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Abstract. We consider a variant of the game of Cops and Robbers, called Lazy
Cops and Robbers, where at most one cop can move in any round. We investigate
the analogue of the cop number for this game, which we call the lazy cop number.
Lazy Cops and Robbers was recently introduced by Offner and Ojakian, who provided
asymptotic upper and lower bounds on the lazy cop number of the hypercube. By
coupling the probabilistic method with a potential function argument, we improve on
the existing lower bounds for the lazy cop number of hypercubes.

1. Introduction

The game of Cops and Robbers (defined, along with all the standard notation, at the
end of this section) is usually studied in the context of the cop number, the minimum
number of cops needed to ensure a winning strategy. The cop number is often challeng-
ing to analyze; establishing upper bounds for this parameter is the focus of Meyniel’s
conjecture that the cop number of a connected n-vertex graph is O(

√
n). For additional

background on Cops and Robbers and Meyniel’s conjecture, see the book [9] and the
surveys [3, 4, 5].

A number of variants of Cops and Robbers have been studied. For example, we
may allow a cop to capture the robber from a distance k, where k is a non-negative
integer [6, 7], play on edges [10], allow one or both players to move with different
speeds [2, 11] or to teleport, allow the robber to capture the cops [8], or make the
robber invisible or drunk [12, 13]. See Chapter 8 of [9] for a non-comprehensive survey
of variants of Cops and Robbers.

We are interested in slowing the cops down to create a situation akin to chess, where
at most one chess piece can move in a round. Hence, our focus in the present article
is a recent variant introduced by Offner and Ojakian [15], where at most one cop can
move in any given round. We refer to this variant, whose formal definition appears
in Section 1.1, as Lazy Cops and Robbers; the analogue of the cop number is called
the lazy cop number, and is written cL(G) for a graph G. In [15] it was proved for the

hypercube Qn that 2b
√
n/20c ≤ cL(Qn) = O(2n log n/n3/2). We mention in passing that

[15] introduced a number of variants of Cops and Robbers, in which some fixed number
of cops (perhaps more than one) can move in a given round. We focus here on the
extreme case in which only one cop moves in each round, but it seems likely that our
techniques generalize to other variants.
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In this short paper, we consider Lazy Cops and Robbers on hypercubes. In Theo-
rem 1, by using the probabilistic method coupled with a potential function argument,
we improve on the lower bound for the lazy cop number of hypercubes given in [15].

1.1. Definitions and notation. We consider only finite, undirected graphs in this
paper. For background on graph theory, the reader is directed to [17].

The game of Cops and Robbers was independently introduced in [14, 16] and the cop
number was introduced in [1]. The game is played on a reflexive graph; that is, each
vertex has at least one loop. Multiple edges are allowed, but make no difference to
the play of the game, so we always assume there is exactly one edge joining adjacent
vertices. There are two players, consisting of a set of cops and a single robber. The
game is played over a sequence of discrete time-steps or turns, with the cops going first
on turn 0 and then playing on alternate time-steps. A round of the game is a cop
move together with the subsequent robber move. The cops and robber occupy vertices;
for simplicity, we often identify the player with the vertex they occupy. We refer to
the set of cops as C and the robber as R. When a player is ready to move in a round
they must move to a neighbouring vertex. Because of the loops, players can pass, or
remain on their own vertices. Observe that any subset of C may move in a given round.
The cops win if after some finite number of rounds, one of them can occupy the same
vertex as the robber (in a reflexive graph, this is equivalent to the cop landing on the
robber). This is called a capture. The robber wins if he can evade capture indefinitely.
A winning strategy for the cops is a set of rules that if followed, result in a win for the
cops. A winning strategy for the robber is defined analogously. As stated earlier, the
game of Lazy Cops and Robbers is defined almost exactly as Cops and Robbers, with
the exception that at most one cop moves in any round.

If we place a cop at each vertex, then the cops are guaranteed to win. Therefore,
the minimum number of cops required to win in a graph G is a well-defined positive
integer, named the lazy cop number of the graph G. We write cL(G) for the lazy cop
number of a graph G.

2. Hypercubes

In [15], Offner and Ojakian provided asymptotic lower and upper bounds on cL(Qn).
More precisely, they showed that cL(Qn) = Ω(2

√
n/20) and cL(Qn) = O(2n log n/n3/2).

In this section, we asymptotically improve the lower bound. Our main result is the
following:

Theorem 1. For all ε > 0, we have that

cL(Qn) = Ω

(
2n

n5/2+ε

)
.

Thus, the upper and lower bounds on cL(Qn) differ by only a polynomial factor.

Proof. We present a winning strategy for the robber provided that the number of cops
is not too large. Let ε ∈ (0, 1) be fixed, and suppose there are k = k(ε, n) cops (where
k will be chosen later). We introduce a potential function that depends on each cop’s
distance to the robber. Let Ni represent the number of cops at distance i from the
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robber. With ρ = ρ(n) = o(n), ρ → ∞ as n → ∞, a function to be determined later
(but such that n/2− ρ is a positive integer), we let

P =
n∑
i=1

Niwi

where, for 1 ≤ i ≤ n
2
− ρ,

wi = A ·
(
n− 2

i

)−1 i∏
j=1

(1 + εj) , A =
n− 2

1 + ε1
,

and

εi =
2 + ε

n− 2i− 2
= o(1).

It will be desired that the sequence wi is decreasing. Since for i = n
2
− ρ we have

wi−1 − wi
wi

=
n− 1− i

i
(1 + εi)

−1 − 1

=

(
1 +

2ρ

n/2
+ o(ρ/n)

)(
1 +

2 + ε

2ρ
+ o(1/ρ)

)−1
− 1

=

(
1 +

4ρ

n
+ o(ρ/n)

)(
1− 2 + ε

2ρ
+ o(1/ρ)

)
− 1

=
4ρ

n
− 2 + ε

2ρ
+ o(ρ/n) + o(1/ρ),

the desired property holds for 1 ≤ i ≤ n
2
− ρ provided that, say, ρ ≥

√
n. (In fact, ρ

will have to be slightly larger than that.) For n
2
− ρ ≤ i ≤ n, we let wi decrease linearly

from wn/2−ρ to wn = 0. Formally, for such i, we have

wi = (n− i) ·
wn/2−ρ
n
2

+ ρ
.

We say that a cop at distance i from the robber has weight wi; this represents that
cop’s individual contribution toward the potential. In particular, we have that w1 = 1
and w2 = (1 + o(1))2/n. First, let us note that if the cops can capture the robber on
their turn, then immediately before the cops’ turn we must have P ≥ 1, since some cop
must be at distance 1 from the robber. Our goal is to show that the robber can always
enforce that right before the cops’ move

P ≤ 1− 3

n
, (1)

from which it would follow that the robber can evade the cops indefinitely. Initially,
we may assume that all cops start at the same vertex; the robber places himself at the
vertex at distance n from the cops. Therefore, P = 0, so (1) holds. Suppose that before
the cops make their move, the potential function satisfies (1); we consider a few cases.

Case 1. Suppose that on the cops’ turn, a cop moves to some vertex adjacent to the
robber, creating a “deadly” neighbour for the robber. The robber’s strategy is to move
away from this “deadly” vertex, but to do so in a way that maintains the invariant (1).
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To show that this is possible, we compute the expected change in the potential function
if the robber were to choose his next position at random from among all neighbours
other than the deadly one.

Suppose that before the robber’s move,

P1 =

n/2−ρ−1∑
i=2

Niwi

and

P2 =
n∑

n/2−ρ

Niwi.

Then by (1), we have that P1 +P2 +w2 ≤ 1− 3/n, where the extra w2 accounts for the
weight of the cop who moved to the robber’s neighborhood.

Consider a cop, C, at distance i from the robber, where 2 ≤ i ≤ n/2 − ρ − 1.
Before the robber’s move, C has weight wi. Let wC represent the expected weight
of C after the robber’s move. If C’s vertex and the deadly vertex differ on the deadly
coordinate (that is, the coordinate in which the robber and his deadly neighbour differ),
then wC = i−1

n−1wi−1 + n−i
n−1wi+1, whereas if they agree on this coordinate, then wC =

i
n−1wi−1 + n−1−i

n−1 wi+1. Since wi−1 > wi+1, we may upper-bound wC as follows:

wC ≤
i

n− 1
wi−1 +

n− 1− i
n− 1

wi+1 ≤
i

n− 2
wi−1 +

n− 2− i
n− 2

wi+1

=
i

n− 2
· A ·

(
n− 2

i− 1

)−1 i−1∏
j=1

(1 + εj) +
n− 2− i
n− 2

· A ·
(
n− 2

i+ 1

)−1 i+1∏
j=1

(1 + εj)

=

(
i

n− 2
(1 + εi)

−1 (i− 1)!(n− 2− i+ 1)!

(n− 2)!
+

n− 2− i
n− 2

(1 + εi+1)
(i+ 1)!(n− 2− i− 1)!

(n− 2)!

)
· A ·

i∏
j=1

(1 + εj).

Since

(1 + εi)
−1 = 1− εi + ε2i − ε3i + . . . ≤ 1− εi + ε2i

and

1 + εi+1 = 1 + εi

(
1 +

2

n− 2i− 4

)
≤ 1 + εi + ε2i ,
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we get

wC ≤ wi

(
n− i− 1

n− 2
(1− εi + ε2i ) +

i+ 1

n− 2
(1 + εi + ε2i )

)
= wi

(
1 +

2

n− 2
− εi

(
n− i− 1

n− 2
− i+ 1

n− 2

)
+ ε2i

(
n− i− 1

n− 2
+
i+ 1

n− 2

))
= wi

(
1 +

2

n− 2
− 2 + ε

n− 2i− 2
· n− 2i− 2

n− 2
+ ε2i (1 + o(1))

)
≤ wi

(
1− ε/2

n

)
.

This last inequality holds as long as, say, ε2i ≤
ε/4
n

. Since i ≤ n
2
− ρ − 1, we have

ε2i ≤
(

2+ε
2ρ

)2
, and so we will take ρ = ρ(ε, n) such that

ρ2 ≥ 4

ε
·
(

2 + ε

2

)2

· n =
(2 + ε)2

ε
· n. (2)

Hence, after the robber’s move, the expected sum of the weights of such cops has

decreased by a multiplicative factor of at least
(

1− ε/2
n

)
, making it at most

P1 ·
(

1− ε/2

n

)
. (3)

In addition, the cop that moved to the neighbourhood of the robber would again be at
distance 2, making her weight

w2 = (1 + o(1))
2

n
. (4)

Before dealing with cops at distance at least n
2
− ρ, let us estimate the weight of a

single cop at distance n
2
− ρ.

wn/2−ρ = (1 + o(1))n ·
(
n− 2

n/2− ρ

)−1 n/2−ρ∏
i=1

(
1 +

2 + ε

n− 2i− 2

)
. (5)
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We bound the product term in (5) by

n/2−ρ∏
i=1

(
1 +

2 + ε

n− 2i− 2

)
≤ exp

n/2−ρ∑
i=1

2 + ε

n− 2i− 2


= exp

2 + ε

2

n/2∑
i=ρ

1

i
+O(1)


= exp

(
2 + ε

2
(ln(n/2)− ln ρ+O(1))

)
= O

((
n

ρ

)1+ε/2
)
.

To bound the binomial term, we note that
(
n−2
n/2−ρ

)
= Θ

((
n

n/2−ρ

))
and approximate:

(
n

n/2− ρ

)
=

n!

(n/2− ρ)!(n/2 + ρ)!

=

√
2πn

(
n
e

)n√
2π(n/2− ρ)

(
n/2−ρ
e

)n/2−ρ√
2π(n/2 + ρ)

(
n/2+ρ
e

)n/2+ρ (1 + o(1))

= Θ

(
2n√
n

)
·
(

1− 2ρ

n

)−n
2
+ρ(

1 +
2ρ

n

)−n
2
−ρ

= Θ

(
2n√
n

)
· exp

((
−2ρ

n
− (2ρ/n)2

2
+ o

(
(ρ/n)2

))(
−n

2
+ ρ
))

· exp

((
2ρ

n
− (2ρ/n)2

2
+ o

(
(ρ/n)2

))(
−n

2
− ρ
))

= Θ

(
2n√
n

)
· exp

(
−(1 + o(1))

2ρ2

n

)
.

Now take ρ(n) to be minimal such that ρ ≥ cε
√
n and n/2 − ρ is an integer, where,

referring to (2), we set cε = 2+ε√
ε

. Then we have that

wn/2−ρ = O

(
n ·
√
n

2n
· n1/2+ε/4

)
= O

(
n2+ε/4

2n

)
.

Now let C be a cop at distance i from the robber, where n
2
− ρ ≤ i ≤ n. Before the

robber’s move, C has weight wi. Since the wi are decreasing, we have that the change
in weight of C is bounded above by wi−1−wi. For i ≥ n

2
− ρ+ 1, this quantity is equal

to
wn/2−ρ
n
2
+ρ

. The largest increase comes when i = n/2− ρ. To bound this increase, we see
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that

wn/2−ρ−1
wn/2−ρ

=

(
n−2
n/2−ρ

)(
n−2

n/2−ρ−1

) · 1

1 + εn/2−ρ
=
n/2 + ρ− 1

n/2− ρ
· 1

1 + 2+ε
2ρ−2

≤
(

1 +
2ρ− 2

n

)
·
(

1 +
2ρ

n
+O

(ρ
n

)2)
·

(
1− 2 + ε

2ρ− 2
+

(
2 + ε

2ρ− 2

)2
)

≤ 1 +O

(
ρ

n
+

1

ρ

)
.

By our defintion of ρ, this is 1 +O(1/
√
n). Thus we have that

wn/2−ρ−1 − wn/2−ρ = O

(
wn/2−ρ√

n

)
= O

(
n3/2+ε/4

2n

)
.

So if we let the total number of cops be k = O(2n/n5/2+ε), then we have that the total
increase in weight of cops at distance at least n/2− ρ is at most

O

(
2n

n5/2+ε
· n

3/2+ε/4

2n

)
<
ε/4

n
.

So the total weight of such cops after the robber’s move is at most

P2 +
ε/4

n
. (6)

Thus, after the robber’s random move, combining estimates (3), (4) and (6), we can
upper-bound the total expected weight by

P1 ·
(

1− ε/2

n

)
+ w2 + P2 +

ε/4

n

≤
(

1− 3

n
− w2 − P2

)
·
(

1− ε/2

n

)
+ w2 + P2 +

ε/4

n

≤ 1− 3

n
− ε/4

n
+O

(
1

n2
+
P2

n

)
≤ 1− 3

n
.

To get the last line, we used the fact that

P2 = O(2n/n5/2+ε · wn/2−ρ) = O(n−1/2−3ε/4) = o(1).

Some deterministic move produces a potential at least as low as the expectation, so the
robber may maintain the invariant, as desired.

Case 2. Suppose now that on the cops’ turn, some cop C∗ moves to a vertex at
distance 2 from the robber. The reader should note that at this point, there might
be other cops at distance 2 from the robber; we only suppose that on the cops’ turn,
one particular cop has moved from distance 3 to distance 2. As in Case 1, we will see
what happens if the robber moves away from C∗. In this case, there are two “deadly”
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coordinates for the robber. The robber will flip a coordinate randomly amongst the
other n− 2 choices.

As before, suppose that before the robber moves, P1 represents the total weight of all
cops at distance i with 2 ≤ i ≤ n

2
− ρ− 1 other than the cop C∗ who moved to distance

2. Let P2 represent the total weight of all cops at distance at least n
2
− ρ. Since C∗ was

at distance 3 before its move, we have that P1 + P2 + w3 ≤ 1− 3/n. As in Case 1, for
a cop C 6= C∗ at distance 2 ≤ i ≤ n/2− ρ− 1, we have that the expected weight after
the robber’s move satisfies wC ≤ i

n−2wi−1 + n−2−i
n−2 wi+1. So again we can upper-bound

the total expected weight of such cops by

P1 ·
(

1− ε/2

n

)
.

The estimate for the change in P2 remains the same, so we can upper-bound the ex-
pected total weight after the robber’s move by

P1 ·
(

1− ε/2

n

)
+ w3 + P2 +

ε/4

n

≤
(

1− 3

n
− w3 − P2

)
·
(

1− ε/2

n

)
+ w3 + P2 +

ε/4

n

≤ 1− 3

n
− ε/4

n
+O

(
1

n2
+
w3

n
+
P2

n

)
≤ 1− 3

n
.

This time, in addition to our bound on P2, we have used that w3 = o(1/n).

Case 3. Suppose now that some cop moves to a vertex at distance i ≥ 3 from the
robber. Keep in mind that, again, we allow for the possibility that other cops are at
distance 2 from the robber. The resulting increase in the potential function is at most
w3 = O(1/n2), so the new potential function has value at most 1− 3/n+ o(1/n). Now,
by the calculations from Case 1, the robber can move so that the total weight of all

cops at distances 2 through n/2−ρ−1 decreases by a multiplicative factor of (1− ε/2
n

).
Once again, define P2 to be the weight of all cops at distance at least n/2 − ρ before
the robber moves. Then after the robber’s move, the potential is at most(

1− 3

n
− P2 + o

(
1

n

))
·
(

1− ε/2

n

)
+ P2 +

ε/4

n
≤ 1− 3

n
.

�
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