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Abstract. Anti-transitivity captures the notion that enemies of enemies
are friends, and arises naturally in the study of adversaries in social net-
works and in the study of conflicting nation states or organizations. We
present a simplified, evolutionary model for anti-transitivity influencing
link formation in complex networks, and analyze the model’s network
dynamics. The Iterated Local Anti-Transitivity (or ILAT) model creates
anti-clone nodes in each time-step, and joins anti-clones to the parent
node’s non-neighbor set. The graphs generated by ILAT exhibit famil-
iar properties of complex networks such as densification, short distances
(bounded by absolute constants), and bad spectral expansion. We deter-
mine the cop and domination number for graphs generated by ILAT, and
finish with an analysis of their clustering coefficients. We interpret these
results within the context of real-world complex networks and present
open problems.

1 Introduction

Transitivity is a pervasive and folkloric notion in social networks,
summarized in the adage that “friends of friends are more likely
friends”. A simplified, deterministic model for transitivity was posed
in [3,4], where nodes are added over time, and each node’s clone is
adjacent to it and all of its neighbors. The resulting Iterated Local
Transitivity (or ILT) model, while elementary to define, simulates
many properties of social and other complex networks. For example,
as shown in [4], graphs generated by the model densify over time,
have the small world property (that is, small distances and high
local clustering), and exhibit bad spectral expansion. For further
properties of the ILT model, see [5,12]
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Complex networks contain numerous mechanisms governing link
formation, however. Structural balance theory in social network anal-
ysis cites several mechanisms to complete triads [11]. Another folk-
loric adage is that “enemies of enemies are more likely friends”. Ad-
versarial relationships may be modelled by non-adjacency, and so we
have the resulting closure of the triad as described in Figure 1.
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Fig. 1. Nodes x and y share z as a mutual adversary, and so form an alliance.

Such triad closure is suggestive of an analysis of adversarial re-
lationships between nodes as one mechanism for link formation. For
instance, in social networks, we may consider both friendship ties
and enmity (or rivalry) between actors. We may also consider op-
posing networks of nation states or rival organizations, and consider
alliances formed by mutually shared adversaries. See [10] for a re-
cent study using the spatial location of cities to form an interaction
network, where links enable the flow of cultural influence, and may
be used to predict the rise of conflicts and violence. Another ex-
ample comes from market graphs, where the nodes are stocks, and
stocks are adjacent as a function of their correlation measured by
a threshold value θ ∈ (0, 1). Market graphs were considered in the
case of negatively correlated (or adversarial) stocks, where stocks are
adjacent if θ < α, for some positive α; see [1].

In the present paper, we consider a simplified, deterministic model
for anti-transitivity in complex networks. The Iterated Local Anti-
Transitivity (or ILAT) model duplicates nodes in each time-step by
forming anti-clone nodes, and joins them to the parent node’s non-
neighbor set. We give a precise definition of the model below in the
next section. Perhaps unexpectedly, graphs generated by the ILAT
model exhibit familiar properties of complex networks such as den-
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sification, small world properties, and bad spectral expansion (anal-
ogously to, but different from properties exhibited by ILT).

We organize the discussion in this extended abstract as follows. In
Section 2, we give a precise definition of the ILAT model and examine
its basic properties. We prove that graphs generated by ILAT den-
sify over time. We derive the density of ILAT graphs, and consider
their degree distribution. In Section 3, we prove that ILAT graphs
have diameter 3 for sufficiently large time-steps (regardless of the
initial graph). Further, we determine after several time-steps, ILAT
graphs have cop number 2 and domination number 3. We include in
Section 4 an analysis of the clustering coefficients and provide up-
per and lower bounds. The final section interprets our results within
real-world complex networks, and presents open problems derived
from the analysis of the model.

We consider undirected graphs throughout the paper. For back-
ground on graph theory, the reader is directed to [13]. Additional
background on complex networks may be found in the book [2].

2 The ILAT model

The Iterated Local Anti-Transitivity (or ILAT) model generates a
sequence (Gt : t ≥ 0) of graphs over a sequence of discrete time-steps.
The one parameter of the model is the initial graph G0. Assuming
the graph at time Gt is defined, we define Gt+1 as follows. For a given
node x ∈ V (Gt), define its anti-clone x′ as a new node adjacent to
non-neighbors of x. More precisely, x′ is adjacent to all nodes in
N c(x), where N c(x) = {y ∈ V (Gt) : xy 6∈ E(G)}. To form Gt+1, to
each node x add its anti-clone x′.

The intuition behind that model is that the anti-clone x′ is ad-
versarial with x, and non-neighbors of x (that is, its own adversaries)
become allied with x′. This process, therefore, iteratively applies the
triad closure in Figure 1. Note that the number of nodes doubles in
each time-step, and the set of anti-clones forms an independent set.
See Figure 2 for an example.

We introduce some simplifying notation. Let nt be the number of
nodes at time t, et be the number of edges at time t, and the degree
of a node x at time t will be denoted degt(x). We define the co-degree
of x at time t as degc

t(x) = nt− degt(x)− 1. It is straightforward to
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Fig. 2. An example of the first four time-steps of the ILAT model, where the initial
graph is the four-cycle C4.

note that for t ≥ 1, nt = 2nt−1 = 2tn0. Further, for an existing node
x ∈ V (Gt),

degt+1(x) = nt − 1 (1)

degt+1(x
′) = degc

t(x). (2)

The ILAT model generates graphs that densify as we prove next.
While the proof is elementary, the result is not a priori obvious
from the model. One interpretation is that in networks where anti-
transitivity is pervasive, we expect that many alliances form in the
network over time.
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Theorem 1. The ratio et/nt tends to infinity with t.

Proof. Note that by the definition of the model and (2), we have
that

et+1 = et +
∑

x∈V (Gt)

degt
c(x)

= et + nt
2 − 2et − nt

= nt
2 − et − nt.

Solving this recurrence, we derive that

et = nt−1
2

(

4

5

)(

1 −

(

−
1

4

t−1
))

− nt−1

(

2

3

)(

1 −

(

−
1

2

t−1
))

= 22t(n0)
2

(

1

5

)(

1 −

(

−
1

4

t−1
))

(1 − o(1)).

Hence, we obtain that et/nt = Ω(2t). ⊓⊔

Note that Theorem 1 immediately gives the limiting density of
ILAT graphs. Let Dt be the density of Gt; that is, Dt = et

(nt

2
)
.

Corollary 1. As t → ∞, we have that Dt → 2/5.

We next consider the degrees of vertices in the graph Gt. For each
node x at time t, we create its anti-clone x′ at time t + 1. Then at
time t+2 we create x′′ from x and (x′)′ from x′. For any node x that
was created at a time-step k < t, we have directly from (1) that

degt(x) =
nt

2
− 1.

If t > 1, then of the newly created nodes, half are anti-clones x′

of nodes x that have already existed at time t − 2, and therefore,
their degree at time t− 1 was

degt−1(x) =
nt−1

2
− 2 =

nt

4
− 1.
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These anti-clones have at time t,

degt(x
′) = nt−1 − degt−1(x) =

nt

4
+ 2.

Similarly, if t > 2 then there are nt

8
nodes y′′ created at time t

that are anti-clones of nodes y′ created at time t − 1 from nodes
y at least as old as t − 3. Then since by the previous argument
degt−1(y

′) = nt−1

4
+ 2, we have that

degt(y
′′) =

3nt

8
− 1.

If we continue in this fashion, then by induction we will find that at
time t, we have that 2−knt nodes have degree ak +(−1)k−12 provided
that for k < t:

a1 =
nt

2
− 1,

and

ak =
1

2
−

ak−1

2
.

If t > 1, then of the newly created nodes, half are anti-clones x′

of nodes x that already existed at time t− 2. Therefore, the degree
of those nodes x at time t− 1 was

degt−1(x) =
nt−1

2
− 1 =

nt

4
− 1.

Their new anti-clones x′ have, at time t,

degt(x
′) = nt−1 − degt−1(x) =

nt

4
+ 1.

Similarly, if t > 2 then there are nt

8
nodes y′′ created at time t

that are anti-clones of nodes y′ created at time t − 1 from nodes
y at least as old as t − 3. Then since by the previous argument
degt−1(y

′) = nt−1

4
+ 1, we have that

degt(y
′′) =

3nt

8
− 1.

If we continue in this fashion, then by induction we will find that at
time t, we have that 2−knt nodes of degree ak + (−1)k−12 provided
that for k < t:

a1 =
nt

2
− 2,
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and

ak =
1

2
−

ak−1

2
.

3 Distances and graph parameters

The distances within graphs generated by ILAT become very small,
with diameter 3. Hence, highly anti-transitive networks exhibit short
paths between nodes; this occurs at time-step t = 2, regardless of
the starting diameter of G0.

Theorem 2. Let t ≥ 2, then the diameter diam(Gt) of Gt is 3.

Note that the value t = 2 in Theorem 2 is sharp. For example, we
may take G0 to be a path of length 4. Or we may consider an initial
graph of K3, in which case the graph at t = 1 is disconnected.

Proof of Theorem 2. We show first that for t ≥ 1, the diameter of Gt

is at least 3. To see this, consider the distance between some node
x that existed at time t − 1 and its anti-clone x′ created at time t.
They are not adjacent and have no common neighbors, and so we
have that d(x, x′) ≥ 3.

We next show that for t ≥ 2, any two nodes that are not newly
created are at most distance 2 apart. For this, let x, y be two distinct
nodes that already existed at time t − 1. Since the node degree at
time t−1 is bounded by nt/4−1, by the pigeonhole principle there is
another node z that also existed at t−1 that is not adjacent to either
of them. Hence, z′ is adjacent to both nodes and so d(x, y) ≤ 2.

Let x′, y′ be two separate nodes newly anti-cloned from some
nodes x, y. Since the node degree at time t − 1 is bounded by
max{0, nt/4 − 1}, by the pigeonhole principle there is another node
z that also existed at t−1 that is not adjacent to either x or y. Then
z is adjacent to both x′ and y′, and so d(x′, y′) ≤ 2. Hence, any two
nodes that both newly created are at most distance 2 apart.

The only case we have not considered are pairs of nodes where
one is newly created and one is not. But if t ≥ 3, then every newly
created node has a neighbor that is not newly created and vice versa.
Therefore, any such pair can be connected by a path of length at
most 3. ⊓⊔
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The pairs of nodes we have not considered so far are ones where
exactly one node is newly created, but is not a anti-clone of the
other. If they are not adjacent, then we would like to know if they
have a common neighbor. Let the node that already existed at time
t − 1 be x, and the newly created node be y′, cloned from some
node y 6= x. Nodes x and y′ can have a common neighbor unless the
neighborhood of x at time t− 1 (other than possibly y itself) was a
subset of the neighborhood of y at time t − 1 (which would be the
case when x = y).

Theorem 3. If x and y are nodes of Gt that are not newly created

at time t, with t ≥ 2 and x 6= y, and it is not the case that both x
and y belonged to G0, then d(x, y′) ≤ 2.

Proof. Unless x and y are adjacent, we have that d(x, y′) = 1. So
suppose that x and y are adjacent. Suppose that they did not both
belong to the initial graph G0. Since they are adjacent, one of them
was created later than the other. If y was created later, then every
neighbor of x that was created at the same time as y is now a common
neighbor of x and y′. If x was created later, but before t − 1, then
every node adjacent to y but not x at the time produced a anti-clone
of the type we need. We are left with a case where x was created at
time t− 1, and y was created earlier.

We want to find a common neighbor of x and y′ that was created
at t − 2 or earlier. x was created at time t − 1, so it was cloned
from a node with has either nt/8 − 2, nt/16 + 2 or about nt/12
neighbors that already existed at time t − 1, and so x has either
nt/8 + 2, 3nt/16 − 2, or about nt/6 neighbors older than itself. By
the same argument, y′ has either nt/8+2, 3nt/16−2, or about nt/6
neighbors at least as old as t − 2. There are in total nt/4 nodes at
least as old as t− 2. So by the pigeonhole principle, they must have
such a neighbor in common. ⊓⊔

Let Lt denote the average distance at time t.

Corollary 2. The average distance Lt tends to 1.6 in t.

Proof. Notice that the number of pairs such that both x and y belong
to G0 is negligible, so will not change the average distance limit. Of
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the remaining pairs of vertices, a proportion of 0.4 are adjacent and
the rest are at distance 2. We can thus, conclude that

lim
t→∞

Lt = 1.6.

⊓⊔

We next turn to a brief discussion of the domination and cop
numbers of the ILAT graphs. As we have noticed with other parame-
ters such as the diameter and average distance, these two parameters
are bounded above by very small constants. For more on these graph
parameters, see [6] (we omit their definitions here as they are well-
known and owing to space constraints). As a possible interpretation
of these, we note that in networks exhibiting high anti-transitivity,
a few important nodes emerge (either dominating nodes, or mobile
agents represented by cops) which can reach all other nodes. Such
so-called superpower nodes organically emerge as important actors
in the network.

Theorem 4. In Gt such that t ≥ 3, the domination number is 3.

Proof. Let A = {x, x′, (x′)′} be as follows. For any 1 ≤ k ≤ t− 1, let
x be a node that existed at time k−1 and x′ be the time-k anti-clone
of x. Let x′′ be the time-(k+1) anti-clone of x′. Then any node of Gt

not in A is either adjacent to x′, adjacent to x′′, or a node created
at time k + 1 that is not adjacent to x′, in which case it must be
adjacent to x. Therefore, A is a dominating set of Gt.

If t ≥ 1, then we can never find a dominating set of size 2.
The node degrees are bounded by nt

2
− 2. Therefore, the union of

neighborhoods of any two nodes contains at most nt − 4 nodes. ⊓⊔

Theorem 5. If t ≥ 2, then the cop number of Gt is 2.

Proof. In a simple, omitted argument, if t ≥ 2, the cop number of Gt

is never 1. We now describe how two cops may capture the robber.
Fix v ∈ V (Gt−1). Then each vertex of Gt−1 is adjacent to one of v
or v′. Place the cops on v and v′. Hence, the robber must begin on
an anti-clone say u′ newly created at time t not adjacent to either
v or v′. Now there must be an x in Gt joined to u′, otherwise, u is
a universal vertex in Gt−1 which is a contradiction (here is where
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we use t ≥ 2). It is straightforward to show that there is a perfect
matching between x, x′ and v, v′, and so the cops move to x, x′.
The robber must move to a vertex z in Gt−1. But z is joined to one
of x or x′ and the robber is caught in the next move. ⊓⊔

Note that we must have t ≥ 2 in Theorem 5 or the cop number
could be larger than 2. For example, if G0 is a K3, then G1 is the
disjoint union of K3 and K3, which has cop number 4.

4 Clustering coefficient

For a node v, define ct(v) to be the (local) clustering coefficient of
the node v at time t. We note that in the ILAT model, older nodes
exhibit significant local clustering over time.

Theorem 6. Let k ∈ N. For node v created at time k, with t > k,
if limt→∞ ct(v) exists, then we have that

lim
t→∞

ct(v) = 0.4.

Hence, the clustering coefficient of a node v tends to 0.4 as v grows
old, which matches the density of the graph.

Proof of Theorem 6. Let c′t(v) = c′t be the density of v’s non-neighbor-
hood set at time t, and let c′′t (v) = c′′t be the density between the
neighborhood and the non-neighborhood of v. Hence, the number of
edges with both endpoints in the neighborhood of v is ct(v)

(

deg
t
(v)

2

)

,
the number of edges with both endpoints in the non-neighborhood
of v is c′t

(

nt−deg
t
(v)−1

2

)

, the number of edges with one endpoint in
the neighborhood of v, and the remaining number of edges in the
non-neighborhood of v is c′′t degt(v)(nt − degt(v) − 1).

We write a ∼ b if a = b(1+o(1)). For large t, we may approximate
the degree by degt(v) ∼ nt − degt(v) − 1 ∼ nt

2
. Further, since the

total number of edges in the graph tends to 0.4
(

nt

2

)

, we have that

ct + c′t + 2c′′t
4

∼
2

5
,



11

and

c′t ∼
8

5
− ct − 2c′′t .

Then we may determine ct+1(v) = ct+1 by counting the edges with
both endpoints in the neighborhood of v at time t+ 1. These are ei-
ther the same edges that contributed to ct(v), or edges between the t-
time neighborhood of v and the anti-clones of its non-neighborhood,
giving the following equations:

ct+1

(

nt

2

)

∼ ct

(

nt/2

2

)

+ (1 − c′′t )
nt

2

4
,

ct+1 ∼
ct
4

+
1 − c′′t

2
.

Further, we have that

c′′t+1 =
c′′t
4

+
1 − c′t

4
+

1 − ct
4

c′′t+1 =
c′′t
4

+
1 − 2

5
+ ct(v) + 2c′′t

4
+

1 − ct
4

, and

c′′t+1 =
3c′′t + 2

5

4
.

By hypothesis, the limiting value of ct exists and we call this quantity
c. In particular, we have that for a sufficiently large t that, ct(v) ∼
ct+1 ∼ ct+1 ∼ c. We have that

ct+2 =
ct+1

4
+

1 − c′′t+1

2
=

ct+1

4
+

3

4

1 − c′′t
2

+
1 − 2

5

8
,

and so ct+2 = ct+1 −
3ct
16

+ 3
40
. By taking the limit as t → ∞, we have

that 3
16
c = 3

40
, and the result follows. ⊓⊔

An open problem remains to prove that the limiting value of ct
exist. Further, computing the value of the clustering coefficient of Gt

remains open.

5 Spectral expansion

For a graph G = (V,E) and sets of nodes X, Y ⊆ V , define E(X, Y )
to be the set of edges in G with one endpoint in X and the other
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in Y. For simplicity, we write E(X) = E(X,X). The normalized
Laplacian of a graph relates to important graph properties; see [7]
for a reference. Let A denote the adjacency matrix and D denote the
diagonal degree matrix of a graph G. Then the normalized Laplacian
of G is L = I − D−1/2AD−1/2. Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 ≤
2 denote the eigenvalues of L. The spectral gap of the normalized
Laplacian is defined as

λ = max{|λ1 − 1|, |λn−1 − 1|}.

A spectral gap bounded away from zero is an indication of bad ex-
pansion properties, which is characteristic for social networks; see [9].
The next theorem represents a drastic departure from the good ex-
pansion found in binomial random graphs, where λ = o(1); see [7,8].

Theorem 7. If λt is the spectral gap of Gt, then λt ≥ 3/5 + o(1).

To prove Theorem 7, we use the expander mixing lemma for the
normalized Laplacian (see [7] for its proof). For sets of nodes X and
Y we use the notation vol(X) =

∑

v∈X deg(v) for the volume of X ,
X̄ = V \X for the complement of X , and, e(X, Y ) for the number of
edges with one end in each of X and Y. (Note that X ∩ Y does not
have to be empty; in general, e(X, Y ) is defined to be the number
of edges between X \ Y to Y plus twice the number of edges that
contain only nodes of X ∩ Y . In particular, e(X,X) = 2|E(X)|.)

Lemma 1. For all sets X ⊆ V (Gt),

∣

∣

∣

∣

e(X,X) −
(vol(X))2

vol(Gt)

∣

∣

∣

∣

≤ λt
vol(X)vol(X̄)

vol(Gt)
.

Proof of Theorem 7. Let X be the set of nt/2 the youngest nodes.
Since X induces an independent set, we note that e(X,X) = 0. We
derive that

vol(Gt) ∼ 2nt
2/5,

vol(X̄) ∼ nt
2/4, and

vol(X) = vol(Gt) − vol(X̄) ∼ 3nt
2/20,
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where the second expression holds as (nt/2)-many of the oldest nodes
have degree ∼ nt/2. Hence, by Lemma 1, we have that

λt ≥
(vol(X))2

vol(Gt)
·

vol(Gt)

vol(X)vol(X̄)
=

vol(X)

vol(X̄)
∼ 3/5,

and the proof follows. ⊓⊔

6 Discussion and future work

We introduced the Iterated Local Anti-Transitivity (ILAT) model
for complex networks and analyzed properties of the graphs it gen-
erates. We proved that graphs generated by ILAT densify over time,
have diameter 3, and have density tending to 0.4. ILAT graphs have
small dominating sets and low cop number. We analyzed the clus-
tering coefficient of ILAT graphs, and noted that while older nodes
show high (local) clustering, the (global) clustering coefficient is less
than what is expected in binomial random graphs with the same
expected degree. In addition, we showed that graphs generated by
ILAT exhibit bad spectral expansion as found in social networks.

Theoretical results presented here for the ILAT model are sugges-
tive of several emergent properties in networks where anti-transitivity
governs link formation. For instance, the presence of small (3-element)
dominating sets suggest the emergence of nodes we describe as su-

perpowers, which have broad influence in the network. Such nodes
may emerge naturally in real-world networks which are highly anti-
transitive, owing to a high number of alliances against common ad-
versaries. Similarly, the presence of short paths, high density, and
high (local) clustering of older nodes in ILAT graphs suggests that
networks, where common adversaries forge alliances, naturally form
tight-knit communities that are well-connected. In the sequel, it
would be interesting to empirically test these hypotheses with real-
world networked data.

Besides applications of the ILAT model, it raises a number of
interesting graph-theoretic questions. An open problem remains to
compute the clustering coefficient for ILAT graphs. Another question
is to determine the induced subgraph structure of such graphs. A
characterization of the induced subgraphs of ILAT graphs (that is,
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to determine its age) remains open. For example, do all finite trees
appear as induced subgraphs of ILAT graphs?
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