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Abstract. Benjamini, Shinkar, and Tsur stated the following conjecture on the ac-

quaintance time: asymptotically almost surely AC(G) ≤ p−1 logO(1) n for a random
graph G ∈ G(n, p), provided that G is connected. Recently, Kinnersley, Mitsche, and
the second author made a major step towards this conjecture by showing that asymp-
totically almost surely AC(G) = O(log n/p), provided that G has a Hamiltonian cycle.
In this paper, we finish the task by showing that the conjecture holds in the strongest
possible sense, that is, it holds right at the time the random graph process creates
a connected graph. Moreover, we generalize and investigate the problem for random
hypergraphs.

1. Introduction

In this paper, we study the following graph process, which was recently introduced
by Benjamini, Shinkar, and Tsur [5]. Let G = (V,E) be a finite connected graph. We
start the process by placing one agent on each vertex of G. Every pair of agents sharing
an edge is declared to be acquainted, and remains so throughout the process. In each
round of the process, we choose some matching M in G. (M need not be maximal;
perhaps it is a single edge.) For each edge of M , we swap the agents occupying its
endpoints, which may cause more agents to become acquainted. The acquaintance time
of G, denoted by AC(G), is the minimum number of rounds required for all agents to
become acquainted with one another.

It is clear that

AC(G) ≥
(|V |

2

)
|E|
− 1, (1)

since |E| pairs are acquainted initially, and at most |E| new pairs become acquainted in

each round. In [5], it was shown that always AC(G) = O( n2

logn/ log logn
), where n = |V |.

A small progress was made in [14] where it was proved that AC(G) = O(n2/ log n).
This general upper bound was recently improved in [3] to AC(G) = O(n3/2), which was
conjectured in [5] and is tight up to a multiplicative constant. Indeed, for all functions
f : N → N with 1 ≤ f(n) ≤ n3/2, there are families {Gn} of graphs with |V (Gn)| = n
for all n such that AC(Gn) = Θ(fn). The problem is similar in flavour to the problems
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of Routing Permutations on Graphs via Matchings [2], Gossiping and Broadcasting [11],
and Target Set Selection [13, 7, 17].

A hypergraph H is an ordered pair H = (V,E), where V is a finite set (the vertex
set) and E is a family of disjoint subsets of V (the edge set). A hypergraph H = (V,E)
is r-uniform if all edges of H are of size r. In this paper, we consider the acquaintance
time of random r-uniform hypergraphs, including binomial random graphs. For a given
r ∈ N \ {1}, the random r-uniform hypergraph Hr(n, p) has n labelled vertices from
a vertex set V = [n] := {1, 2, . . . , n}, in which every subset e ⊆ V of size |e| = r is
chosen to be an edge of H randomly and independently with probability p. For r = 2,
this model reduces to the well known and thoroughly studied model G(n, p) of binomial
random graphs. (See, for example, [6, 12], for more.) Note that p = p(n) may tend to
zero (and usually does) as n tends to infinity. All asymptotics throughout are as n→∞
(we emphasize that the notations o(·) and O(·) refer to functions of n, not necessarily
positive, whose growth is bounded). We say that an event in a probability space holds
asymptotically almost surely (or a.a.s.) if the probability that it holds tends to 1 as n
goes to infinity.

Let G ∈ G(n, p) with p = p(n) ≥ (1 − ε) log n/n for some ε > 0. Recall that
AC(G) is defined only for connected graphs, and log n/n is the sharp threshold for
connectivity in G(n, p)—see, for example, [6, 12] for more. Hence, we will not be
interested in sparser graphs. It follows immediately from Chernoff’s bound that a.a.s.
|E(G)| = (1 + o(1))

(
n
2

)
p. Hence, from the trivial lower bound (1) we have that a.a.s.

AC(G) = Ω(1/p). Despite the fact that no non-trivial upper bound on AC(G) was
known, it was conjectured in [5] that a.a.s. AC(G) = O(poly log(n)/p). Recently,
Kinnersley, Mitsche, and the second author of this paper made a major step towards
this conjecture by showing that a.a.s. AC(G) = O(log n/p), provided that G has a
Hamiltonian cycle, that is, when pn− log n− log log n→∞. (See [14] for more.)

In this paper, we finish the task by showing that the conjecture holds above the
threshold for connectivity.

Theorem 1.1. Suppose that p = p(n) is such that pn− log n→∞. For G ∈ G(n, p),
a.a.s.

AC(G) = O

(
log n

p

)
.

In fact, we prove the conjecture in the strongest possible sense, that is, we show
that it holds right at the time the random graph process creates a connected graph.
Before we state the result, let us introduce one more definition. We consider the Erdős-
Rényi random graph process, which is a stochastic process that starts with n vertices
and no edges, and at each step adds one new edge chosen uniformly at random from
the set of missing edges. Formally, let N =

(
n
2

)
and let e1, e2, . . . , eN be a random

permutation of the edges of the complete graph Kn. The graph process consists of
the sequence of random graphs (G(n,m))Nm=0, where G(n,m) = (V,Em), V = [n], and
Em = {e1, e2, . . . , em}. It is clear that G(n,m) is a graph taken uniformly at random
from the set of all graphs on n vertices and m edges. (As before, see, for example, [6, 12]
for more details.)
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Note that in the missing window in which the conjecture is not proved, we have
p = (1 + o(1)) log n/n and so an upper bound of O(log n/p) is equivalent to O(n).
Hence, it is enough to show the following result, which implies Theorem 1.1 as discussed
at the beginning of Section 3.

Theorem 1.2. Let M be a random variable defined as follows:

M = min{m : G(n,m) is connected}.
Then, for G ∈ G(n,M), a.a.s.

AC(G) = O (n) .

Fix r ∈ N\{1}. For an r-uniform hypergraph H = (V,E), there are a number of ways
one can generalize the problem. At each step of the process, we continue choosing some
matching M of agents and swapping the agents occupying its endpoints; two agents can
be matched if there exists e ∈ E such that both agents occupy vertices of e. However,
this time we have more flexibility in the definition of being acquainted. We can fix
k ∈ N such that 2 ≤ k ≤ r, and every k-tuple of agents sharing an edge is declared to
be k-acquainted, and remains so throughout the process. The k-acquaintance time of
H, denoted by ACkr (H), is the minimum number of rounds required for all k-tuples of
agents to become acquainted. Clearly, for any graph G, AC22(G) = AC(G).

We show the following result for random r-uniform hypergraphs. Note that p =
(r−1)! logn

nr−1 is the sharp threshold for connectivity so the assumption for the function p
in the statement of the result is rather mild but could be weakened.

Theorem 1.3. Let r ∈ N \ {1}, let k ∈ N be such that 2 ≤ k ≤ r, and let ε > 0 be any

real number. Suppose that p = p(n) is such that p ≥ (1+ε) (r−1)! logn
nr−1 . For H ∈ Hr(n, p),

a.a.s.

ACkr (H) = Ω

(
max

{
1

pnr−k
, 1

})
and ACkr (H) = O

(
max

{
log n

pnr−k
, 1

})
.

Throughout the paper, we will be using the following concentration inequalities. Let
X ∈ Bin(n, p) be a random variable with the binomial distribution with parameters n
and p. Then, a consequence of Chernoff’s bound (see e.g. [12, Corollary 2.3]) is that

P(|X − EX| ≥ εEX) ≤ 2 exp

(
−ε

2EX
3

)
(2)

for 0 < ε < 3/2. This inequality will be used many times but at some point we will
also apply the bound of Bernstein (see e.g. [12, Theorem 2.1]) that for every x > 0,

P (X ≥ (1 + x)EX) ≤ exp

(
− x2EX

2(1 + x/3)

)
. (3)

The paper is structured as follows. In Section 2, we investigate the existence of long
paths in Hr(n, p). Our result works for any r ≥ 2 and will be used in both graphs
and hypergraphs. In Section 3, we deal with random graphs (r = 2) and random
hypergraphs (r ≥ 3) are dealt in Section 4. We finish the paper with a few remarks.
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2. Existence of long paths in Hr(n, p)

For positive integers k, r and ` satisfying ` = k(r − 1) + 1, we say that an r-uniform
hypergraph L is a loose path of length ` if there exist an ordering of the vertex set,
(v1, v2, . . . , v`), and an ordering of the edge set, (e1, e2, . . . , ek), such that each edge
consists of r consecutive vertices, that is, for every i, ei = {v(i−1)(r−1)+q : 1 ≤ q ≤ r},
and each pair of consecutive edges intersects on a single vertex, that is, for every i,
ei ∩ ei+1 = {vi(r−1)+1}. Note that the ordering (v1, v2, . . . , v`) of vertices can be used to
completely describe L.

In this section we show that even very sparse random hypergraphs contain long loose
paths. This generalizes a well-known result of Ajtai, Komlós and Szemerédi [1] that
holds for random graphs.

Lemma 2.1. For fixed r ∈ N \ {1} and real number 0 < δ < 1, there is a positive
constant c = c(r, δ) such that for H ∈ Hr(n, p) with p = c/nr−1

P (H has a loose path of length at least δn) ≥ 1− exp(−n).

(For expressions such as δn that clearly have to be an integer, we round up or down but
do not specify which: the reader can choose either one, without affecting the argument.)

Proof. We will apply a depth first search algorithm in order to explore vertices of
H = (V,E) ∈ Hr(n, p) extending some ideas from [15]. Set

c = c(r, δ) =
2(r − 1)! log 4
1−δ

2(r−1)

(
1−δ
2

)r−1 .
(Let us note that we make no effort to optimize c here.) In every step of the process,
V is partitioned into the following four sets:

• P – ordered set of vertices representing a loose path (v1, v2, . . . , v`) of length `,
• U – set of unexplored vertices that have not been reached by the search yet,
• W and W̃ – sets of explored vertices that no longer play a role in the process.

We start the process by assigning to P an arbitrary vertex v from V and setting
U = V \ {v}, W = W̃ = ∅. (Note that it is vacuously true that L = ({v}, ∅), a
hypergraph consisting of one vertex and no edge, is a loose path.) Suppose that at
some point of the process we found a path P = (v1, v2, . . . , v`) of length `. If there
exists a set f = {u1, u2, . . . , ur−1} ⊆ U of size r − 1 such that f ∪ {v`} ∈ E, then we
extend the path by adding the edge {v`, u1, u2, . . . , ur−1} to the path; vertices of f are
removed from U . (After this operation, P = (v1, v2, . . . , v`, u1, u2, . . . , ur−1) has length
` + (r − 1).) Otherwise, that is, if no such set f can be found in U , then v` is moved
from P to W and, depending on the value of `, we have two cases. If ` 6= 1 (which
implies that, in fact, ` ≥ r), then vertices v`−1, v`−2, . . . , v`−(r−2) are moved from P to

W̃ . (After this operation, P = (v1, v2, . . . , v`−(r−1)) has length `−(r−1).) If ` = 1, then
we simply take an arbitrary vertex from U and restart the process by taking P = (v)
of length 1.

Now, let us assume that H has no loose path of length at least δn. Therefore, in
every step of the algorithm ` < δn. Moreover, the process ends with U = ∅ and
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|W |+ |W̃ | = |V |− |P | > (1− δ)n. Hence, since (r−2)|W | ≥ |W̃ |, we have |W | > 1−δ
r−1n.

Observe that in each step of the process either the size of W increases by one or the
size of U decreases by at most r − 1 (actually, the size of U decreases either by 1 or
r − 1). Thus, at some stage we must have |W | = 1−δ

2(r−1)n and

|U | = |V | − |P | − |W | − |W̃ | > n− δn− |W | − (r − 2)|W | = 1− δ
2

n.

Furthermore, note that there is no edge e between U and W such that |U ∩ e| = r − 1
and |W ∩ e| = 1.

For fixed sets U and W satisfying |U | = 1−δ
2
n and |W | = 1−δ

2(r−1)n, let e(U,W ) be the

number of edges e between U and W in H for which |U ∩ e| = r − 1 and |W ∩ e| = 1.
Then,

P(e(U,W ) = 0) = (1− p)|W |(
|U|
r−1)

≤ exp

(
−(1 + o(1))

c

nr−1
· 1− δ

2(r − 1)
n ·
(

1− δ
2

n

)r−1
/ (r − 1)!

)
= exp(−(1 + o(1))2n log 4),

and consequently by taking the union over all disjoint subsets U,W ⊆ V satisfying
|U | = 1−δ

2
n and |W | = 1−δ

2(r−1)n, we obtain

P (H has no loose path of length at least δn) ≤ P

(⋃
U,W

e(U,W ) = 0

)
≤ 2n2n exp(−(1 + o(1))2n log 4) = exp(−(1 + o(1))n log 4) ≤ exp(−n),

as required. �

In order to prove Theorem 1.3 we will also need the following result about Hamil-
tonian paths in Hr(n, p), which follows from a series of papers [10, 8, 9] devoted to
loose Hamiltonicity of random hypergraphs. Observe that if an r-uniform hypergraph
of order n contains a loose Hamiltonian path (that is, a loose path that covers each
vertex of H), then necessarily r − 1 must divide n− 1.

Lemma 2.2 ([10, 8, 9]). For fixed integer r ≥ 3, let p = p(n) be such that pnr−1/ log n
tends to infinity together with n and H ∈ Hr(n, p). Then, a.a.s. H has a loose Hamil-
tonian path provided that r − 1 divides n− 1.

3. Random graphs

Let us start with the following two comments. First of all, note the following: when-
ever G2 is a subgraph of G1 on the same vertex set, AC(G1) ≤ AC(G2), since the agents
in G1 have more edges to use. Hence, Theorem 1.2 implies that for any m ≥M we also
have that a.a.s. AC(G) = O (n), G ∈ G(n,m).

Second of all, it is known that the two models (G(n, p) and G(n,m)) are in many cases
asymptotically equivalent, provided

(
n
2

)
p is close to m. For example, Proposition 1.12

in [12] gives us the way to translate results from G(n,m) to G(n, p).
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u6

v2v1 v3 v4 v5 v6 v7

u1 u3 u4 u5

Figure 1. A good tree.

Lemma 3.1. Let P be an arbitrary property, p = p(n), and c ∈ [0, 1]. If for every
sequence m = m(n) such that

m =

(
n

2

)
p+O

(√(
n

2

)
p(1− p)

)
it holds that P(G(n,m) ∈ P )→ c as n→∞, then also P(G(n, p) ∈ P )→ c as n→∞.

Using this lemma, Theorem 1.2 implies immediately Theorem 1.1. Indeed, suppose
that p = p(n) = (log n+ ω)/n, where ω = ω(n) tends to infinity together with n. One
needs to investigate G(n,m) for m = n

2
(log n+ω+ o(1)). It is known that in this range

of m, a.a.s. G(n,m) is connected (that is, a.a.s. M < m). Theorem 1.2 together with
the first observation imply that a.a.s. AC(G(n,m)) = O (n), and Theorem 1.1 follows
from Lemma 3.1.

In order to prove Theorem 1.2, we will show that at the time when G(n,m) becomes
connected (that is, at time T ), a.a.s. it contains a certain spanning tree T with AC(T ) =
O(n). For that, we need to introduce the following useful family of trees. A tree T is
good if it consists of a path P = (v1, v2, . . . , vk) (called the spine), some vertices (called
heavy) that form a set {ui : i ∈ I ⊆ [k]} that are connected to the spine by a perfect
matching (that is, for every i ∈ I, ui is adjacent to vi). All other vertices (called light)
are adjacent either to vi for some i ∈ [k] or to ui for some i ∈ I (see Figure 1 for an
example).

We will use the following result from [5] (Claim 2.1 in that paper).

Claim 3.2 ([5]). Let G = (V,E) be a tree. Let S, T ⊆ V be two subsets of the vertices
of equal size k = |S| = |T |, and let ` = maxv∈S,u∈T dist(v, u) be the maximal distance
between a vertex in S and a vertex in T . Then, there is a strategy of ` + 2(k − 1)
matchings that routes all agents from S to T .

Now, we are ready to show that this family of trees is called good for a reason.

Lemma 3.3. Let T be a good tree on n vertices. Then, AC(T ) = O(n). Moreover,
there exists an acquaintance strategy with O(n) steps in which every agent visits every
vertex of the spine.
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Proof. Let us call agents occupying the spine P = (v1, v2, . . . , vk) active. First, we will
show that there exists a strategy ensuring that within 6k rounds every active agent gets
acquainted with everyone else and, moreover, that she visits every vertex of the spine.

For 1 ≤ i ≤ k − 1, let ei = vivi+1. The strategy is divided into 2k phases, each
consisting of 3 rounds. On odd-numbered phases, swap active agents on all odd-indexed
edges; then, swap every active agent adjacent to a heavy vertex (that is, agent occupying
vertex vi for some i ∈ I) with non-active agent (occupying ui), and then repeat it again
so that all active agents are back onto the spine. On even-numbered phases, swap
agents on all even-indexed edges, followed by two rounds of swapping with non-active
agents, as it was done before. This has the following effect. Agents that begin on
odd-indexed vertices move “forward” in the vertex ordering, pause for one round at vk,
move “backward”, pause again at v1, and repeat; agents that begin on even-indexed
vertices move backward, pause at v1, move forward, pause at vk, and repeat. Since T is
good, every non-active agent was initially adjacent to some vertex of the spine or some
heavy vertex. Hence, after 2k phases, each active agent has traversed the entire spine
taking detours to heavy vertices, if needed; in doing so, she has necessarily passed by
every other agent (regardless whether active or non-active).

It remains to show that agents can be rotated so that each agent is active at some
point. Note that the diameter of T is O(k). Partition the n agents into dn/ke teams,
each of size at most k. We iteratively route a team onto the spine, call them active,
apply the strategy described earlier for the active team, and repeat until all teams
have traversed the spine. Thus, by Claim 3.2, each iteration can be completed in O(k)
rounds, so the total number of rounds needed is dn/ke ·O(k) = O(n). �

As we already mentioned, our goal is to show that at the time when G(n,m) becomes
connected, a.a.s. it contains a good spanning tree T . However, it is easier to work
with G(n, p) model instead of G(n,m). Lemma 3.1 provides us with a tool to translate
results from G(n,m) to G(n, p). The following lemma works the other way round, see,
for example, (1.6) in [12].

Lemma 3.4. Let P be an arbitrary property, let m = m(n) be any function such that
m ≤ n log n, and take p = p(n) = m/

(
n
2

)
. Then,

P(G(n,m) ∈ P ) ≤ 3
√
n log n · P(G(n, p) ∈ P ).

We will also need the following lemma.

Lemma 3.5. Consider G = (V,E) ∈ G(n, log log log n/n). Then, for every set A of
size 0.99n the following holds. For a set B of size O(n0.03) taken uniformly at random
from V \ A, B induces a graph with no edge with probability 1− o((n log n)−1/2).

Since the statement of the lemma is slightly technical, let us explain it a bit more.
There are

(
n

0.99n

)
sets of size 0.99n and, since all of them have the desired property, let

us focus on any set A of such cardinality. Clearly, one should expect many sets of size
O(n0.03) lying outside of A that induce some edges. However, we claim that a random
set B ⊆ V \ A of such cardinality induces no edge with the desired probability.

Proof. Fix a vertex v ∈ V . The expected degree of v is (1+o(1)) log log log n. It follows
from Bernstein’s bound (3), applied with x = c log n/ log log log n for c large enough,
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that with probability o(n−2), v has degree larger than, say, 2c log n. Thus, the union
bound over all vertices of G implies that with probability 1−o((n log n)−1/2) all vertices
have degrees at most 2c log n. Since we aim for such a probability, we may assume that
G is a deterministic graph that has this property.

Now, fix any set A of size 0.99n. Regardless of our choice of A, clearly, every vertex
of V \A has at most 2c log n neighbours in V \A. Take a random set B from V \A of
size O(n0.03) and fix a vertex v ∈ B. The probability that no neighbour of v is in B is
at least (

0.01n−1−2c logn
|B|−1

)(
0.01n−1
|B|−1

) = 1−O
(
n0.03 log n

n

)
= 1−O

(
n−0.97 log n

)
.

Hence, the probability that some neighbour of v is in B is O (n−0.97 log n). Consequently,
the union bound over all vertices of B implies that with probability O (n−0.94 log n) there
is at least one edge in the graph induced by B. The proof of the lemma is finished. �

Finally, we are ready to prove the main result of this paper.

Proof of Theorem 1.2. Let M− = n
2
(log n− log log n) and let M+ = n

2
(log n+ log log n);

recall that a.a.s. M− < M < M+. First, we will show that a.a.s. G(n,M−) contains a
good tree T and a small set S of isolated vertices. Next, we will show that between
time M− and M+ a.a.s. no edge is added between S and light vertices of T . This will
finish the proof, since G(n,M) is connected and so at that point of the process, a.a.s.
vertices of S must be adjacent to the spine or heavy vertices of T , which implies that
a.a.s. there is a good spanning tree. The result will follow then from Lemma 3.3.

As promised, let p− = M−/
(
n
2

)
= (log n − log log n + o(1))/n and consider G(n, p−)

instead of G(n,M−). In order to avoid technical problems with events not being indepen-
dent, we use a classic technique known as two-round exposure (known also as sprinkling
in the percolation literature). The observation is that a random graph G ∈ G(n, p)
can be viewed as a union of two independently generated random graphs G1 ∈ G(n, p1)
and G2 ∈ G(n, p2), provided that p = p1 + p2 − p1p2 (see, for example, [6, 12] for more
information).

Let p1 := log log log n/n and

p2 :=
p− − p1
1− p1

=
log n− log log n− log log log n+ o(1)

n
.

Fix G1 ∈ G(n, p1) and G2 ∈ G(n, p2), with V (G1) = V (G2) = V , and view G ∈
G(n, p−) as the union of G1 and G2. It follows from Lemma 2.1 that with probability
1 − o((n log n)−1/2), G1 has a long path P = (v1, v2, . . . , vk) of length k = 0.99n (and
thus G has it too). This path will eventually become the spine of the spanning tree.

Now, we expose edges of G2 in a very specific order dictated by the following algo-
rithm. Initially, A consists of vertices of the path (that is, A = {v1, v2, . . . , vk}), B = ∅,
and C = V \ A. At each step of the process, we take a vertex v from C and expose
edges from v to A. If an edge from v to some vi is found, we change the label of v to
ui, call it heavy, remove vi from A, and move ui from C to B. Otherwise (that is, if
there is no edge from v to A), we expose edges from v to B. If an edge from v to some
heavy vertex ui is found, we call v light, and remove it from C. Clearly, at the end of
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this process we are left with a small (with the desired probability, as we will see soon)
set C and a good tree T1. Let X = |C| be the random variable counting vertices not
attached to the tree yet. Since at each step of the process |A|+ |B| is precisely 0.99n,
we have

EX = 0.01n
(
1− p2

)0.99n
= (0.01 + o(1)) exp

(
log n− 0.99(log n− log log n− log log log n)

)
= (0.01 + o(1))n0.01

(
(log n)(log log n)

)0.99
.

Note that X is, in fact, a binomial random variable Bin(0.01n, (1 − p2)0.99n). Hence,
it follows from Chernoff’s bound (2) that X = (1 + o(1))EX with probability 1 −
o((n log n)−1/2). Now, let Y be the random variable counting how many vertices not on
the path are not heavy. Arguing as before, since at each step of the process |A| ≥ 0.98n,
we have

EY ≤ 0.01n
(
1− p2

)0.98n
= (0.01 + o(1))n0.02

(
(log n)(log log n)

)0.98
.

Clearly, Y ≥ X and so EY is large enough for Chernoff’s bound (2) to be applied again
to show that Y = (1 + o(1))EY with probability 1− o((n log n)−1/2).

Our next goal is to attach almost all vertices of C to T1 in order to form another,
slightly larger, good tree T2. Consider a vertex v ∈ C and a heavy vertex ui of T1.
Obvious, yet important, property is that when edges emanating from v were exposed
in the previous phase, exactly one vertex from vi, ui was considered (recall that when
ui is discovered as a heavy vertex, vi is removed from A). Hence we may expose these
edges and try to attach v to the tree. From the previous argument, since we aim for
a statement that holds with probability 1 − o((n log n)−1/2), we may assume that the
number of heavy vertices is at least 0.01n− n0.03. For the random variable Z counting
vertices still not attached to the path, we get

EZ = (1 + o(1))EX
(
1− p2

)0.01n−O(n0.03)

= (0.01 + o(1))n0.01
(
(log n)(log log n)

)0.99
× exp

(
− 0.01(log n− log log n− log log log n)

)
= (0.01 + o(1))

(
(log n)(log log n)

)
,

and so Z = (1 + o(1))EZ with probability 1− o((n log n)−1/2) by Chernoff’s bound (2).
Let us stop for a second and summarize the current situation. We showed that

with the desired probability, we have the following structure. There is a good tree T2
consisting of all but at most (log n)(log log n) vertices that form a set S. T2 consists of
the spine of length 0.99n, 0.01n − O(n0.03) heavy vertices and O(n0.03) light vertices.
Edges between S and the spine and between S and heavy vertices are already exposed
and no edge was found. On the other hand, edges within S and between S and light
vertices are not exposed yet. However, it is straightforward to see that with the desired
probability there is no edge there neither, and so vertices of S are, in fact, isolated in
G2. Indeed, the probability that there is no edge in the graph induced by S and light
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vertices is equal to(
1− p2

)O(n0.06)
= exp

(
−O(n0.06 log n/n)

)
= 1− o((n log n)−1/2).

Finally, we need to argue that vertices of S are also isolated in G1. The important
observation is that the algorithm we performed that exposed edges in G2 used only the
fact that vertices of {v1, v2, . . . , v0.99n} form a long path; no other information about
G1 was ever used. Hence, set S together with light vertices is, from the perspective of
the graph G1, simply a random set of size O(n0.03) taken from the set of vertices not
on the path. Lemma 3.5 implies that with probability 1 − o((n log n)−1/2) there is no
edge in the graph induced by this set. With the desired property, G(n, p) consists of a
good tree T and a small set S of isolated vertices and so, by Lemma 3.4, a.a.s. it is also
true in G(n,M−).

It remains to show that between time M− and M+ a.a.s. no edge is added between S
and light vertices of T . Direct computations for the random graph process show that
this event holds with probability((n

2

)
−M− −O(n0.06)

M+ −M−

)
/

((n
2

)
−M−

M+ −M−

)
=

M+−M−−1∏
i=0

(
n
2

)
−M− −O(n0.06)− i(

n
2

)
−M− − i

=

(
1− O(n0.06)

n2

)M+−M−

= 1− O(n0.06 log log n)

n
→ 1

as n→∞, since M+ −M− = O(n log log n). The proof is finished. �

4. Random hypergraphs

First, let us mention that the trivial bound for graphs (1) can easily be generalized
to r-uniform hypergraphs and any 2 ≤ k ≤ r:

ACkr (H) ≥
(|V |
k

)
|E|
(
r
k

) − 1.

For H = (V,E) ∈ Hr(n, p) with p > (1+ε) (r−1)! logn
nr−1 for some ε > 0, we get immediately

that a.a.s.

ACkr (H) = Ω

(
1

pnr−k

)
,

since the expected number of edges in H is
(
n
r

)
p = Ω(n log n) and so the concentration

follows from Chernoff’s bound (2). Hence, the lower bound in Theorem 1.3 holds.
Now we prove the upper bound. In order to do it, we will split Theorem 1.3 into two

parts and then, independently, prove each of them.

Theorem 1.3a. Let r ∈ N \ {1}, let k ∈ N be such that 2 ≤ k ≤ r, and let ε > 0 be

any real number. Suppose that p = p(n) = (1 + ε) (r−1)! logn
nr−1 . For H ∈ Hr(n, p), a.a.s.

ACkr (H) = O(nk−1) = O

(
log n

pnr−k

)
.
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Theorem 1.3b. Let r ∈ N\{1}, let k ∈ N be such that 2 ≤ k ≤ r, and let ω = ω(n) be
any function tending to infinity together with n. Suppose that p = p(n) = ω logn

nr−1 . For
H ∈ Hr(n, p), a.a.s.

ACkr (H) = O

(
max

{
log n

pnr−k
, 1

})
.

Note that when, say, p ≥ 2k(r − k)! logn
nr−k , the expected number of k-tuples that do

not get acquainted initially (that is, those that are not contained in any hyperedge) is
equal to(

n

k

)
(1− p)(

n−k
r−k) ≤ exp

(
k log n− (1 + o(1))2k(r − k)!

log n

nr−k
· nr−k

(r − k)!

)
= o(1),

and so, by Markov’s inequality, a.a.s. every k-tuple gets acquainted immediately and
ACkr (H) = 0. This is also the reason for taking the maximum of the two values in the
statement of the result.

For a given hypergraph H = (V,E), sometimes it will be convenient to think about
its underlying graph H̃ = (V, Ẽ) with {u, v} ∈ Ẽ if and only if there exists e ∈ E such
that {u, v} ⊆ e. Clearly, two agents are matched in H̃ if and only if they are matched
in H. Therefore, we may always assume that agents walk on the underlying graph of H.

Let H = (V,E) be an r-uniform hypergraph. A 1-factor of H is a set F ⊆ E such
that every vertex of V belongs to exactly one edge in F . Moreover, a 1-factorization
of H is a partition of E into 1-factors, that is, E = F1 ∪ F2 ∪ · · · ∪ F`, where each
Fi is a 1-factor and Fi ∩ Fj = ∅ for all 1 ≤ i < j ≤ `. Denote by Kr

n the complete
r-uniform hypergraph of order n (that is, each r-tuple is present). We will use the
following well-known result of Baranyai [4].

Lemma 4.1 ([4]). If r divides n, then Kr
n is 1-factorizable.

(Clearly the number of 1-factors is equal to
(
n
r

)
r
n

=
(
n−1
r−1

)
.) The result on factorization

is helpful to deal with loose paths.

Lemma 4.2. Let r ∈ N \ {1} and let k ∈ N be such that 2 ≤ k ≤ r. For a loose
r-uniform path Pn on n vertices,

ACkr (Pn) = O(nk−1).

Moreover, every agent visits every vertex of the path.

Proof. First, we claim that the number of steps, f(n), needed for agents to be moved
to any given permutation of [n], the vertex set of Pn, satisfies f(n) = O(n). For that
we will use the fact that the underlying graph P̃n contains a classic path (graph) P̄n of
length n as a subgraph. Now, P̄n can be split into two sub-paths of lengths dn/2e and
bn/2c, respectively, and then agents are directed to the corresponding sub-paths that
takes O(n) steps by Claim 3.2. We proceed recursively, performing operations on both
paths (at the same time) to get that

f(n) = O(n) + f(dn/2e) = O(n).

The claim holds.
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Let N be the smallest integer such that N ≥ n and N is divisible by k − 1. Clearly,
N − n ≤ k − 2. Lemma 4.1 implies that Kk−1

N on the vertex set V (Kk−1
N ) = [N ] ⊇

[n] = V (Pn) is 1-factorizable. Let Ei for 1 ≤ i ≤
(
N−1
k−2

)
be the corresponding 1-factors.

Obviously, |Ei| = N
k−1 for each i. Let Fi = {e ∩ [n] : e ∈ Ei}. This way we removed all

vertices that are not in Pn and so Fi ⊆ V (Pn) for each 1 ≤ i ≤
(
N−1
k−2

)
and every k-tuple

from V (Pn) is in some Fi. Call every member of Fi a team. Moreover, let us mention
that, since at most k − 2 vertices are removed, no team reduces to the empty set and
so |Fi| = N

k−1 for each i.
Let us focus for a while on F1. By the above claim we can group all teams of F1

on Pn in O(n) rounds (using an arbitrary permutation of teams, one team next to the
other; see also Remark 4.3). We treat teams of agents as super-vertices that form an
(abstract) super-path of length ` = |F1| = N/(k − 1). As in the proof of Lemma 3.3,
we are going to design the strategy ensuring that within O(n) rounds every team of
agents gets acquainted with every other agent and, moreover, that every agent visits
every vertex of P . Let ui be the i-th super-vertex corresponding to the i-th team. For
1 ≤ i ≤ ` − 1, let ei = uiui+1. The strategy is divided into 2` phases, each consisting
of O(1) rounds. (The number of rounds is a function of k.) On odd-numbered phases,
swap teams agents on all odd-indexed edges. On even-numbered phases, swap teams
agents on all even-indexed edges. This guarantees that every pair of teams eventually
meets, as discussed in the proof of Lemma 3.3. (Note that super-vertices on the super-
path in the current argument correspond to vertices on the path in the argument used
in Lemma 3.3.) The only difference is that this time swapping teams usually cannot
be done in one round but clearly can be done in O(1) rounds. (For example, the first
agent from the second team swaps with each agent from the first team to move to the
other side of the underlying path P̃n. This takes at most k − 1 swaps. Then the next
agent from the second team repeats the same, and after at most (k − 1)2 rounds we
are done; the number of rounds would be precisely (k − 1)2 if swaps are done in the
‘bubble sort’ manner which is fine for our purpose but clearly sub-optimal.) Moreover,
this procedure can be done in such a way that each team meets each agent from the
passing team on some hyperedge of Pn. This might require additional O(1) rounds but
can easily be done. (Indeed, note that the set of vertices corresponding to the two
super-vertices used must contain a set of k vertices all of which belong to the same
hyperedge of Pn. So, for example, the first team consisting of at most k − 1 agents
can go to such set and let every agent from the second team to pass them, meeting the
whole team at some point, and come back to the initial position. The teams swap roles
and finally do the swap.)

After O(n) steps, each team from F1 consisting of k− 1 agents, is k-acquainted with
each agent. Repeating this process for each Fi yields the desired strategy for the total
of
(
N−1
k−2

)
·O(n) = O(nk−1) rounds. �

Remark 4.3. As we already mentioned, in the previous proof, the order in which teams
are distributed for a given 1-factor was not important. One can fix an arbitrary order
or, say, a random one that will turn out to be a convenient way of dealing with some
small technical issue in the proof of Theorem 1.3b.
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It remains to prove the two theorems.

Proof of Theorem 1.3a. As in the proof of Theorem 1.2, we use two-round exposure
technique: H ∈ Hr(n, p) can be viewed as the union of two independently generated

random hypergraphs H1 ∈ Hr(n, p1) and H2 ∈ Hr(n, p2), with p1 := ε
2
· (r−1)! logn

nr−1 and

p2 :=
p− p1
1− p1

≥ p− p1 =
(

1 +
ε

2

) (r − 1)! log n

nr−1
.

It follows from Lemma 2.1 that a.a.s. H1 has a long loose path P of length δn (and
thus H has it, too), where δ ∈ (0, 1) can be made arbitrarily close to 1, as needed.

Now, we will use H2 to show that a.a.s. every vertex not on the path P belongs to
at least one edge of H2 (and thus H, too) that intersects with P . Indeed, for a given
vertex v not on the path P , the number of r-tuples containing v and at least one vertex
from P is equal to

s =

(
n− 1

r − 1

)
−
(

(1− δ)n− 1

r − 1

)
= (1 + o(1))

(
nr−1

(r − 1)!
− ((1− δ)n)r−1

(r − 1)!

)
= (1 + o(1))

nr−1

(r − 1)!

(
1− (1− δ)r−1

)
,

and so the probability that none of them occurs as an edge in H2 is

(1−p2)s ≤ exp

(
−(1 + o(1))

(
1 +

ε

2

) (r − 1)! log n

nr−1
· nr−1

(r − 1)!

(
1− (1− δ)r−1

))
= o(n−1),

after taking δ close enough to 1. The claim holds by the union bound.
The rest of the proof is straightforward. We partition all agents into (k + 1) groups,

A1, A2, . . . , Ak+1, each consisting of at least bn/(k+1)c agents. Since δ can be arbitrarily
close to 1, we may assume that dn/(k + 1)e > (1− δ)n. For every i ∈ [k + 1], we route
all agents from all groups but Ai and some agents from Ai to P , and after O(nk−1)
rounds they get acquainted by Lemma 4.2. Since each k-tuple of agents intersects at
most k groups, it must get acquainted eventually, and the proof is complete. �

Proof of Theorem 1.3b. First we assume that ω = ω(n) ≤ nk−1 and r− 1 divides n− 1.
As usual, we consider two independently generated random hypergraphs H1 ∈ Hr(n, p1)
and H2 ∈ Hr(n, p2), with p1 := ω

2
· logn
nr−1 and p2 > p−p1 = p1. It follows from Lemma 2.2

that a.a.s. H1 has a Hamiltonian path P = (v1, v2, . . . , vn).
Let C be a large constant that will be determined soon. We cut P into (ω/C)1/(k−1)

loose sub-paths, each of length ` := (C/ω)1/(k−1)n; there are r−2 vertices between each
pair of consecutive sub-paths that are not assigned to any sub-path for a total of at
most r` = r · (ω/C)1/(k−1) ≤ rnC−1/(k−1) vertices, since ω ≤ nk−1. This can be made
smaller than, say, dn/(k + 1)e, provided that C is large enough. We will call agents
occupying these vertices to be passive; agents occupying sub-paths will be called active.
Active agents will be partitioned into units, with respect to the sub-path they occupy.
Every unit performs (independently and simultaneously) the strategy from Lemma 4.2
on their own sub-path. After s := O(Cnk−1/ω) rounds, each k-tuple of agents from the
same unit will be k-acquainted.
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Now, we will show that a.a.s. every k-tuple of active agents, not all from the same
unit, gets acquainted. Let us focus on one such k-tuple, say f . If one starts from a
random order in the strategy from Lemma 4.2 (see Remark 4.3), then it is clear that
with probability 1 − o(nk) agents from f visit at least s/2 = Cnk−1/(2ω) different k-
tuples of vertices. Hence, by considering vertices that are not on paths agents from f
walk on, we get that with probability 1− o(nk), the number of distinct r-tuples visited
by agents from f is at least

t :=
s

2

(
n− k`
r − k

)
≥ Cnk−1

2ω
· (0.9n)r−k

(r − k)!
=
C(0.9)r−k

2(r − k)!
· n

r−1

ω
.

Considering only those edges in H2, the probability that agents from f never got ac-
quainted is at most

(1− p2)t ≤ exp

(
−ω log n

nr−1
· C(0.9)r−k

2(r − k)!
· n

r−1

ω

)
= exp

(
−C(0.9)r−k

2(r − k)!
log n

)
= o(n−k),

for C sufficiently large. Since there are at most
(
n
k

)
= O(nk) k-tuples of agents, a.a.s.

all active agents got acquainted.
It remains to deal with passive agents which can be done the same way as in the

proof of Theorem 1.3a. We partition all agents into (k + 1) groups, and shuffle them
so that all get acquainted. Moreover, if r − 1 does not divide n − 1, we may take N
to be the largest integer such that N ≤ n and r − 1 divides N − 1, and deal with a
loose path on N vertices. Clearly, a.a.s. each of the remaining O(1) vertices belong to
at least one hyperedge intersecting with P . We may treat these vertices as passive ones
and proceed as before.

Finally, suppose that ω = ω(n) > nk−1. Since ACkr (Hr(n, p)) is a decreasing function
of p,

ACkr (Hr(n, p)) ≤ ACkr (Hr(n, (log n)/nr−k)) = O(1),

by the previous case and the theorem is finished. �

5. Concluding remarks

In this paper, we showed that as soon as the random graph process G(n,m) becomes
connected its acquaintance time is linear, which implies that for G ∈ G(n, p) the follow-
ing property holds a.a.s.: if G is connected, then AC(G) = O(log n/p). This confirms
the conjecture from [5] in the strongest possible sense. On the other hand, the trivial
lower bound (1) is off by a factor of log n, namely, for G ∈ G(n, p) the following property
holds a.a.s.: if G is connected, then AC(G) = Ω(1/p). It is worth to mentioning that
it was shown in [14] that for dense random graphs (that is, graphs with average degree
at least n1/2+ε for some ε > 0) the upper bound gives the right order of magnitude. It
would be interesting to strengthen these bounds and investigate the order of AC(G) for
sparse random graphs.

Of course, an analogous question could be asked (and probably should) for hyper-
graphs. It would be desired to improve the bounds in Theorem 1.3. Moreover, in
Theorem 1.3, it is assumed that p is by a multiplicative factor of (1 + ε) larger than
the threshold for connectivity (ε > 0 is any constant, arbitrarily small). It remains to
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investigate the behaviour of ACkr (H) in the critical window, preferably by investigating
the random hypergraph process as it was done for graphs in Theorem 1.2.

It might also be of some interest to study the acquaintance time of other models
of random graphs such as, for example, power-law graphs, preferential attachments
graphs, or geometric graphs. The latter was recently considered in [16]. Moreover, let
us mention that there are some number of interesting open problems for deterministic
graphs, see, for example [5].
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