). We repeatedly apply
Lemma 8 and conclude that S′ eventually becomes active. By (7), Skm(14mk, 0) ⊇ [−7mk, 7mk]2,
so S′ contains not only the square Q, but all 8 translated copies of Q around it. More precisely,
for every i, j ∈ {−1, 0, 1},

S′ ⊇ Qij , where Qij = (4mk + 1)(i, j) +Q.

Hence, all nine squares Qij eventually become active.
Note that, for any x, y ∈ Z, the translate Q̂ = (x, y) +Q contains Ŝ = (x, y) + S. Therefore, if

Q̂ is active and intersects U , the argument above shows that all nine squares

Q̂ij = (4mk + 1)(i, j) + Q̂
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eventually become active as well. We may iteratively repeat the same argument to any active
translate of Q that intersects U . Since U is `1-connected, we can find a collection of translates
of Q that eventually become active and whose union contains U . This finishes the proof of the
lemma.

The t-tessellation

Given any integer 1 ≤ t ≤ n, we define the t-tessellation T (n, t) of [n2] to be the partition of [n]2

into cells
Cij = [ai + 1, ai+1]× [aj + 1, aj+1], 0 ≤ i, j ≤ bn/tc − 1,

where ai = it for 0 ≤ i ≤ bn/tc − 1 and abn/tc = n. Most cells in T (n, t) are squares with t vertices
on each side, except for possibly those cells on the last row or column if t - n. These exceptional
cells are in general rectangles, and have between t and 2t vertices on each side.

We may regard the set of cells T (n, t) of the t-tessellation as the vertex set of either L1(bn/tc) or

L∞(bn/tc) (that is, T (n, t) '
[
bn/tc

]2
) by identifying each cell Cij ∈ T (n, t) with (i, j) ∈

[
bn/tc

]2
.

Call each of the resulting graphs L1(n, t) and L∞(n, t), respectively. In other words, the vertices

of L1(n, t) are precisely the cells in T (n, t) '
[
bn/tc

]2
, and each cell is adjacent to its neighbouring

cells at the top, bottom, left and right (in a toroidal sense); and a similar description (adding the
top-right, top-left, bottom-right and bottom-left cells to the neighbourhood) holds for L∞(n, t).
To avoid confusion, we always call the vertices of L1(n, t) ' L1(bn/tc) and L∞(n, t) ' L∞(bn/tc)
cells, and reserve the word vertex for the original graph L (n, k).

For i ∈ {1,∞}, we say that a set of cells Z ⊆ T (n, t) is `i-connected, if Z induces a connected
subgraph of Li(n, t). Also, the `i-distance between two cells C and C ′ corresponds to their graph
distance in the graph of cells Li(n, t). This should not be confused with the `i-distance (in Li(n))
between the vertices inside C and C ′. Sometimes, we will also refer to the `i-distance between a
vertex v and a cell C. By this, we mean the minimum distance in Li(n) between v and any vertex
u ∈ C.

Given 1 ≤ m ≤ k, we say that a cell C ∈ T (n, t) is m-good (or simply good) if every vertex
inside or within `1-distance 32mk2 of C is good or active. Otherwise, we call it bad. Note that
deciding whether a cell C is good or bad only depends on the status of the vertices inside or within
`1-distance 32mk2 +k+1 from C. We call a cell a seed if it contains an active translate of Skm(0, 0).
(By (6), this definition is not vacuous if t ≥ 4mk + 1.)

In view of all these definitions, Lemma 9 directly implies the following corollary.

Corollary 10. Let k,m, r, t ∈ Z satisfying 1 ≤ m < k, r ≤ dk/me and 1 ≤ t ≤ n. Suppose that Z
is an `1-connected set of cells in T (n, t) such that all cells in Z are m-good and Z contains a seed.
Then, in the r-majority bootstrap percolation process, eventually all cells in Z become active.

3 Percolative ingredients

In this section, we consider the t-tessellation T (n, t) defined in Section 2 for an appropriate choice
of t. We combine the deterministic results in Section 2 together with some percolation techniques
to conclude that eventually most cells in T (n, t) (and thus most vertices in L (n, k)) will eventually
become active a.a.s. This corresponds to Phase 1 described in the introduction.

Throughout the section, we define ñ = bn/tc and assume that ñ→∞ as n→∞. We identify
the set of cells T (n, t) with [ñ]2 in the terms described in Section 2, and consider the graphs of cells
L1(n, t) ' L1(ñ) and L∞(n, t) ' L∞(ñ). Recall (for i ∈ {1,∞}) the definitions of `i-connected
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sets of cells and `i-distance between cells from that section. Moreover, define an `i-path of cells
to be a path in the graph Li(ñ), and the `i-diameter of an `i-connected set of cells Z to be the
maximal `i-distance between two cells C,C ′ ∈ Z. (The `i-diameter of Z is also denoted diam`i Z.)
Finally, given a set of cells Z, an `i-component of Z is a subset C ⊆ Z that induces a connected
component of the subgraph of Li(ñ) induced by Z.

We need one more definition to characterize very large sets of cells that “spread almost every-
where” in [ñ]2. Set A = 108 hereafter. Given any ε = ε(ñ) ∈ (0, 1) and a set of cells Z ⊆ [ñ]2, we
say that Z is ε-ubiquitous if it satisfies the following properties:

(i) Z is an `1-connected set of cells;

(ii) |Z| ≥ (1−Aε)ñ2; and

(iii) given any collection B1,B2, . . . ,Bj of disjoint `∞-connected non-empty subsets of [ñ]2 \ Z,

min
1≤i≤j

{
diam`∞ Bi

}
≤ A

log(1/ε)
log
(
ñ2/j

)
. (9)

In particular, (iii) implies that

(iv) every `∞-connected set of cells B ⊆ [ñ]2 \ Z has `∞-diameter at most A
log(1/ε) log(ñ2).

Our goal for this section is to show that a.a.s. there is an ε-ubiquitous set of cells that eventually
become active. As a first step towards this, we adapt some ideas from percolation theory to find an
ε-ubiquitous set of good cells in [ñ]2. We formulate this in terms of a slightly more general context.
A 2-dependent site-percolation model on L1(ñ) is any probability space defined by the state (good
or bad) of the cells in [ñ]2 such that the state of each cell C is independent from the state of all
other cells at `1-distance at least 3 from C. We represent such a probability space by means of the
random vector X = (XC)C∈[ñ]2 , where XC is the indicator function of the event that a cell C is
good. In this setting, let G = {C ∈ [ñ]2 : XC = 1} be the set of all good cells, and let G0 be the
largest `1-component of G (if G has more than one `1-component of maximal size, pick one by any
fixed deterministic rule).

Lemma 11. Let ε0 > 0 be a sufficiently small constant. Given any ε = ε(ñ) satisfying ñ−1/3 < ε ≤
ε0, consider a 2-dependent site-percolation model X on L1(ñ), where each cell in [ñ]2 is good with
probability at least 1 − ε. Then, a.a.s. as ñ → ∞, the largest `1-component G0 of the set of good
cells is ε-ubiquitous.

Proof. Throughout the argument, we assume that ε0 is sufficiently small so that ε meets all the
conditions required. Let G0 = [ñ]2 \ G0. Our first goal is to show the following claim.

Claim 1. A.a.s. every `∞-component of G0 has `∞-diameter at most ñ/2.

For this purpose, we will use a classical result by Liggett, Schonmann, and Stacey (cf. The-
orem 0.0 in [39]) that compares X with the product measure. Given a constant 0 < p0 < 1

(sufficiently close to 1), consider X̂ = (X̂C)C∈[ñ]2 , in which the X̂C are independent indicator vari-

ables satisfying Pr(X̂C = 1) = p0, and define Ĝ = {C ∈ [ñ]2 : X̂C = 1}. If ε0 (and thus ε) is small

enough given p0, then our 2-dependent site-percolation model X stochastically dominates X̂, that
is, E(F (G)) ≥ E(F (Ĝ)) for every non-decreasing function F over the power set 2[ñ]2 (i.e. satisfying
F (Z) ≤ F (Z ′) for every Z ⊆ Z ′ ⊆ [ñ]2).

Set s = bñ/4c and, for i, j ∈ {0, 1, 2, 3, 4}, consider the rectangles (in Z2)

Ri,j = (is, js) + [1, s]× [1, 2s] and R′i,j = (is, js) + [1, 2s]× [1, s].
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We regard Ri,j and R′i,j as subsets of the torus [ñ]2 by interpreting their coordinates modulo n.
Note that, if 4 | ñ then some of these rectangles are repeated (e.g. R0,0 = R4,0), but this does not
pose any problem for our argument. Let R be any of the rectangles above and Z ⊆ [ñ]2 be any set
of cells. We say that Z is `1-crossing for R if the set Z ∩ R has some `1-component intersecting
the four sides of R. It is easy to verify that if Z is `1-crossing for all Ri,j and all R′i,j , then every

`∞-component of [ñ]2 \ Z has `∞-diameter at most 2s ≤ ñ/2. If p0 is sufficiently close to 1, by
applying a result by Deuschel and Pisztora (cf. Theorem 1.1 in [25]) to all Ri,j and all R′i,j , we

conclude that a.a.s. Ĝ contains an `1-component with more than ñ2/2 cells which is `1-crossing for
all Ri,j and all R′i,j . This is a non-decreasing event, and hence a.a.s. G has an `1-component with
exactly the same properties (which must be G0 by its size). This implies the claim.

In view of Claim 1, we will restrict our focus to `∞-components of G0 of small `∞-diameter.
Let Nd be the number of cells that belong to `∞-components of G0 of `∞-diameter d. Then, the
following holds.

Claim 2. For every 0 ≤ d ≤ ñ/2,

ENd ≤ Bñ2εd(d+1)/4e (B = 106) and VarNd ≤ (4d+ 5)2ENd.

In order to prove this claim, we need one definition. A special sequence of length j is a sequence
of j + 1 different cells C0, C1, . . . , Cj in [ñ]2 such that any two consecutive cells in the sequence
are at `∞-distance exactly 3, and any two different cells are at `∞-distance at least 3. Observe
that there are at most 24j special sequences of length j starting at a given cell C0. Moreover, by
construction, the states (good or bad) of the cells in a special sequence are mutually independent.

We now proceed to the proof of Claim 2. Let B be an `∞-component of G0 of `∞-diameter
0 ≤ d ≤ ñ/2, and let F be the set of cells inside B but at `1-distance 1 of some cell in G0. F is
`∞-connected (since L1(ñ) and L∞(ñ) are dual lattices) and only contains bad cells. Moreover,
F must contain two cells C and C ′ at `∞-distance d (with C = C ′ if and only if d = 0). Let
P = C1, C2, . . . , Cm be a path joining C = C0 and C ′ = Cm in the subgraph of L∞(ñ) induced by
F . From this path, we construct a special sequence Q = D0, D1, . . . , Dbd/3c as follows. Set D0 = C0

and, for 1 ≤ i ≤ bd/3c, Di = Cj+1, where Cj is the last cell in P at `∞-distance at most 2 from
Di−1. By construction, Q is a special sequence of length bd/3c contained in B and it consists of only
bad cells. Therefore, if any given cell D ∈ [ñ]2 belongs to an `∞-component of G0 of `∞-diameter
d, then there must be a special sequence of bad cells and length bd/3c starting within `∞-distance
d from D. This happens with probability at most

(2d+ 1)224bd/3cε1+bd/3c ≤ Bεd(d+1)/4e,

where it is straightforward to verify that the last inequality holds for B = 106 and all d, as long
as ε0 is sufficiently small. Summing over all ñ2 cells, we get the desired upper bound on ENd. To
bound the variance, we consider separately pairs of cells that are within `∞-distance greater than
2d+ 2 and at most 2d+ 2, and we get

E(Nd
2) ≤ (ENd)

2 + (4d+ 5)2ENd,

so
VarNd ≤ (4d+ 5)2ENd.

This proves Claim 2. Next, let N ′d =
∑

i≥dNi be the number of cells that belong to `∞-components

of G0 of `∞-diameter at least d. Then, we have the next claim.

Claim 3. A.a.s. for every d ≥ 0, N ′d < B′ñ2εd(d+1)/5e, where B′ = 11B.
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Suppose first that ENd ≥ ñ1/2. By Claim 2, we must have (1/ε)d(d+1)/4e ≤ Bñ3/2, so in
particular d ≤ log ñ. Then, using Chebyshev’s inequality and the bounds in Claim 2,

Pr (Nd ≥ 2ENd) ≤
VarNd

(ENd)2
≤ (4d+ 5)2

ENd
≤ 25 log2 ñ

ñ1/2
. (10)

Summing the probabilities over all 0 ≤ d ≤ log ñ, the probability is still o(1). Suppose otherwise
that ENd ≤ ñ1/2. By Markov’s inequality,

Pr
(
Nd ≥ ñ2εd(d+1)/5e

)
≤ ENd

ñ2εd(d+1)/5e . (11)

Recall from Claim 2 and our assumptions that ENd ≤ min
{
ñ1/2, Bñ2εd(d+1)/4e}. If ñ1/2 ≤

Bñ2εd(d+1)/4e, then (11) becomes

Pr
(
Nd ≥ ñ2εd(d+1)/5e

)
≤ 1

ñ3/2εd(d+1)/5e .

For 0 ≤ d ≤ 15, the bound above is o(1) as long as say ε ≥ ñ−1/3. For d ≥ 16, we have
d(d+ 1)/5e+ (d+ 1)/100 ≤ 0.95d(d+ 1)/4e, and therefore

Pr
(
Nd ≥ ñ2εd(d+1)/5e

)
≤ 1

ñ3/2εd(d+1)/5e ≤
ε(d+1)/100

ñ3/2ε0.95d(d+1)/4e ≤
B0.95ε(d+1)/100

ñ0.075
,

where for the last step we used that (1/ε)d(d+1)/4e ≤ Bñ3/2. Summing the bound above over all
d ≥ 16 gives again a contribution of o(1). Finally, if Bñ2εd(d+1)/4e ≤ ñ1/2, then we must have
d ≥ 16 since ε ≥ ñ−1/3. Therefore (11) becomes

Pr
(
Nd ≥ ñ2εd(d+1)/5e

)
≤ Bñ2εd(d+1)/4e

ñ2εd(d+1)/5e ≤ Bε
0.05d(d+1)/4e+(d+1)/100 ≤ B0.95ε(d+1)/100

ñ0.075
,

where for the last step we used that εd(d+1)/4e ≤ ñ−3/2/B. Summing the bound above over all d ≥ 16
gives o(1). Putting all the previous cases together, we conclude that a.a.s. for all 0 ≤ d ≤ ñ/2,

Nd ≤ max
{
ñ2εd(d+1)/5e, 2ENd

}
≤ 2Bñ2εd(d+1)/5e.

The same is true for d ≥ ñ/2 by Claim 1. Hence, a.a.s. for all d ≥ 0,

N ′d =
∑
i≥d

Ni ≤ 2Bñ2εd(d+1)/5e
∑
i≥0

5εi < 11Bñ2εd(d+1)/5e.

This proves Claim 3.
Finally, assume that the a.a.s. event in Claim 3 holds. Given any 1 ≤ j ≤ ñ2, set

d =

⌊
5 log(B′ñ2/j)

log(1/ε)

⌋
.

Then, d(d+ 1)/5e ≥ log(B′ñ2/j)
log(1/ε) , and so

N ′d < B′ñ2εd(d+1)/5e ≤ j.
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Therefore, given any disjoint `∞-connected non-empty sets B1,B2, . . . ,Bj ⊆ G0 (not necessarily
components), at least one of the j sets must have `∞-diameter strictly less than d. Hence,

min
1≤i≤j

{
diam`∞ Bi

}
≤ d− 1 ≤ 5 log(ñ2/j) + 5 logB′

log(1/ε)
− 1 ≤ 5 log(ñ2/j)

log(1/ε)
.

This proves part (iii) of the definition of ε-ubiquitous for G0. Part (i) is immediate since G0 is `1-
connected by definition. Finally, since N ′0 < B′ñ2ε, then |G0| > ñ2(1−B′ε), which implies part (ii).
So G0 is ε-ubiquitous.

The next result combines Corollary 10 and Lemma 11 in order to show that most of the cells
become active during Phase 1 of the process.

Proposition 12. Let 0 < p0 < 1 be a sufficiently small constant. Given any p = p(n) ∈ R,
k = k(n) ∈ N and r = r(n) ∈ Z satisfying (eventually for all n ∈ N sufficiently large)

200
(log log n)2/3

log1/3 n
≤ p ≤ p0,

1000

p
log(1/p) ≤ k ≤ p2 log n

3000 log(1/p)
, and r ≤ pk/9, (12)

define
t = t(n) = 100k3 and ε = ε(n) = k−100. (13)

Consider the r-majority bootstrap percolation process Mr(L (n, k); p), and the t-tessellation T (n, t)
of [n]2 into ñ2 = bn/tc2 cells. Then, a.a.s. the set of all cells that eventually become active contains
an ε-ubiquitous `1-component.

Proof. Assume that p0 is sufficiently small and n sufficiently large so that the parameters p, k, t
and ε satisfy all the required conditions below in the argument. (In particular, we may assume
that k, r, t are larger than a sufficently large constant, and ε is smaller than a sufficiently small

constant.) Define k0 =
⌈

1000
p log(1/p)

⌉
and k1 =

⌊
p2 logn

3000 log(1/p)

⌋
. From (12) and since p0 is small

enough,

k0 <
2000

p
log(1/p) =

2000p2 log2(1/p)

p3 log(1/p)
≤ 2000

2003

p2 log n

log(1/p)
< k1, (14)

so there exist k ∈ N satisfying k0 ≤ k ≤ k1, and thus the statement is not vacuous. Later in the
argument we will need the bound

pk

8
=

pk

8 log k
log k ≥ pk0

8 log k0
log k ≥ 900

8
log k ≥ 111 log k. (15)

Define m = d8/pe, so in particular

m <
9

p
< k0 ≤ k,

as required for the definition of m-good. Moreover, k ≤ k1 < log n < n−1
2 , so every vertex of

L (n, k) has exactly 4k + 2 neighbours (i.e. neighbourhoods in L (n, k) do not wrap around the
torus). The number of vertices that are initially active in a set of k vertices is distributed as
the random variable Bin(k, p). Thus, by Chernoff’s bound (see, e.g., Theorem 4.5(2) in [40]), the
probability that a vertex is initially m-bad is at most

4Pr
(

Bin(k, p) < 2dk/me
)
≤ 4Pr

(
Bin(k, p) ≤ (1− 1/2)pk

)
≤ 4 exp(−pk/8), (16)

where we used that 2dk/me ≤ 2dpk/8e ≤ pk/2.
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Now consider the t-tessellation T (n, t) of [n]2 with t = 100k3. In particular, we have

t ≤ 100k1
3 < log3 n < n, (17)

so T (n, t) is well defined. For each cell C ∈ T (n, t), let XC denote the indicator function of the
event that C is m-good. Recall that every cell C is a rectangle with at most 2t vertices per side,
and thus C has at most (2t+ 64mk2)2 ≤ 3002k6 vertices within `1-distance 32mk2. Then, by (16),
(15) and a union bound,

Pr(XC = 0) ≤ 4(3002k6) exp(−pk/8) ≤ 6002k6 exp(−111 log k) ≤ (1/k)100 = ε.

Moreover, the outcome of XC is determined by the status (active or inactive) of all vertices within
`1-distance 32mk2 + k+ 1 ≤ 100mk2 ≤ t from some vertex in C. All these vertices must belong to
cells that are within `1-distance at most 2 from C (recall that this refers to the distance in the graph
of cells L1(n, t)). Therefore, for every cell C ∈ T (n, t) and set of cells Z ⊆ T (n, t) such that C is at
`1-distance greater than 2 from all cells in Z, the indicator XC is independent of (XC′)C′∈Z . Hence,
X = (XC)C∈T (n,t) is a 2-dependent site-percolation model on the lattice L1(n, t) with Pr(XC =
1) ≥ 1 − ε. Observe that X satisfies the conditions of Lemma 11, assuming that ε = (1/k)100 is
small enough (which follows from our choice of p0) and since ε ≥ k1

−100 > log−100 n > bn/tc−1/3

(recall by (17) that t ≤ log3 n, so the number of cells in T (n, t) is ñ2 = bn/tc2 → ∞.) Then, by
Lemma 11, the largest `1-component G0 induced by the set of m-good cells is a.a.s. ε-ubiquitous.
In particular

Pr
(
|G0| < (1−Aε)bn/tc2

)
= o(1), (18)

where A = 108. We want to show that a.a.s. G0 contains a seed. For each cell C ∈ T (n, t), let YC
be the indicator function of the event that

SC = (x+ bt/2c, y + bt/2c) + Skm(0, 0)

is initially active, where (x, y) are the coordinates of the bottom left vertex in C. By (6), SC is
contained in C, and at `1-distance greater than bt/2c − 2mk > 40k3 > 32mk2 + k + 1 from any
other cell in T (n, t), and therefore YC depends only on vertices inside C and at distance greater
than 32mk2 + k + 1 from any other cell. In particular, YC = 1 implies that C is a seed. Moreover,
for any two disjoint sets of cells Z,Z ′ ⊆ T (n, t), the random vectors (YC)C∈Z and (XC′)C′∈Z′ are
independent, since they are determined by the status of two disjoint sets of vertices. For the same
reason, (YC)C∈Z and (YC′)C′∈Z′ are also independent. By (6) and (12), the probability that a cell
C is a seed is at least

Pr(YC = 1) ≥ p25m2k ≥ p25(9/p)2(p2 logn)/(3000 log(1/p)) = e−(452/3000) logn ≥ n−1. (19)

For each cell C, define X̄C = 1−XC and ȲC = 1− YC . Moreover, for each set of cells Z, let

XZ =
∏
C∈Z

XC , X̄Z =
∏
C∈Z

X̄C , YZ =
∏
C∈Z

YC and ȲZ =
∏
C∈Z

ȲC .

Now fix an `1-connected set of cells Z containing at least an 1−Aε fraction of the cells, and let ∂Z
be the set of cells not in Z but adjacent in L1(n, t) to some cell in Z (i.e. the strict neighbourhood
of Z in L1(n, t)). Since Aε < 1/2, the event G0 = Z is the same as XZX̄∂Z = 1. Furthermore,

Pr
(
(ȲZ = 1) ∩ (XZX̄∂Z = 1)

)
= Pr

(
(ȲZ = 1) ∩ (X̄∂Z = 1)

)
−Pr

(
(ȲZ = 1) ∩ (XZ = 0) ∩ (X̄∂Z = 1)

)
≤ Pr(ȲZ = 1)Pr(X̄∂Z = 1)−Pr(ȲZ = 1)Pr

(
(XZ = 0) ∩ (X̄∂Z = 1)

)
= Pr(ȲZ = 1)Pr(XZX̄∂Z = 1),
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where we used that ȲZ and X̄∂Z are independent (since Z and ∂Z are disjoint sets of cells) and
the fact that events (ȲZ = 1) and (XZ = 0) ∩ (X̄∂Z = 1) are positively correlated (by the FKG
inequality — see e.g. Theorem (2.4) in [34] — since they are both decreasing properties with respect
to the random set of active vertices). Therefore, using (19), the independence of YC and (17), we
get

Pr
(
ȲZ = 1 | G0 = Z

)
≤ Pr

(
ȲZ = 1

)
=
∏
C∈Z

Pr
(
YC = 0

)
≤
(
1− n−1

)|Z|
≤ exp

(
−n−1(1−Aε)bn/tc2

)
≤ exp

(
−(1−Aε)n−1+15/8

)
= o(1).

This bound is valid for all Z with |Z| ≥ (1−Aε)bn/tc2, and hence

Pr
(
(G0 has no seed) ∩ |G0| ≥ (1−Aε)bn/tc2

)
= o(1).

Combining this with (18), we conclude that G0 has a seed a.a.s. When this is true, deterministically
by Corollary 10, G0 must eventually become active. Since we already proved that G0 is a.a.s. ε-
ubiquitous, the proof is completed.

4 The perfect matchings

In this section, we analyse the effect of adding r extra perfect matchings to L (n, k) regarding the
strong-majority bootstrap percolation process, and prove Theorem 3. Throughout this section we
assume n is even, and restrict the asymptotics to this case. An r-tuple M = (M1,M2, . . . ,Mr) of
perfect matchings of the vertices in [n]2 is k-admissible if M1 ∪M2 ∪ · · · ∪Mr ∪L (n, k) (i.e. the
graph resulting from adding the edges of all Mi to L (n, k)) does not have multiple edges. Observe
that, if 1 ≤ r ≤ n/2, then such k-admissible r-tuples exist: for instance, given a cyclic permutation
σ of the elements in [n/2], we can pick each Mj to be the perfect matching that matches each
vertex (x, y) ∈ [n/2]× [n] to vertex (n/2 + σj−1(x), y). Note that L ∗(n, k) is precisely the uniform
probability space of all possible graphs M1∪M2∪· · ·∪Mr∪L (n, k) such that M is a k-admissible
r-tuple of perfect matchings of [n]2.

The following lemma will be used to bound the probability of certain unlikely events for a
random choice of a k-admissible r-tuple M of perfect matchings of [n]2.

Lemma 13. Let S ⊆ Z ⊆ [n]2 with |S| = 4s for some s ≥ 1, |Z| = z, and suppose that z + 2(4k +
r + 2)2(4rs) ≤ n2/2 and 4erz ≤ n2/2. Let M = (M1,M2, . . . ,Mr) be a random k-admissible
r-tuple of perfect matchings of [n]2. The probability that every vertex in S is matched by at least
one matching in M to one vertex in Z is at most

(16rz/n2)2s.

Proof. Let Hw be the event that there are exactly w edges in M1∪M2∪· · ·∪Mr with one endpoint
in S and the other one in Z (possibly also in S). Note that the event in the statement implies that⋃

2s≤w≤4rsHw holds. We will use the switching method to bound Pr(Hw). For convenience, with
a slight abuse of notation, the set of choices of M that satisfy the event Hw is also denoted by Hw.

Given any arbitrary element in Hw (i.e. given a fixed k-admissible r-tuple M satisfying event
Hw), we build an element in H0 as follows. Let u1v1, u2v2, . . . , uwvw be the edges with one endpoint
ui ∈ S and the other one vi ∈ Z (if both endpoints belong to S, assign the roles of ui and vi in
any deterministic way), and let 1 ≤ ci ≤ r be such that uivi belongs to the matching Mci . Let
R = {u1, . . . , uw, v1, . . . , vw}. Throughout the proof, given any U ⊆ [n]2, we denote by N(U)
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the set of vertices that belong to U or are adjacent in M1 ∪M2 ∪ · · · ∪Mr ∪ L (n, k) to some
vertex in U . Now we proceed to choose vertices u′1, u

′
2, . . . , u

′
w and v′1, v

′
2, . . . , v

′
w as follows. Pick

u′1 /∈ N(N(R)) ∪ Z and let v′1 be the vertex adjacent to u′1 in Mc1 ; for each 1 < i ≤ r, pick
u′i /∈ N(N(R ∪ {u′1, . . . , u′i−1, v

′
1, . . . , v

′
i−1})) ∪ Z and let v′i be the vertex adjacent to u′i in Mci .

Since

|N(N(R ∪ {u′1, . . . , u′w, v′1, . . . , v′w})) ∪ Z| ≤ 4w + 4w(4k + r + 2) + 4w(4k + r + 2)2 + z

≤ 2(4k + r + 2)2(4rs) + z ≤ n2/2,

then there are at least
(n2/2)w

choices for u′1, u
′
2, . . . , u

′
w (v′1, v

′
2, . . . , v

′
w are then determined). We delete the edges uivi and u′iv

′
i,

and replace them by uiu
′
i and viv

′
i. This switching operation does not create multiple edges, and

thus generates an element of H0.
Next, we bound from above the number of ways of reversing this operation. Given an element

of H0, there are exactly 4rs edges in M1 ∪M2 ∪ · · · ∪Mr incident to vertices in S (each such
edge has exactly one endpoint in S and one in [n]2 \ Z). We pick w of these 4rs edges. Call them
u1u

′
1, u2u

′
2, . . . , uwu

′
w, where ui ∈ S and u′i ∈ [n]2 \ Z, and let 1 ≤ ci ≤ r be such that uiu

′
i ∈Mci .

Pick also vertices v1, v2, . . . , vw ∈ Z, and let v′i be the vertex adjacent to vi in Mci . Delete uiu
′
i and

viv
′
i, and replace them by uivi and u′iv

′
i. There are at most(

4rs

w

)
zw ≤

(
4ersz

w

)w
≤ (2erz)w

ways of doing this correctly, and thus recovering an element of Hw. Therefore, (n2/2)w|Hw| ≤
(2erz)w|H0|, so Pr(Hw) ≤ (4erz/n2)w. Hence, we bound the probability of the event in the
statement by

4rs∑
w=2s

Pr(Hw) ≤
∑
w≥2s

(4erz/n2)w ≤ (4erz/n2)
∑
w≥0

2−w = 2(4erz/n2)2s ≤ (16rz/n2)2s.

This proves the lemma.

Given 1 ≤ t ≤ n, consider the t-tessellation T (n, t) defined in Section 2. Recall that we identify
the set of cells T (n, t) with [ñ]2, where ñ = bn/tc. Given a k-admissible r-tuple M of perfect
matchings, we want to study the set of cells R ⊆ [ñ]2 that contain vertices that remain inactive
at the end of the process Mr(M1 ∪M2 ∪ · · · ∪Mr ∪ L (n, k); p). The following lemma gives a
deterministic necessary condition that “small” `∞-components of R must satisfy, regardless of the
initial set U of inactive vertices. Recall that the set of vertices that remain inactive at the end of
the process is precisely the vertex set of the (2k + 2)-core of the subgraph induced by U .

Lemma 14. Given any r, k, t, n ∈ N (with even n) satisfying

2r < 2k + 2 ≤ t ≤ n/2,

let M be a k-admissible r-tuple of perfect matchings of the vertices in [n]2, and let U ⊆ [n]2 be
any set of vertices. Let U◦ ⊆ U denote the vertex set of the (2k + 2)-core of the subgraph of
M1 ∪M2 ∪ · · · ∪Mr ∪L (n, k) induced by U . Assuming that U◦ 6= ∅, let R be the set of all cells
in the t-tessellation T (n, t) that contain some vertex in U◦; and let B be an `∞-component of R
of diameter at most ñ/2 in L∞(n, t). Then,

⋃
C∈B C must contain at least 4 vertices v1, v2, v3, v4

such that each vi is matched by some matching of M to a vertex in U◦.
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Proof. We first include a few preliminary observations that will be needed in the argument. Note
that the condition 2k + 2 ≤ t ≤ n/2 implies that T (n, t) has at least 2 × 2 cells, and also that
the neighbourhood of any vertex in L (n, k) has smaller horizontal (and vertical) length than the
side of any cell in T (n, t) (so that the neighbourhood does not cross any cell from side to side,
and does not wrap around the torus). Set A = [n]2 \ U (we can think of A and U as the sets of
initially active and inactive vertices, respectively), and define B =

⋃
C∈B C, namely the set of all

vertices in cells in B. Any two vertices v and w that are adjacent in L (n, k) must belong to cells
at `∞-distance at most 1 in T (n, t). In particular, if v ∈ B and w /∈ B, then w must belong to
some cell not in R (since B is an `∞-component of R), and therefore w ∈ A (so w /∈ U◦). Finally,
since the `∞-diameter of B is at most ñ/2, B can be embedded into a rectangle that does not wrap
around the torus [n]2. All geometric descriptions (such as ‘top’, ‘bottom’, ‘left’ and ‘right’) in this
proof concerning vertices in B should be interpreted with respect to this rectangle.

In view of all previous ingredients, we proceed to prove the lemma. Let vT (respectively, vB) be
any vertex in the top row (respectively, bottom row) of B∩U◦, which is non-empty by assumption.
Suppose for the sake of contradiction that vT = vB. Then, B ∩ U◦ has a single row, and the
leftmost vertex v of this row has no neighbours (with respect to the graph L (n, k)) in U◦. Indeed,
from an earlier observation, any neighbour of v lies either in B (and thus in a row different from
B ∩ U◦) or in A (and then not in U◦). Therefore, v has at most r < 2k + 2 neighbours in U◦

with respect to the graph M1 ∪M2 ∪ · · · ∪Mr ∪L (n, k), which contradicts the fact that v ∈ U◦.
We conclude that vT 6= vB. Let vL (respectively, vR) be the topmost vertex in the leftmost column
(respectively, rightmost column) of B∩U◦. Similarly as before, if vL = vT, then vL has at most k+1
neighbours in U◦ with respect to L (n, k) (the ones below and not to the left of vL), and thus at
most r+k+1 < 2k+2 neighbours in U◦ with respect to M1∪M2∪· · ·∪Mr∪L (n, k), which leads
again to contradiction. Therefore, vL 6= vT and, by a symmetric argument, vL 6= vB, vR 6= vT and
vR 6= vB. This also implies vL 6= vR (since otherwise, vL = vT = vR). Hence, the vertices vT, vB, vL, vR
are pairwise different, and each of them has at most 2k + 1 neighbours in U◦ with respect to the
graph L (n, k) (this follows again from the extremal position of vT, vB, vL, vR in B ∩ U◦, together
with the earlier fact that a neighbour of v ∈ B not in B must belong to A). Therefore, vT, vB, vL, vR
must be matched by at least one matching in M to other vertices in U◦.

The conclusion of this lemma motivates the following definition. A collection of sets of cells
B1,B2, . . . ,Bs ⊆ T (n, t) is said to be stable (w.r.t. a k-admissible r-tuple M of perfect matchings)
if, for every set Bj , there are at least 4 vertices in

⋃
C∈Bj C that are matched by some perfect

matching of M to some vertex in
⋃s
i=1

⋃
C∈Bi C. So the conclusion of Lemma 14 says that the

small `∞-components of R must form a stable collection of sets with respect to M . In Section 3,
we showed that, for an appropriate choice of parameters, the set of cells that are active at the
end of Phase 1 is a.a.s. contains an ε-ubiquitous `1-component (recall that we apply Phase 1 to
M2r(L (n, k); p)). If this event occurs, then the set of cells that are active after Phase 2 (i.e. after
adding a k-admissible r-tuple M of perfect matchings, and resuming the strong-majority bootstrap
percolation process) must also contain an ε-ubiquitous `1-component, deterministically regardless
of the matchings. In particular, the set of cells R containing some inactive vertices at the end of the
process must contain at most Aεñ2 cells, and every subset of `∞-components of R must satisfy (9).
Moreover, by Lemma 14, the collection of `∞-components of R must be stable with respect to M .
The following lemma shows that for a randomly selected k-admissible perfect matching M , a.a.s.
there is no proper set of cells R satisfying all these properties. Therefore, assuming that Phase 1
terminated with an ε-ubiquitous set of active cells, Phase 2 ends with all cells (and thus all vertices)
active a.a.s.
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Lemma 15. Let 0 < ε0 < 1/(2A) be a sufficiently small constant (where A = 108). Given any
ε = ε(n) ∈ R, k = k(n) ∈ N, r = r(n) ∈ N and t = t(n) ∈ N satisfying (eventually for all large
enough even n ∈ N)

1 ≤ r ≤ k, 0 < ε ≤ ε0 and 1 ≤ kt5 ≤ min
{

(1/ε)1/4, n/ log6 n
}
, (20)

consider the t-tessellation T (n, t) of [n]2, and pick a k-admissible r-tuple M of perfect matchings of
the vertices in [n]2 uniformly at random. Set ñ = bn/tc → ∞. Then, the following holds a.a.s.: for
any 1 ≤ s ≤ Aεñ2 and any collection of disjoint `∞-connected sets of cells B1,B2, . . . ,Bs satisfying

min
1≤i≤j

{diam`∞(Bi)} ≤
A

log(1/ε)
log(ñ2/j) ∀1 ≤ j ≤ s, (21)

the collection B1,B2, . . . ,Bs is not stable with respect to M .

Proof. We assume throughout the proof that ε0 is sufficiently small and n sufficiently large, so that
all the required inequalities in the argument are valid. In particular, by (20), k ≤ (n− 1)/2, so the
neighbourhood with respect to L (n, k) of any vertex does not wrap around the torus.

Given 1 ≤ s ≤ Aεñ2, suppose there exists a collection of s pairwise-disjoint `∞-connected sets
of cells {B1,B2, . . . ,Bs} satisfying (21) and which is stable with respect to M . Assume w.l.o.g. that
diam`∞(B1) ≥ · · · ≥ diam`∞(Bs), so in particular

diam`∞(Bi) ≤ di ∀i ∈ [s], where di =
A

log(1/ε)
log(ñ2/i).

This implies that there must exist 4s distinct vertices vi,` (i ∈ [s], ` ∈ [4]) with the following
properties. Let Ci,` be the cell containing vi,`, and let Zi ⊇ Bi be the set of cells in T (n, t) within
`∞-distance di from Ci,1. (Note that not necessarily Zi ∩ Zj = ∅ for i 6= j.) Then, for each i ∈ [s],
the cells Ci,2, Ci,3, Ci,4 are within `∞-distance di from Ci,1 (i.e. Ci,2, Ci,3, Ci,4 ∈ Zi). Moreover,
putting Z =

⋃s
i=1Zi and Z =

⋃
C∈Z C, M matches each vertex vi,` (i ∈ [s], ` ∈ [4]) with some

vertex in Z. Let Es be the event that a tuple of 4s distinct vertices vi,` with the above properties
exists. We will show that it is very unlikely that Es holds, given a random k-admissible r-tuple
M of perfect matchings. Given 1 ≤ s ≤ Aεñ2, let Ms count the number of ways to choose 4s
distinct vertices vi,` (i ∈ [s], ` ∈ [4]) so that, for each i ∈ [s], the cells Ci,2, Ci,3, Ci,4 belong to Zi.
Also, define M0 = 1 for convenience. We will bound Ms from above by Mbs/2c times the number of
choices for the remaining vertices vbs/2c+1,`, . . . , vs,` (` ∈ [4]). Note that, if i ≥ bs/2c+ 1, for each
choice of Ci,1, there are (2di + 1)2 ≤ 9d2

i ≤ 9(dbs/2c+1)2 choices for each Ci,` (` ∈ {2, 3, 4}) (since
di ≥ 1 for all i ∈ [s]). Moreover, each cell C ∈ T (n, t) has at most 4t2 vertices. Therefore,

Ms ≤Mbs/2c
(

ñ2

ds/2e

)(
9(dbs/2c+1)2

)3ds/2e
(4t2)4ds/2e

≤Mbs/2c
(
eñ2

ds/2e

)ds/2e(
9A2

log2(1/ε)
log2

(
ñ2

bs/2c+ 1

))3ds/2e
(4t2)4ds/2e

= Mbs/2c

(
2836A6e

t8

log6(1/ε)

ñ2

ds/2e
log6

(
ñ2

bs/2c+ 1

))ds/2e
.

This combined with an easy inductive argument implies that, for every 1 ≤ s ≤ Aεñ2,

Ms ≤
(

107A6 t8

log6(1/ε)
(ñ2/s) log6

(
ñ2/s

))s
.
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Now observe that, regardless of the choice of the 4s vertices vi,`,

|Z| ≤
s∑
i=1

|Zi| ≤
s∑
i=1

9di
2 =

s∑
i=1

9A2

log2(1/ε)
log2(ñ2/i) ≤ 9A2

log2(1/ε)

(
s∑
i=1

log(ñ2/i)

)2

=
9A2

log2(1/ε)
log2(ñ2s/s!) ≤ 9A2

log2(1/ε)
s log2(eñ2/s) ≤ 10A2

log2(1/ε)
s log2(ñ2/s). (22)

We will use Lemma 13 to bound the probability Ps that each vertex in S = {vi,` : i ∈ [s], ` ∈ [4]}
is matched by a random k-admissible perfect matching of M to a vertex in Z =

⋃
C∈Z C. Let

z = |Z|, and recall |S| = 4s with s ≤ Aεñ2. Then, from (22) and the fact that each cell has at
most 4t2 vertices, we get

z ≤ 4t2|Z| ≤ 40A3εt2

log2(1/ε)
bn/tc2 log2(1/(Aε)) ≤ 40A3εn2. (23)

Our assumptions in (20) imply r ≤ k ≤ (1/ε)1/4. Using this fact and (23), yields

4erz ≤ 160eA3ε3/4n2 ≤ n2/2

and also

z + 2(4k + r + 2)2(4rs) ≤ z + 400k3s ≤ 40A3εn2 + 400(1/ε)3/4Aεñ2 ≤ n2/2,

which are the two conditions we need to apply Lemma 13. Hence, by Lemma 13 and using (22)
and the first step in (23),

Ps = (16rz/n2)2s ≤ (64rt2|Z|/n2)2s ≤
(

640A2r

log2(1/ε)
(s/ñ2) log2(ñ2/s)

)2s

.

We conclude that, for 1 ≤ s ≤ Aεñ2,

Pr(Es) ≤MsPs ≤
(

1013A10 r2t8

log10(1/ε)
(s/ñ2) log10

(
ñ2/s

))s
≤
(
1013A11r2t8ε

)s ≤ εs/2,
where we used (20) and the fact that ε0 is sufficiently small. Summing over s, since the ratio
Pr(Es+1)/Pr(Es) ≤ ε1/2 < 1/2 and using (20) once again,

bAεñ2c∑
s=1

Pr(Es) ≤ 2Pr(E1) = O

(
r2t8 log10 ñ

ñ2

)
= O

(
r2t10 log10 n

n2

)
= o(1).

We have all the ingredients we need to prove our main result.

Proof of Theorem 3. Pick a sufficiently small constant p0 > 0, and suppose p, k and r satisfy (3).
Define t and ε as in (13), so the conclusion of Proposition 12 is true for the 2r-majority model
(note that 2r ≤ pk/9). Moreover, let ε0 = p0

100, and assume that ε0 is small enough as required
by Lemma 15. We have ε ≤ (1000

p log(1/p))−100 ≤ p100 ≤ ε0. Note that our choice of k, r, ε and t
trivially satisfies (20).
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Let U ⊆ [n]2 be the initial set of inactive vertices, and let U◦ be the (2k + 2)-core U◦ of the
subgraph of L ∗(n, k, r) induced by U (i.e. the final set of inactive vertices of Mr(L ∗(n, k, r); p)).
Let R be the set of cells in T (n, t) ' [bn/tc]2 that contain some vertex in U◦. Since U◦ is
contained in the (2k − r + 2)-core of the subgraph of L (n, k) induced by U (i.e. the final set of
inactive vertices of M2r(L (n, k); p)), Proposition 12 shows that a.a.s. the set of cells [bn/tc]2 \ R
contains an ε-ubiquitous `1-component. Therefore, the `∞-components of R, namely B1, . . . ,Bs,
must satisfy properties (iii) and (iv) in the definition of ε-ubiquitous and, by Lemma 14, must
be a stable collection of sets of cells with respect to a random r-tuple M of k-admissible perfect
matchings of [n]2. Finally, Lemma 15 claims that a.a.s. there are no such stable collections, and
therefore U must be empty. This concludes the proof of the theorem.
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