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Abstract. Myriad problems can be described in hypergraph terms. How-
ever, the theory and tools are not sufficiently developed to allow most
problems to be tackled directly within this context. The main purpose
of this paper is to increase the awareness of this important gap and to
encourage the development of this formal theory, in conjunction with
the consideration of concrete applications. As a starting point, we con-
centrate on the problem of finding (small) subhypergraphs in a (large)
hypergraph. Many existing algorithms reduce this problem to the known
territory of graph theory by considering the 2-section graph. We argue
that this is not the right approach, neither from a theoretical point of
view (by considering a generalization of the classic model of binomial
random graphs to hypergraphs) nor from a practical one (by performing
experiments on two datasets).
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1 Introduction

Myriad problems can be described in hypergraph terms. However, the theory
and tools are not sufficiently developed to allow most problems to be tackled
directly within this context. Hypergraphs are of particular interest in the field of
knowledge discovery, where most problems currently modelled as graphs would
be more accurately modelled as hypergraphs. Researchers in the knowledge dis-
covery field are particularly interested in the generalization of the concepts of
modularity and diffusion to hypergraphs. Such generalizations require a firm
theoretical basis on which to develop these concepts. Unfortunately, although
hypergraphs were formally defined in the 1960s (and various realizations of hy-
pergraphs were studied long before that), the general formal theory is not as
mature as required for the applications of interest to many industry partners
or governments. The main purpose of this paper is to increase the awareness of
this important gap and to encourage the development of this formal theory, in
conjunction with the consideration of concrete applications.

In order to illustrate the issue, let us consider the following “toy exam-
ple.” Consider the coauthorship hypergraph in which vertices correspond to
researchers and each hyperedge consists of the set of authors listed on a sci-
entific paper. We have two goals for this dataset. As a first goal, we would like



to determine the Erdős number of every researcher (zero for Erdős, one for coau-
thors of Erdős, two for coauthors of coauthors of Erdős, etc.). Our second goal
is to find a minimum set of authors who between them cover all the papers in
the subhypergraph consisting only of the seminal papers in a particular field.

Often even though a dataset is naturally represented as a hypergraph we do
not work directly on the hypergraph. Instead we reduce the hypergraph to its
2-section graph (the 2-section graph of a hypergraph is obtained by making each
hyperedge a clique; see Section 2 for a formal definition) or a weighted version of
the 2-section. Taking a 2-section of a hypergraph loses some of the information
about hyperedges of size greater than 2. Sometimes losing this information does
not affect our ability to answer the questions of interest. For example, the Erdős
number of an author is the minimum distance between the author’s vertex and
Erdős’ vertex in the hypergraph and this distance is not changed by taking the
2-section. Other times the information lost when taking the 2-section prevents us
answering the question of interest. This is the case for our second goal of finding
a minimum set of authors that cover a set of papers. In the hypergraph this goal
means finding a minimum set of vertices that are incident with every hyperedge
of interest. However, taking the 2-section of the hypergraph loses the information
about the set of papers that a particular author covers. In fact, the 2-section
does not even retain how many papers exist. Basically, if the composition of the
hyperedges of size greater than 2 is important in solving a problem than solving
the problem in the 2-section is going to be difficult or impossible.

Besides the information loss, there is another potential downside to working
with the 2-section of a hypergraph. Namely, that the 2-section can be much
denser than the hypergraph since a single hyperedge of size k implies

(
k
2

)
edges

in the 2-section. Depending on the dataset and algorithm being executed the
increased density of the 2-section can have a significant detrimental affect on
the runtime.

In this paper, we shall be interested in finding subhypergraphs in hyper-
graphs. While the composition of the hyperedges of size greater than 2 matters
when answering this question, it is natural to ask whether 2-section graphs can
be used to help answer the question. That is, when determining whether or not
a hypergraph H contains H1 as a subhypergraph, is it useful to look for GH1

,
the 2-section of H1, in GH , the 2-section of H? Clearly there are many ways
that GH1 could appear in GH without H1 appearing in H. An obvious tech-
nique would be to use the existing graph theoretical tools to find all copies of
GH1

in GH and then simply inspect them, one by one, in the original hyper-
graph. So perhaps reducing the hypergraph to its 2-section can be used to solve
the problem. Maybe in most networks that are considered in practice, any two
subhypergraphs inducing the same graph in the 2-section occur with the same
probability? This would be desirable, as it would mean that the above technique
does not waste a lot of time dealing with subhypergraphs that we are not in-
terested in finding. Of course, even if the 2-section can be used in this way for
finding subhypergraphs, the increased density of the 2-section may lead to the
graph theoretical tools used being quite inefficient.



In order to deal with the question of the false positive rate of GH1
in GH ,

we introduce a natural generalization of Erdős-Rényi (binomial) random graphs
to non-uniform random hypergraphs. We study (rigorously, via theorems with
proofs) occurrences of a given hypergraph in the random hypergraph. One of the
implications of our work is that two hypergraphs H1, H2 that induce the same
subgraph in the 2-section can have drastically different thresholds for appear-
ance. This suggests that the answer to the latest question is “no,” and that we
have lost something by considering only the 2-section. Assuming that hyperedges
in the network we try to analyze occur randomly, our theorems imply that there
might be very few (if any) copies of H1 (the hypergraph we are looking for in the
network) but plenty of copies of H2 (the hypergraph we do not care about). So
the algorithm discovers a lot of potential candidates but none of them is what
we are looking for!

We investigate two real-world networks: an email hypergraph and the coau-
thorship hypergraph that was already mentioned. Not surprisingly, we confirm
that hypergraphs that are not distinguishable in the 2-section graph occur with
different probabilities (as predicted by the model). Hence we feel that using ex-
isting graph algorithms on the 2-section can be and often is lacking and that
the research community needs to develop more algorithms that deal with hyper-
graphs directly.

While non-uniform random hypergraphs might serve as the very first model of
the real-world hypergraphs, the assumption that events that occur in the network
are independent is likely not reasonable. Perhaps of particular importance is
a notion of clustering coefficient; there have been a number of proposals for
generalizing clustering coefficient from graphs to hypergraphs, for instance [1, 5,
11, 14, 15]. In the longer journal version of this paper we compute the hypergraph
clustering coefficient of [15] for our random hypergraph model and the two real
networks we are investigating. With the knowledge and experience we gathered,
we feel that we are better prepared to propose a probabilistic model that is more
suitable. However, it is left for the forthcoming papers.

Due to space limitation, all proofs and details of a set of experiments we
performed in this project are omitted in this proceedings version but will be
included in the journal version of this paper.

2 Definitions and Conventions

2.1 Random graphs and random hypergraphs

First, let us recall a classic model of random graphs. The binomial random graph
G (n, p) is the random graph G with vertex set [n] := {1, 2, . . . , n} in which every

pair {i, j} ∈
(
[n]
2

)
appears independently as an edge in G with probability p.

Note that p = p(n) may (and usually does) tend to zero as n tends to infinity.
In this paper, we are concerned with more general combinatorial objects:

hypergraphs. A hypergraph H is an ordered pair H = (V,E), where V is a finite
set (the vertex set) and E is a family of distinct subsets of V (the hyperedge



set). A hypergraph H = (V,E) is r-uniform if all hyperedges of H are of size
r. For a given r ∈ N, the random r-uniform hypergraph Hr(n, p) has n labelled
vertices from a vertex set V = [n], in which every subset e ⊆ V of size |e| = r is
chosen to be a hyperedge of H randomly and independently with probability p.
For r = 2, this model reduces to the model G (n, p).

The binomial random graph model is well known and thoroughly studied
(e.g. [3, 12, 10]). Random hypergraphs are much less understood and, unfortu-
nately, most of the existing papers deal with uniform hypergraphs. For example,
Hamilton cycles (both tight ones and loose ones) were recently studied in [7–9];
perfect matchings were investigated in [13] (for a few more examples see the
recent book on random graphs [10]).

In this paper, we are concerned with a natural generalization of this model
that produces non-uniform hypergraphs. Let p = (pr)r≥1 be any sequence of
numbers such that 0 ≤ pr = pr(n) ≤ 1 for each r ≥ 1. The random hypergraph
H (n,p) has n labelled vertices from a vertex set V = [n], in which every subset
e ⊆ V of size |e| = r is chosen to be a hyperedge of H randomly and indepen-
dently with probability pr. In other words, H (n,p) =

⋃
r≥1 Hr(n, pr) is a union

of independent uniform hypergraphs.
Let us mention that there are several natural generalizations that might be

worth exploring, depending on a specific application in mind. One possible gen-
eralization would be to allow hyperedges to contain repeated vertices (multiset-
hyperedge hypergraphs). Another one would be to allow the hyperedges to be
chosen with possible repetitions, to get parallel hyperedges.

A vertex of a hypergraph is isolated if it is contained in no edge. (In particular,
a vertex of degree 1 that belongs only to an edge of size 1 is not isolated.) The
2-section of a hypergraph H, denoted [H]2, is the graph on the same vertex set
as H and an edge uv if (and only if) u and v are contained in some edge of H.
In other words, it is obtained by making each hyperedge of H a clique in [H]2.

2.2 Subgraphs

In this paper, we are concerned with occurrences of a given substructure in hy-
pergraphs. However, there are at least two natural generalizations of “subgraph”
for hypergraphs.

A hypergraph H ′ = (V ′, E′) is a strong subhypergraph (called hypersubgraph
by Bahmanian and Sajna [2] and partial hypergraph by Duchet [6]) of H = (V,E)
if V ′ ⊆ V and E′ ⊆ E; that is, each hyperedge of H ′ is also an hyperedge of H.
We write H ′ ⊆s H when H ′ is a strong subhypergraph of H. For H = (V,E)
and V ′ ⊆ V , the strong subhypergraph of H induced by V ′, denoted Hs[V

′], has
vertex set V ′ and hyperedge set E′ = {e ∈ E : e ⊆ V ′}.

The hypergraph H ′ is a weak subhypergraph of H (called subhypergraph by
Bahmanian and Sajna) if V ′ ⊆ V and E′ ⊆ {e ∩ V ′ : e ∈ E}; that is, each
hyperedge of H ′ can be extended to one of H by adding vertices of V \ V ′ to it.
For V ′ ⊆ V , the weak subhypergraph induced by V ′, denoted Hw[V ′], has vertex
set V ′ and hyperedge set E′ = {e∩V ′ : e ∈ E}. For this paper however, since we
desire our hypergraphs to never contain the empty hyperedge, we tacitly replace



E′ by E′ \ {∅}. For now, weak subgraphs are assumed not to have multiple
hyperedges (E′ is a set, not a multiset).

Note that when G is an ordinary (i.e. 2-uniform) graph, strong subhyper-
graphs are the usual notion of subgraph, and weak subhypergraphs are subgraphs
together with possible hyperedges of size 1. Note that each strong subhypergraph
is also a weak subhypergraph but not vice versa.

Given hypergraphs H1 and H2, a weak (resp. strong) copy of H1 in H2 is a
weak (resp. strong) subhypergraph of H2 isomorphic to H1. Most of this paper
is concerned with determining the existence of strong or weak copies of a fixed
H in H (n,p). With a mild abuse of terminology, we will often say that H
contains H as a weak (strong) subhypergraph when we actually mean that H
contains a weak (strong) copy of H. The precise meaning will always be clear
from the context.

H1 H2

Fig. 1. The hypergraph H1 appears as a weak subhypergraph of H2 (induced by the
dashed vertex subset), but not as a strong subhypergraph.

3 Small subgraphs in H (n, p).

We are interested in answering questions about the existence of subgraphs within
H (n,p). This question was addressed for G (n, p) by Bollobás in [4]. We are
going to generalize his result to hypergraphs but first we we need a few more
definitions. Let H = (V,E) be a hypergraph. Denote by v(H) = |V | and by
e(H) = |E| the number of vertices and edges of H, respectively. For any r ≥ 1,
we will use er(H) = |{e ∈ E : |e| = r}| to denote the number of edges of H of
size r.

Define
µs(H) = nv(H)

∏
r≥1

per(H)
r . (1)

Now we are ready to state our result for the appearance of strong subgraphs of
H (n,p). We adopt the convention that 00 = 1 and assume all our hypergraphs
have nonempty vertex set.

Theorem 1. Let H be an arbitrary fixed hypergraph. Let p = (pr)r≥1 be any
sequence such that 0 ≤ pr = pr(n) ≤ 1 for each r ≥ 1. Let J denote the family
of all strong subgraphs of H.



(a) If for some H ′ ∈ J we have µs(H
′) → 0 (as n → ∞), then a.a.s. H (n,p)

does not contain H as a strong subgraph.
(b) If for all H ′ ∈ J we have µs(H

′) → ∞ (as n → ∞), then a.a.s. H (n,p)
contains H as a strong subgraph.

Let us mention that the result also holds for the multiset setting: that is, when
vertices are allowed to be repeated in each hyperedge with some multiplicity.
Moreover, if additionally there exists ε > 0 such that pr ≤ 1− ε, for all r, then
the same conditions (that is, conditions (a) and (b) of Theorem 1) determine
whether or not H appears as an induced strong subgraph.

In view of Theorem 1, we emphasize that the existence of strong copies of
H in H (n,p) cannot be determined by translating to graphs via 2-sections.
For instance, consider the three hypergraphs H1, H2 and H3 from Figure 2.
Each of these has H1 as its 2-section. However, the expected number of strong
copies of H1, H2 and H3 in H (n,p) is, respectively, of order n4p52, n4p22p3, and
n4p23. So if, say, p3 = n−5/2 and p2 = n−3/4, then we expect many copies of
H1, a constant number of copies of H2, and o(1) copies of H3. Moreover, by
testing the conditions of Theorem 1 for all the strong subgraphs of H1, H2, H3,
we obtain that a.a.s. H (n,p) contains H1 but not H3 as a strong subgraph (and
the theorem is inconclusive for H2).

H1 H2 H3

Fig. 2. These three hypergraphs have the same 2-section, which is precisely H1, but
their behaviour as potential strong subgraphs of H (n,p) is different.

Now we move to our result for the appearance of weak subgraphs of H (n,p).
For technical reasons, we restrict ourselves to hypergraphs with bounded edge
sizes. Formally, for a given M ∈ N, we say that H = (V,E) is an M -bounded
hypergraph if |e| ≤ M for all e ∈ E. Similarly, p = (pr)r≥1 is an M -bounded
sequence if pr = 0 for r > M . We will use p = (pr)Mr=1 for an M -bounded
sequence instead of an infinite sequence p = (pr)r≥1 with a bounded number of
non-zero values. Clearly, if p is M -bounded, then so is H (n,p) (with probability
1). For r ∈ [M ], let

p′r = pr + npr+1 + n2pr+2 + · · ·+ nM−rpM , (2)

and, given any fixed hypergraph H, define

µw(H) = nv(H)
M∏
r=1

(p′r)er(H), (3)



which will play an analogous role to µs(H).

Theorem 2. Let H be an arbitrary fixed hypergraph, and let J be the collection
of all strong subgraphs of H. Let p = (pr)Mr=1 be an M -bounded sequence.

(a) If for some H ′ ∈ J we have µw(H ′)→ 0 (as n→∞), then a.a.s. H (n,p)
does not contain H as a weak subgraph.

(b) If for all H ′ ∈ J we have µw(H ′) → ∞ (as n → ∞), then a.a.s. H (n,p)
contains H as a weak subgraph.

H

−→

J

Fig. 3. A hypergraph J and an induced weak hypergraph H with different thresholds
for appearance as strong subgraphs.

We shall discuss a few relevant points concerning Theorem 2. First, it is
possible that a.a.s. some graph occurs as a weak subgraph but not as a strong
one. For example, if

p1 = n−0.6, p2 = n−0.9, p3 = n−1.7, and p4 = n−3.1, (4)

then a.a.s. H (n,p) does not contain graph H (presented on Figure 3) as a strong
subgraph but a.a.s. it contains J (also presented on Figure 3) and so a.a.s. it
contains H as a weak subgraph.

Next, observe that if we replace J in the statement of Theorem 2 by the
collection Jw of all weak subgraphs of H, the theorem remains valid. This is
trivially true for part (b), since Jw ⊇ J . For part (a), a few easy modifications
in the proof are necessary which will be mentioned in the journal version of this
paper.

Finally, let us comment on the definition of p′r, and introduce related pa-
rameters p′′r and p′′′r , which will play a role later on. Our particular choice of p′r
in (3) and thus in the statement of Theorem 2 is the simplest function from the
equivalence class of all functions of the same order. However, the following one
is more natural (as argued below). For r ∈ [M ], let

p′′r = pr + npr+1 +

(
n

2

)
pr+2 + · · ·+

(
n

M − r

)
pM . (5)

Note that p′r and p′′r are of the same order. More precisely,

(1 + o(1))
p′r

(M − r)!
≤ p′′r ≤ p′r.



Hence, p′r can be replaced in (3) by the more natural (but less simple) p′′r , and
Theorem 2 remains valid. It is worth noting that both p′r and p′′r can be greater
than one or even tend to infinity as n→∞. Indeed, p′′r is not a probability but
rather is asymptotic to the expected number of edges to which a given set of size
r belongs. In contrast, the probability that such a set belongs to some edge is

p′′′r = 1− (1− pr)(1− pr+1)n−r(1− pr+2)(
n−r
2 ) · · · (1− pM )(

n−r
M−r). (6)

Observe that, if p′r = o(1) (or equivalently p′′r = o(1)), then p′′r , p
′′
r+1, . . . , p

′′
M =

o(1), and therefore

p′′′r = 1− exp

(
−(1 + o(1))

(
pr + npr+1 +

(
n

2

)
pr+2 + · · ·+

(
n

M − r

)
pM

))
= 1− exp (−(1 + o(1))p′′r ) ∼ p′′r , (7)

so p′′r and p′′′r asymptotically coincide.

4 Induced weak subgraphs

Let us discuss how one can use Theorem 2 to determine whether H appears as an
induced weak subgraph of H (n,p). This seems to be more complex than in the
case of strong subgraphs:the non-edges of H play a crucial role in determining
the existence of induced weak copies. Indeed, a weak subgraph H of H (n,p) is
induced provided that, for every set e of vertices of H that do not form an edge,
e cannot be extended to an edge of H (n,p) by adding vertices not in H.

First, we will give some conditions that forbid a.a.s. the existence of weak
induced copies of H in H (n,p) (even if H does appear as a weak subgraph).

Proposition 1. Let H be an arbitrary fixed hypergraph on k vertices with a
non-edge of size r (1 ≤ r ≤ k). Suppose p′′r ≥ (k + ε) log n for some constant
ε > 0. Then, a.a.s. H does not occur as an induced weak subgraph of H (n,p).

As a result, the condition p′′r ≥ (k + ε) log n implies that, if H is an induced
weak subgraph of H (n,p) of order k, then H must contain all possible edges
of size r. Coming back to our example with H from Figure 3 and pi’s from (4),
note that p′′1 ∼

(
n
2

)
p3 ∼ n0.3/2. Thus, a.a.s. H will not occur as an induced weak

subgraph of H (n,p), as not every vertex of H belongs to an edge of size 1.
On the other hand, suppose that r ≥ 1 is the size of the smallest non-edge

of H and assume that

max{p′′′r , p′′′r+1, . . . , p
′′′
M} ≤ 1− ε (8)

for some constant ε > 0. Then any given weak copy of H in H (n,p) is also
induced with probability bounded away from zero. In that case, the same calcu-
lations in the proof of Theorem 2 (that is omitted in this version) are still valid
with an extra Θ(1) factor, and thus the conclusions of that theorem extend to
induced weak subgraphs. Since verifying condition (8) may sometimes be slightly
unwieldy, we will give a simpler sufficient condition.



Proposition 2. Let H be an arbitrary fixed hypergraph, and let r be the size
of its smallest non-edge. Suppose that pr ≤ 1 − ε for some constant ε > 0 and
that p′r = O(1) (and, as a result, p′′r = O(1) too). If the conditions in part (b)
of Theorem 2 are satisfied, then a.a.s. H (n,p) contains H as an induced weak
subgraph.

Let us come back to our example from Figure 3 and (4) for the last time.
Note that p′′2 ∼ np3 = n−0.7 = o(1). Hence, if the “missing” edges of size 1 are
added to H, then a.a.s. the resulting graph would occur as an induced weak
subgraph of H (n,p).

5 The 2-section of H (n, p)

We first consider the question of whether a given (2-uniform) graph G appears
as a subgraph of the 2-section of H (n,p). We again may assume that G has no
isolated vertices.

Let us start with some general observations that apply for any host hyper-
graph H , not necessarily H (n,p). Observe that G ⊆ [H ]2 if and only if there
is a weak subhypergraph H of H such that G is a spanning subgraph of [H]2.
So we may test for G ⊆ [H ]2 by finding every hypergraph H with G a spanning
subgraph of [H]2 and applying Theorem 2 to each. We can reduce the number
of hypergraphs that need to be tested: if H1 is a weak subhypergraph of H2 and
H2 is a weak subhypergraph of H , then H1 is also a weak subhypergraph of
H . Note too that a spanning weak subhypergraph is actually a strong subhy-
pergraph. So it suffices to check only the hypergraphs H that are minimal—with
respect to the (strong) subhypergraph relation—that have G as a spanning sub-
graph of their 2-section.

In H (n,p), one can reduce the number of hypergraphs H to be tested even
further. A subedge system of a hypergraph H is a hypergraph obtained from H
by taking a subset of each edge of H and taking a (strong) subhypergraph of the
result. Let H1 be a subedge system of H2 and let H2 be a weak subhypergraph
of H. It is not necessarily true that H1 is a weak subhypergraph of H, but it is
true a.a.s. for H = H (n,p).

Proposition 3. Let H1 and H2 be fixed hypergraphs with H1 a spanning subedge
system of H2, and let p be M -bounded. Let J1 and J2 denote the set of all strong
subgraphs of H1 and H2, respectively. If every H ′2 ∈ J2 satisfies µw(H ′2) → ∞,
then every H ′1 ∈ J1 also satisfies µw(H ′1)→∞.

Corollary 1. Fix a (2-uniform) graph G without isolated vertices. Let F denote
the family of minimal—with respect to the subedge system relation—hypergraphs
containing G in their 2-section. Let p be M -bounded.

(a) If for every H ∈ F there is some strong subgraph H ′ ⊆s H with µw(H ′)→ 0,
then a.a.s. G is not a subgraph of [H (n,p)]2.

(b) If for some H ∈ F every strong subgraph H ′ ⊆s H satisfies µw(H ′) → ∞,
then a.a.s. G is a subgraph of [H (n,p)]2.



We next consider the following problem. Suppose that a copy of G is found
in [H (n,p)]2. We would like to estimate the probability that this copy comes
from a given weak subhypergraph of H (n,p).

Let G be a fixed 2-uniform graph with no isolated vertices. Let F denote
the family of hypergraphs H on the same vertex set as G such that G ' [H]2.
Then, G appears as an induced subgraph of [H (n,p)]2 if and only if some H ∈ F
appears as an induced weak subhypergraph of H (n,p). More precisely, for every
set of vertices S inducing a copy of G in [H (n,p)]2, there is exactly one H ∈ F
such that S induces a weak copy of H in H (n,p). We say in that case that
hypergraph H originates that particular copy of G. As a result we have the
following proposition.

Proposition 4. Let p = (pr)Mr=1 be an M -bounded sequence. For r ∈ [M ], let
p′′′r be defined as in (6). Then, given a copy of G in [H (n,p)]2, the probability
that it originates from a given H ∈ F is

(1 + o(1))
aut(H)

∏M
r=1(p′′′r )er(H)(1− p′′′r )(

v(G)
r )−er(H)∑

H′∈F aut(H ′)
∏M

r=1(p′′′r )er(H′)(1− p′′′r )(
v(G)

r )−er(H′)
.

Instead of determining which specific H ∈ F originates a copy of G in the 2-
section of H (n,p), we may take equivalence classes in F given their r-edge
counts. To that end, define the signature of H ∈ F as the vector e(H) =
(e1(H), e2(H), . . . , ek(H)), where k = v(G) (and hence also k = v(H)). Let
e(F) = {e(H) : H ∈ F}. For a given signature e ∈ e(F), let Fe ⊆ F be the
family of hypergraphs in F with signature e. Notice that {Fe : e ∈ e(F)} is a
partition of F . Then, the following useful result holds.

Corollary 2. Let p = (pr)Mr=1 be an M -bounded sequence. For r ∈ [M ], let p′′′r
be defined as in (6). Then, given a copy of G in [H (n,p)]2, the probability that
it originates from a hypergraph with a given signature e = (m1,m2, . . . ,mk) ∈
e(F) is

(1 + o(1))

∑
H∈Fe

aut(H)
∏k

r=1(p′′′r )mr (1− p′′′r )(
v(G)

r )−mr∑
H′∈F aut(H ′)

∏k
r=1(p′′′r )er(H′)(1− p′′′r )(

v(G)
r )−er(H′)

.

The following example illustrates how, under natural assumptions on p,
Corollary 2 implies that a copy of G in [H (n,p)]2 “typically” originates from a
hypergraph H ∈ F with few but large edges rather than many but small edges.
Let G = Kk (i.e. the clique of order k) for a fixed k ≥ 2, and suppose that p
is an M -bounded sequence satisfying

(
n
j

)
pj = O(n) for all j ∈ [M ]. The latter

condition is equivalent to assuming that the expected number of edges of each
given size is at most linear in the number of vertices, which is a fairly reasonable
assumption for many relevant models of hypergraph networks. Suppose addi-
tionally that for some r with k ≤ r ≤ M we also have

(
n
r

)
pr = Ω(n). From (7),

we obtain that p′′′j = O(1/nj−1) for every j ∈ [M ] and p′′′k = Θ(1/nk−1). Con-

sider the signature ê = (0, . . . , 0, 1) corresponding to the hypergraph Ĥ on k



vertices with one single edge of size k. A straightforward inductive argument
reveals that, for any signature e = (m1,m2, . . . ,mk) ∈ e(F),

k∏
r=1

(p′′′r )mr (1− p′′′r )(
k
r)−mr =

{
(1 + o(1))p′′′k = Θ(1/nk−1) if e = ê

o(1/nk−1) if e 6= ê.

As a result, applying Corollary 2 to all signatures different from ê, we conclude
that, for a given copy of G in [H (n,p)]2, a.a.s. it must originate from Ĥ.

6 Experiments

We performed a number of experiments on two real-world datasets that are
naturally represented as a hypergraph network. Our goal was to compare the
results with the corresponding theoretical predictions. Due to space limitation,
the details are omitted in this version but will be included in the journal version
of this paper.

The experiments we performed confirmed the intuition that the fact that
some set of vertices S forms a hyperedge should increase the probability that
some proper subset of S belongs to some other hyperedge. Moreover, in many
instances, the correlation seems to be so strong that not only having one hyper-
edge increases substantially the probability that another hyperedge intersects it
but it is more likely that there will be another hyperedge intersecting it than
not. Of course, such behaviour is not present in our theoretical model in which
events are independent. In order to understand the behaviour we experience,
some notion of “clustering coefficient” has to be introduced in the hypergraph
setting. Again, the details are omitted here but will be included in the journal
version of this paper.

7 Conclusions and future work

The goal of the larger project behind this paper is to propose a reasonable
model for complex networks using hypergraphs, as they seem more suitable for
many existing networks and associated applications. Whereas there are many
models using graphs (classic ones such as G (n, p), random d-regular graphs,
and PA model, as well as spatial ones such as random geometric graphs and
SPA model), there are very few using hypergraphs. In order to better under-
stand micro-processes that shape macro-properties that are observed in these
networks, we introduced the random hypergraphs and investigated some prop-
erties of it in order to compare them with two real-world networks. These results
are interesting from a pure random graph theory perspective but, of course, we
did not expect such models to work well in practice; we did it to learn why they
do not work. As is common in this field, such an exercise taught us a lot, and we
feel that we are now better prepared to design a more suitable model, probably
combining both geometry and the “rich get richer” paradigm. However, it is left
for the forthcoming papers.
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