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Abstract. We consider a variant of the game of Cops and Robbers, called Contain-
ment, in which cops move from edge to adjacent edge, the robber moves from vertex to
adjacent vertex (but cannot move along an edge occupied by a cop). The cops win by
“containing” the robber, that is, by occupying all edges incident with a vertex occu-
pied by the robber. The minimum number of cops, ξ(G), required to contain a robber
played on a graph G is called the containability number, a natural counterpart of the
well-known cop number c(G). This variant of the game was recently introduced by
Komarov and Mackey, who proved that for every graph G, c(G) ≤ ξ(G) ≤ γ(G)∆(G),
where γ(G) and ∆(G) are the domination number and the maximum degree of G,
respectively. They conjecture that an upper bound can be improved and, in fact,
ξ(G) ≤ c(G)∆(G). (Observe that, trivially, c(G) ≤ γ(G).) This seems to be the
main question for this game at the moment. By investigating expansion properties,
we provide asymptotically almost sure bounds on the containability number of bino-
mial random graphs G(n, p) for a wide range of p = p(n), showing that it forms an
intriguing zigzag shape. This result also proves that the conjecture holds for some
range of p (or holds up to a constant or an O(log n) multiplicative factors for some
other ranges).

1. Introduction

The game of Cops and Robbers (defined, along with all the standard notation, later in
this section) is usually studied in the context of the cop number, the minimum number
of cops needed to ensure a winning strategy. The cop number is often challenging
to analyze; establishing upper bounds for this parameter is the focus of Meyniel’s
conjecture that the cop number of a connected n-vertex graph is O(

√
n). For additional

background on Cops and Robbers and Meyniel’s conjecture, see the book [7].
A number of variants of Cops and Robbers have been studied. For example, we may

allow a cop to capture the robber from a distance k, where k is a non-negative integer [5],
play on edges [9], allow one or both players to move with different speeds [1, 10] or
to teleport, allow the robber to capture the cops [6], make the robber invisible or
drunk [12, 13], or allow at most one cop to move in any given round [16, 2, 3]. See
Chapter 8 of [7] for a non-comprehensive survey of variants of Cops and Robbers.

In this paper, we consider a variant of the game of Cops and Robbers, called Con-
tainment, introduced recently by Komarov and Mackey [14]. In this version, cops move
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from edge to adjacent edge, the robber moves as in the classic game, from vertex to
adjacent vertex (but cannot move along an edge occupied by a cop). Formally, the game
is played on a finite, simple, and undetected graph. There are two players, a set of cops
and a single robber. The game is played over a sequence of discrete time-steps or turns,
with the cops going first on turn 0 and then playing on alternate time-steps. A round
of the game is a cop move together with the subsequent robber move. The cops occupy
edges and the robber occupies vertices; for simplicity, we often identify the player with
the vertex/edge they occupy. When the robber is ready to move in a round, she can
move to a neighbouring vertex but cannot move along an edge occupied by a cop, cops
can move to an edge that is incident to their current location. Players can always pass,
that is, remain on their own vertices/edges. Observe that any subset of cops may move
in a given round. The cops win if after some finite number of rounds, all edges incident
with the robber are occupied by cops. This is called a capture. The robber wins if she
can evade capture indefinitely. A winning strategy for the cops is a set of rules that
if followed, result in a win for the cops. A winning strategy for the robber is defined
analogously. As stated earlier, the original game of Cops and Robbers is defined almost
exactly as this one, with the exception that all players occupy vertices.

If we place a cop at each edge, then the cops are guaranteed to win. Therefore, the
minimum number of cops required to win in a graph G is a well-defined positive integer,
named the containability number of the graph G. Following the notation introduced
in [14], we write ξ(G) for the containability number of a graph G and c(G) for the
original cop-number of G.

In [14], Komarov and Mackey proved that for every graph G,

c(G) ≤ ξ(G) ≤ γ(G)∆(G),

where γ(G) and ∆(G) are the domination number and the maximum degree of G,
respectively. It was conjectured that the upper bound can be strengthened and, in fact,
the following holds.

Conjecture 1.1 ([14]). For every graph G, ξ(G) ≤ c(G)∆(G).

Observe that, trivially, c(G) ≤ γ(G) so this would imply the previous result. This
seems to be the main question for this variant of the game at the moment. By inves-
tigating expansion properties, we provide asymptotically almost sure bounds on the
containability number of binomial random graphs G(n, p) for a wide range of p = p(n),
proving that the conjecture holds for some ranges of p (or holds up to a constant or an
O(log n) multiplicative factors for some other ranges of p). However, before we state the
result, let us introduce the probability space we deal with and mention a few results
for the classic cop-number that will be needed to examine the conjecture (since the
corresponding upper bound is a function of the cop number).

The random graph G(n, p) consists of the probability space (Ω,F ,P), where Ω is the
set of all graphs with vertex set {1, 2, . . . , n}, F is the family of all subsets of Ω, and
for every G ∈ Ω,

P(G) = p|E(G)|(1− p)(
n
2)−|E(G)| .
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This space may be viewed as the set of outcomes of
(
n
2

)
independent coin flips, one for

each pair (u, v) of vertices, where the probability of success (that is, adding edge uv)
is p. Note that p = p(n) may (and usually does) tend to zero as n tends to infinity.
All asymptotics throughout are as n → ∞ (we emphasize that the notations o(·) and
O(·) refer to functions of n, not necessarily positive, whose growth is bounded). We
say that an event in a probability space holds asymptotically almost surely (or a.a.s.)
if the probability that it holds tends to 1 as n goes to infinity.

Let us now briefly describe some known results on the (classic) cop-number of G(n, p).
Bonato, Wang, and the author of this paper investigated such games in G(n, p) random
graphs and in generalizations used to model complex networks with power-law degree
distributions (see [8]). From their results it follows that if 2 log n/

√
n ≤ p < 1 − ε for

some ε > 0, then a.a.s. we have that

c(G(n, p)) = Θ(log n/p),

so Meyniel’s conjecture holds a.a.s. for such p. In fact, for p = n−o(1) we have that
a.a.s. c(G(n, p)) = (1 + o(1)) log1/(1−p) n. A simple argument using dominating sets
shows that Meyniel’s conjecture also holds a.a.s. if p tends to 1 as n goes to infinity
(see [17] for this and stronger results). Bollobás, Kun and Leader [4] showed that if
p(n) ≥ 2.1 log n/n, then a.a.s.

1

(pn)2
n1/2−9/(2 log log(pn)) ≤ c(G(n, p)) ≤ 160000

√
n log n .

From these results, if np ≥ 2.1 log n and either np = no(1) or np = n1/2+o(1), then a.a.s.
c(G(n, p)) = n1/2+o(1). Somewhat surprisingly, between these values it was shown by
 Luczak and the author of this paper [15] that the cop number has more complicated
behaviour. It follows that a.a.s. logn c(G(n, nx−1)) is asymptotic to the function f(x)
shown in Figure 1 (denoted in blue).

Figure 1. The “zigzag” functions representing the ordinary cop number
(blue) and the containability number (red).
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Formally, the following result holds for the classic game.

Theorem 1.2 ([15, 8]). Let 0 < α < 1 and d = d(n) = np = nα+o(1).

(i) If 1
2j+1

< α < 1
2j

for some integer j ≥ 1, then a.a.s.

c(G(n, p)) = Θ(dj) .

(ii) If 1
2j
< α < 1

2j−1 for some integer j ≥ 2, then a.a.s.

c(G(n, p)) = Ω
( n
dj

)
, and

c(G(n, p)) = O

(
n log n

dj

)
.

(iii) If 1/2 < α < 1, then a.a.s.

c(G(n, p)) = Θ

(
n log n

d

)
.

The above result shows that Meyniel’s conjecture holds a.a.s. for random graphs
except perhaps when np = n1/(2k)+o(1) for some k ∈ N, or when np = no(1). The
author of this paper and Wormald showed recently that the conjecture holds a.a.s. in
G(n, p) [18] as well as in random d-regular graphs [19].

Finally, we are able to state the result of this paper.

Theorem 1.3. Let 0 < α < 1 and d = d(n) = np = nα+o(1).

(i) If 1
2j+1

< α < 1
2j

for some integer j ≥ 1, then a.a.s.

ξ(G(n, p)) = Θ(dj+1) = Θ(c(G(n, p)) ·∆(G(n, p))) .

Hence, a.a.s. Conjecture 1.1 holds (up to a multiplicative constant factor).
(ii) If 1

2j
< α < 1

2j−1 for some integer j ≥ 2, then a.a.s.

ξ(G(n, p)) = Ω
( n

dj−1

)
, and

ξ(G(n, p)) = O

(
n log n

dj−1

)
= O(c(G(n, p)) ·∆(G(n, p)) · log n) .

Hence, a.a.s. Conjecture 1.1 holds (up to a multiplicative O(log n) factor).
(iii) If 1/2 < α < 1, then a.a.s.

ξ(G(n, p)) = Θ(n) = Θ(c(G(n, p)) ·∆(G(n, p))/ log n) ≤ c(G(n, p)) ·∆(G(n, p).

Hence, a.a.s. Conjecture 1.1 holds.

It follows that a.a.s. logn ξ(G(n, nx−1)) is asymptotic to the function g(x) shown in
Figure 1 (denoted in red). The fact the conjecture holds is associated with the ob-
servation that g(x) − f(x) = x, which is equivalent to saying that a.a.s. the ratio
ξ(G(n, p))/c(G(n, p)) = dno(1) = ∆(G(n, p)) · no(1). Moreover, let us mention that The-
orem 1.3 implies that the conjecture is best possible (again, up to a constant or an
O(log n) multiplicative factors for corresponding ranges of p).
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Note that in the above result we skip the case when np = n1/k+o(1) for some positive
integer k or np = no(1). It is done for a technical reason: an argument for the lower
bound for ξ(G(n, p)) uses a technical lemma from [15] that, in turn, uses Corollary 2.6
from [20] which is stated only for np = nα+o(1), where α 6= 1/k for any positive integer
k. Clearly, one can repeat the argument given in [20], which is a very nice but slightly
technical application of the polynomial concentration method inequality by Kim and
Vu. However, in order to make the paper easier and more compact, a ready-to-use
lemma from [15] is used and we concentrate on the “linear” parts of the graph of the
zigzag function. Nonetheless, similarly to the corresponding result for c(G(n, p)), one

can expect that, up to a factor of logO(1) n, the result extends naturally also to the case
np = n1/k+o(1) as well.

On the other hand, there is no problem with the upper bound so the case when
np = n1/k+o(1) for some positive integer k is also investigated (see below for a pre-
cise statement). Moreover, some expansion properties that were used to prove that
Meyniel’s conjecture holds for G(n, p) [18] are incorporated here to investigate sparser
graphs.

The rest of the paper is devoted to prove Theorem 1.3.

2. Proof of Theorem 1.3

2.1. Typical properties of G(n, p) and useful inequalities. Let us start by listing
some typical properties of G(n, p). These observations are part of folklore and can be
found in many places, so we will usually skip proofs, pointing to corresponding results
in existing literature. Let Ni(v) denote the set of vertices at distance i from v, and let
Ni[v] denote the set of vertices within distance i of v, that is, Ni[v] =

⋃
0≤j≤iNj(v). For

simplicity, we use N [v] to denote N1[v], and N(v) to denote N1(v). Since cops occupy
edges but the robber occupies vertices, we will need to investigate the set of edges at
“distance” i from a given vertex v that we denote by Ei(v). Formally, Ei(v) consists of
edges between Ni−1(v) and Ni(v), and within Ni−1(v). In particular, E1(v) is the set of
edges incident to v. Finally, let Pi(v, w) denote the number of paths of length i joining
v and w.

Let us start with the following lemma.

Lemma 2.1. Let d = d(n) = p(n− 1) ≥ log3 n. Then, there exists a positive constant
c such that a.a.s. the following properties hold in G(n, p) = (V,E).

(i) Let S ⊆ V be any set of s = |S| vertices, and let r ∈ N. Then∣∣∣∣∣⋃
v∈S

Nr[v]

∣∣∣∣∣ ≥ cmin{sdr, n}.

Moreover, if s and r are such that sdr < n/ log n, then∣∣∣∣∣⋃
v∈S

Nr[v]

∣∣∣∣∣ = (1 + o(1))sdr.

(ii) G(n, p) is connected.
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(iii) Let r = r(n) be the largest integer such that dr ≤
√
n log n. Then, for every

vertex v ∈ V and w ∈ Nr+1(v), the number of edges from w to Nr(v) is at most
b, where

b =

{
250 if d ≤ n0.49

3 logn
log logn

if n0.49 < d ≤
√
n.

Proof. The proof of part (i) can be found in [18]. The fact that G(n, p) is connected is
well known (see, for example, [11]). In fact, the (sharp) threshold for connectivity is
p = log n/n so this property holds for even sparser graphs.

For part (iii), let us first expose the rth neighbourhood of v. By part (i), we may
assume that |Nr[v]| = (1 + o(1))dr < 2dr. For any w ∈ V \Nr[v], the probability that
there are at least b edges joining w to Nr(v) is at most

q :=

(
2dr

b

)
pb ≤

(
2edr

b

)b(
d

n

)b
=

(
2edr+1

bn

)b
.

If d ≤ n0.49, then

q ≤
(

2ed
√
n log n

bn

)b
≤ n−0.005b = o(n−2),

provided that b is large enough (say, b = 250). For n0.49 < d ≤
√
n (and so r = 1), we

observe that

q ≤
(

2e

b

)b
= exp (−(1 + o(1))b log b) = o(n−2),

provided b = 3 log n/ log log n. The claim follows by the union bound over all pairs v, w.
The proof of the lemma is finished. �

The next lemma can be found in [15]. (See also [3] for its extension.)

Lemma 2.2. Let ε and α be constants such that 0 < ε < 0.1, ε < α < 1 − ε, and let
d = d(n) = p(n − 1) = nα+o(1). Let ` ∈ N be the largest integer such that ` < 1/α.
Then, a.a.s. for every vertex v of G(n, p) the following properties hold.

(i) If w ∈ Ni[v] for some i with 2 ≤ i ≤ `, then Pi(v, w) ≤ 3
1−iα .

(ii) If w ∈ N`+1[v] and d`+1 ≥ 7n log n, then P`+1(v, w) ≤ 6
1−`α

d`+1

n
.

(iii) If w ∈ N`+1[v] and d`+1 < 7n log n, then P`+1(v, w) ≤ 42
1−`α log n.

Moreover, a.a.s.

(iv) Every edge of G(n, p) is contained in at most εd cycles of length at most `+ 2.

We will also use the following variant of Chernoff’s bound (see, for example, [11]):

Lemma 2.3 (Chernoff Bound). If X is a binomial random variable with expectation
µ, and 0 < δ < 1, then

Pr[X < (1− δ)µ] ≤ exp

(
−δ

2µ

2

)
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and if δ > 0,

Pr[X > (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
.

2.2. Upper bound. First, let us deal with dense graphs that correspond to part (iii) of
Theorem 1.3. In fact, we are going to make a simple observation that the containability
number is linear if G has a perfect or a near-perfect matching. The result will follow
since it is well-known that for p = p(n) such that pn− log n→∞, G(n, p) has a perfect
(or a near-perfect) matching a.a.s. (As usual, see [11], for more details.)

Lemma 2.4. Suppose that G on n vertices has a perfect matching (n is even) or a
near-perfect matching (n is odd). Then, ξ(G) ≤ n.

Proof. Suppose first that n is even. The cops start on the edges of a perfect matching;
two cops occupy any edge of the matching for a total of n cops. All vertices of G can
be associated with unique cops. The robber starts on some vertex v. One edge incident
to v (the edge vv′ that belongs to the perfect matching used) is already occupied by a
cop (in fact, by two cops, associated with v and v′). Moreover, the remaining cops can
move so that all edges incident to v are protected and the game ends. Indeed, for each
edge vu, the cop associated with u moves to vu.

The case when n is odd is also very easy. Two cops start on each edge of a near-
perfect matching which matches all vertices but u. If u is isolated, we may simply
remove it from G and arrive back to the case when n is even. (Recall that the cops win
if all edges incident with the robber are occupied by cops. As this property is vacuously
true when the robber starts on an isolated vertex, we may assume that she does not
start on u.) Hence, we may assume that u is not isolated. We introduce one more cop
on some edge incident to u. The total number of cops is at most 2 · n−1

2
+ 1 = n; again,

each vertex of G can be associated with a unique cop and the proof goes as before. �

Now, let us move to the following lemma that yields part (i) of Theorem 1.3. We
combine and adjust ideas from both [15] and [18] in order to include much sparser
graphs. Cases when α = 1/k for some positive integer k are also covered.

Lemma 2.5. Let d = d(n) = p(n − 1) ≥ log3 n. Suppose that there exists a positive
integer r = r(n) such that

(n log n)
1

2r+1 ≤ d ≤ (n log n)
1
2r .

Then, a.a.s.
ξ(G(n, p)) = O(dr+1).

Proof. Since our aim is to prove that the desired bound holds a.a.s. for G(n, p), we
may assume, without loss of generality, that a graph G the players play on satisfies
the properties stated in Lemma 2.1. A team of cops is determined by independently
choosing each edge of e ∈ E(G) to be occupied by a cop with probability Cdr/n, where
C is a (large) constant to be determined soon. It follows from Lemma 2.1(i) that G has
(1 + o(1))dn/2 edges. Hence, the expected number of cops is equal to

(1 + o(1))
dn

2
· Cd

r

n
= (1 + o(1))

Cdr+1

2
.
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It follows from Chernoff’s bound that the total number of cops is Θ(dr+1) a.a.s.
The robber appears at some vertex v ∈ V (G). Let X ⊆ E(G) be the set of edges

between Nr(v) and Nr+1(v). It follows from Lemma 2.1(i) that

|X| ≤ (1 + o(1))d|Nr(v)| ≤ 2dr+1.

Our goal is to show that with probability 1−o(n−1) it is possible to assign distinct cops
to all edges e in X such that a cop assigned to e is within distance (r + 1) of e. (Note
that here, the probability refers to the randomness in distributing the cops; the graph
G is fixed.) If this can be done, then after the robber appears these cops can begin
moving straight to their assigned destinations in X. Since the first move belongs to the
cops, they have (r+ 1) steps, after which the robber must still be inside Nr[v], which is
fully occupied by cops. She is “trapped” inside Nr[v], so we can send an auxiliary team
of, say, 2dr+1 cops to go to every edge in the graph induced by Nr[v], and the game
ends. Hence, the cops will win with probability 1 − o(n−1), for each possible starting
vertex v ∈ V (G). It will follow that the strategy gives a win for the cops a.a.s.

Let Y be the (random) set of edges occupied by cops. Instead of showing that the
desired assignment between X and Y exists, we will show that it is possible to assign
b(u) distinct cops to all vertices u of Nr+1(v), where b(u) is the number of neighbours of
u that are in Nr(v) (that is, the number of edges of X incident to u) and such that each
cop assigned to u is within distance (r + 1) from u. (Note that this time “distance” is
measured between vertex u and edges which is non-standard. In this paper, we define
it as follows: edge e is at distance at most (r + 1) from u if e is at distance at most r
from some edge adjacent to u.) Indeed, if this can be done, assigned cops run to u, after
r rounds they are incident to u, and then spread to edges between u and Nr(v); the
entire X is occupied by cops. In order to show that the required assignment between
Nr+1(v) and Y exists with probability 1 − o(n−1), we show that with this probability,
Nr+1(v) satisfies Hall’s condition for matchings in bipartite graphs.

Suppose first that d ≤ n0.49 and fix b = 250. It follows from Lemma 2.1(iii) that
b(u) ≤ b for every u ∈ Nr+1(v). Set

k0 = max{k : kdr < n}.
Let K ⊆ Nr+1(v) with |K| = k ≤ k0. We may apply Lemma 2.1(i) to bound the size of⋃
u∈K Nr[u] and the number of edges incident to each vertex. It follows that the number

of edges of Y that are incident to some vertex in
⋃
u∈K Nr[u] can be stochastically

bounded from below by the binomial random variable Bin(bckdr ·(d/3)c, Cdr/n), whose
expected value is asymptotic to (Cc/3)kd2r+1/n ≥ (Cc/3)k log n. Using Chernoff’s
bound we get that the probability that there are fewer than bk edges of Y incident to
this set of vertices is less than exp(−4k log n) when C is a sufficiently large constant.
Hence, the probability that the sufficient condition in the statement of Hall’s theorem
fails for at least one set K with |K| ≤ k0 is at most

k0∑
k=1

(
|Nr+1(v)|

k

)
exp(−4k log n) ≤

k0∑
k=1

nk exp(−4k log n) = o(n−1).

Now consider any set K ⊆ Nr+1(v) with k0 < |K| = k ≤ |Nr+1(v)| ≤ 2dr+1 (if such
a set exists). Lemma 2.1(i) implies that the size of

⋃
u∈K Nr[u] is at least cn, so we
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expect at least cn · (d/3) · Cdr/n = (Cc/3)dr+1 edges of Y incident to this set. Again
using Chernoff’s bound, we deduce that the number of edges of Y incident to this set is
at least 2bdr+1 ≥ b|Nr+1(v)| ≥ bk with probability at least 1− exp(−4dr+1), by taking
the constant C to be large enough. Since

|Nr+1(v)|∑
k=k0+1

(
|Nr+1(v)|

k

)
exp(−4dr+1) ≤ 22dr+1

exp(−4dr+1) = o(n−1),

the necessary condition in Hall’s theorem holds with probability 1− o(n−1).
Finally, suppose that d > n0.49. Since Lemma 2.4 implies that the result holds for

d >
√
n, we may assume that d ≤

√
n. (In fact, for d >

√
n we get a better bound

of n rather than O(d2) that we aim for.) This time, set b = 3 log log n/ log n to make
sure b(u) ≤ b for all u ∈ Nr+1(v). The proof is almost the same as before. For small
sets of size at most k0 = Θ(n/d), we expect (Cc/3)kd3/n ≥ (Cc/3)kn0.47 edges, much
more than we actually need, namely, bk. For large sets of size more than k0, we modify
the argument slightly and instead of assigning b cops to each vertex of Nr+1(v), we
notice that the number of cops needed to assign is equal to

∑
u∈K b(u) ≤ |X| ≤ 2dr+1.

(There might be some vertices of Nr+1(v) that are incident to b edges of X but the
total number of incident edges to K is clearly at most |X|.) The rest is not affected
and the proof is finished. �

The next lemma takes care of part (ii) of Theorem 1.3.

Lemma 2.6. Let d = d(n) = p(n − 1) ≥ log3 n. Suppose that there exists an integer
r = r(n) ≥ 2 such that

(n log n)
1
2r ≤ d ≤ (n log n)

1
2r−1 .

Then, a.a.s.

ξ(G(n, p)) = O

(
n log n

dr−1

)
.

Proof. We mimic the proof of the previous lemma so we skip details focusing only
on differences. A team of cops is determined by independently choosing each edge of
e ∈ E(G) to be occupied by a cop with probability C log n/dr, for the total number of
cops Θ(n log n/dr−1) a.a.s.

The robber appears at some vertex v ∈ V (G). This time, X ⊆ E(G) is the set of
edges between Nr−1(v) and Nr(v) and |X| ≤ 2dr. We show that it is possible to assign
b = 250 distinct cops to all vertices u of Nr(v) such that a cop assigned to u is within
“distance” r from u. The definition of k0 has to be adjusted. Set

k0 = max{k : kdr−1 < n}.

Let K ⊆ Nr(v) with |K| = k ≤ k0. The expected number of edges of Y that are incident
to some vertex in

⋃
u∈K Nr−1[u] is at least (ckdr−1)(d/3)(C log n/dr) = (Cc/3)k log n,

and the rest of the argument is not affected. Now consider any set K ⊆ Nr(v) with
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k0 < |K| = k ≤ |Nr(v)| ≤ 2dr (if such a set exists). The size of
⋃
u∈K Nr−1[u] is at least

cn, so we expect at least

(cn)

(
d

3

)(
C log n

dr

)
=
Ccdrn log n

3d2r−1
≥ Ccdr

3

edges of Y incident to this set. Hence, the number of edges of Y incident to this set
is at least 2bdr ≥ b|Nr(v)| ≥ bk with probability at least 1− exp(−4dr), by taking the
constant C to be large enough. The argument we had before works again, and the proof
is finished. �

2.3. Lower bound. The proof of the lower bound is an adaptation of the proof used
for the classic cop number in [15]. The two bounds, corresponding to parts (i) and (ii)
in Theorem 1.3, are proved independently in the following two lemmas.

Lemma 2.7. Let 1
2j+1

< α < 1
2j

for some integer j ≥ 1, c = c(j, α) = 3
1−2jα , and

d = d(n) = np = nα+o(1). Then, a.a.s.

ξ(G(n, p)) > K :=

(
d

30c(2j + 1)

)j+1

.

Proof. Since our aim is to prove that the desired bound holds a.a.s. for G(n, p), we
may assume, without loss of generality, that a graph G the players play on satisfies
the properties stated in Lemmas 2.1 and 2.2. Suppose that the robber is chased by
K cops. Our goal is to provide a winning strategy for the robber on G. For vertices
x1, x2, . . . , xs, let Cx1,x2,...,xs

i (v) denote the number of cops in Ei(v) (that is, at distance
i from v) in the graph G \ {x1, x2, . . . , xs}.

Right before the robber makes her move, we say that the vertex v occupied by the
robber is safe, if for some neighbour x of v we have Cx

1(v) ≤ d
30c(2j+1)

, and

Cx
2i(v),Cx

2i+1(v) ≤
(

d

30c(2j + 1)

)i+1

for i = 1, 2, . . . , j−1 (such a vertex x will be called a deadly neighbour of v). The reason
for introducing deadly neighbours is to deal with a situation that many cops apply a
greedy strategy and always decrease the distance between them and the robber. As
a result, there might be many cops “right behind” the robber but they are not so
dangerous unless she makes a step “backwards” by moving to a vertex she came from
in the previous round, a deadly neighbour! Moreover, note that a vertex is called safe
for a reason: if the robber occupies a safe vertex, then the game is definitely not over
since the condition for Cx

1 (v) guarantees that at most a small fraction of incident edges
are occupied by cops.

Since a.a.s. G is connected (see Lemma 2.1(ii)), without loss of generality we may
assume that at the beginning of the game all cops begin at the same edge, e. Subse-
quently, the robber may choose a vertex v so that e is at distance 2j + 2 from v (see
Lemma 2.1(i) applied with r = 2j + 1 to see that almost all vertices are at distance
2j + 1 from both endpoints of e). Hence, even if all cops will move from e to E2j+1(v)
after this move, v will remain safe as no bound is required for Cx

2j+1(v). (Of course,
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again, without loss of generality we may assume that all cops pass for the next round
and stay at e before starting applying their best strategy against the robber.) Hence,
in order to prove the lemma, it is enough to show that if the robber’s current vertex v
is safe, then she can move along an unoccupied edge to a neighbour y so that no matter
how the cops move in the next round, y remains safe.

For 0 ≤ r ≤ 2j, we say that a neighbour y of v is r-dangerous if

(i) an edge vy is occupied by a cop (for r = 0) , or

(ii) Cv,x
r (y) ≥ 1

3

(
d

30c(2j+1)

)i
(for r = 2i or r = 2i− 1, where i = 1, 2, . . . , j) ,

where x is a deadly neighbour of v. We will check that for every r ∈ {0, 1, . . . , 2j}, the
number of r-dangerous neighbours of v, which we denote by dang(r), is smaller than

d
2(2j+1)

. Clearly, since v is safe,

dang(0) ≤ Cx
1(v) ≤ d

30c(2j + 1)
≤ d

2(2j + 1)
.

Suppose then that r = 2i or r = 2i − 1 for some i ∈ {1, 2, . . . , j}. Every r-dangerous

neighbour of v has at least 1
3

(
d

30c(2j+1)

)i
cops occupying E≤(r+1)(v). On the other hand,

every edge from E≤(r+1)(v) is incident to at most 2 vertices at distance at most r from
v. Moreover, Lemma 2.2(i) implies that there are at most c paths between v and any
w ∈ N≤r(v). Finally, by the assumption that v is safe, we have Cx

2i(v),Cx
2i+1(v) ≤(

d
30c(2j+1)

)i+1

, provided that i ≤ j − 1; the corresponding conditions for Cx
2j(v) and

Cx
2j+1(v) are trivially true, since both can be bounded from above by K, the total

number of cops. Combining all of these yields

1

3

(
d

30c(2j + 1)

)i
· dang(r) ≤ 2c · Cx

≤(r+1)(v) ≤ 2c · (2 + o(1))Cx
r+1(v)

≤ 5c ·
(

d

30c(2j + 1)

)i+1

,

and consequently dang(r) ≤ d
2(2j+1)

, as required. Thus, there at most d/2 of neighbours

of v are r-dangerous for some r ∈ {0, 1, . . . , 2j}.
Since we have (1 + o(1))d neighbours to choose from (see Lemma 2.1(i)), there are

plenty of neighbours of v which are not r-dangerous for any r = 0, 1, . . . , 2j and the
robber might want to move to one of them. However, there is one small issue we have
to deal with. In the definition of being dangerous, we consider the graph G \ {v, x}
whereas in the definition of being safe we want to use G \ {v} instead. Fortunately,
Lemma 2.2(iv) implies that we can find a neighbour y of v that is not only not dangerous
but also x does not belong to the 2j-neighbourhood of y in G \ {v}. It follows that vy

is not occupied by a cop and Cv
r(y) < 1

3

(
d

30c(2j+1)

)i
for r = 2i or r = 2i − 1, where

i = 1, 2, . . . , j. We move the robber to y.
Now, it is time for the cops to make their move. Because of our choice of the vertex

y, we can assure that the desired upper bound for Cv
r(y) required for y to be safe will

hold for r ∈ {1, 2, . . . , 2j − 1}. Indeed, the best that the cops can do to try to fail
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the condition for Cv
r(y) is to move all cops at distance r − 1 and r + 1 from y to r-

neighbourhood of y, and to make cops at distance r stay put, but this would not be
enough. Thus, regardless of the strategy used by the cops, y is safe and the proof is
finished. �

Lemma 2.8. Let 1
2j
< α < 1

2j−1 for some integer j ≥ 1, c̄ = c̄(α) = 6
1−(2j−1)α and

d = d(n) = np = nα+o(1). Then, a.a.s.

ξ(G(n, p)) ≥ K̄ :=

(
d

30c̄(2j + 1)

)j+1
n

d2j
.

Proof. The proof is very similar to that of Lemma 2.7. The only difference is that
checking the desired bounds for dang(2j−1) and dang(2j) is slightly more complicated.
As before, we do not control the number of cops in E2j(v) and E2j+1(v), clearly Cx

2j(v)

and Cx
2j+1(v) are bounded from above by K̄, the total number of cops. We get

1

3

(
d

30c̄(2j + 1)

)j
· dang(2j − 1) ≤ 2c̄ · Cx

≤(2j)(v) ≤ 2c̄ · (2 + o(1))K̄

≤ 5c̄ ·
(

d

30c̄(2j + 1)

)j+1

,

and consequently dang(2j−1) ≤ d
2(2j+1)

, as required. (Note that we have room to spare

here but we cannot take advantage of it so we do not modify the definition of being
(2j − 1)-dangerous.)

Let us now notice that a cop at distance 2j + 1 from v can contribute to the “dan-
gerousness” of more than c̄ neighbours of v. However, the number of paths of length
2j joining v and w is bounded from above by c̄d2j/n (see Lemma 2.2(ii) and note that
d2j = n2jα+o(1) ≥ 7n log n, since 2jα > 1). Hence,

1

3

(
d

30c̄(2j + 1)

)j
· dang(2j) ≤ 2c̄d2j

n
· Cx
≤(2j+1)(v) ≤ 2c̄d2j

n
· (2 + o(1))K̄

≤ 5c̄ ·
(

d

30c̄(2j + 1)

)j+1

,

and, as desired, dang(2j) ≤ d
2(2j+1)

. Besides this modification the argument remains

basically the same. �
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