
The robot crawler number of a graph⋆

Anthony Bonato1, Rita M. del Rı́o-Chanona3, Calum MacRury2, Jake Nicolaidis1,
Xavier Pérez-Giménez1 , Pawe l Pra lat1, and Kirill Ternovsky1

1 Ryerson University, Toronto, Canada,
2 Dalhousie University, Halifax, Canada

3 Universidad Nacional Autónoma de Mexico, Mexico City, Mexico

Abstract. Information gathering by crawlers on the web is of practical interest. We consider a sim-
plified model for crawling complex networks such as the web graph, which is a variation of the robot
vacuum edge-cleaning process of Messinger and Nowakowski. In our model, a crawler visits nodes via a
deterministic walk determined by their weightings which change during the process deterministically.
The minimum, maximum, and average time for the robot crawler to visit all the nodes of a graph is
considered on various graph classes such as trees, multi-partite graphs, binomial random graphs, and
graphs generated by the preferential attachment model.

1 Introduction

A central paradigm in web search is the notion of a crawler, which is a software application designed
to gather information from web pages. Crawlers perform a walk on the web graph, visiting web
pages and then traversing links as they explore the network. Information gathered by crawlers is
then stored and indexed, as part of the anatomy of a search engine such as Google or Bing. See [10,
16, 25] and the book [22] for a discussion of crawlers and search engines.

Walks in graph theory have been long-studied, stretching back to Euler’s study of the Königsberg
bridges problem in 1736, and including the travelling salesperson problem [3] and the sizeable liter-
ature on Hamiltonicity problems (see, for example, [28]). An intriguing generalization of Eulerian
walks was introduced by Messinger and Nowakowski in [23], as a variant of graph cleaning pro-
cesses (see, for example, [2, 24]). The reader is directed to [8] for an overview of graph cleaning and
searching. In the model of [23], called the robot vacuum, it is envisioned that a building with dirty
corridors (for example, pipes containing algae) is cleaned by an autonomous robot. The robot cleans
these corridors in a greedy fashion, so that the next corridor cleaned is always the “dirtiest” to
which it is adjacent. This is modelled as a walk in a graph. The robot’s initial position is any given
node, with the initial weights for the edges of the graph G being −1,−2, . . . ,−|E(G)| (each edge
has a different value). At every step of the walk, the edges of the graph will be assigned different
weights indicating the last time each one was cleaned (and thus, its level of dirtiness). It is assumed
that each edge takes the same length of time to clean, and so weights are taken as integers. In such
a model, it is an exercise to show that for a connected graph, one robot will eventually clean the
graph (see [23]).

Let s(G) and S(G) denote the minimum and maximum number of time-steps over all edge
weightings, respectively, when every edge of a graph G has been cleaned. As observed in [23], if
G is an Eulerian graph, then we have that s(G) = |E(G)|, and moreover the final location of the
robot after the first time every edge has been cleaned is the same as the initial position. Li and
Vetta [20] gave an interesting example where the robot vacuum takes exponential time to clean the

⋆ Research supported by grants from NSERC, MITACS Inc. and Ryerson University.

graph. Let Se be the maximum value of S over all connected graphs containing exactly e edges. It is
proven in [20] that there exists an explicit constant d > 0 such that, for all e, Se ≥ d(3/2)e/5 − 1/2.
Moreover, Se ≤ 3e/3+1 − 3. An analogous result was independently proven by Copper et al. [13]
who analyzed a similar model to the robot vacuum process. The “self-stabilization” found in robot
vacuum is also a feature of so-called ant algorithms (such as the well-known Langton’s ant which
is capable of simulating a universal Turing machine; see [15]). The robot vacuum model can be
regarded as an undirected version of the rotor-router model; see [27, 29].

In the present work, we provide a simplified model of a robot crawler on the web, based on the
robot vacuum paradigm of [20, 23]. In our model, the crawler cleans nodes rather than edges. Nodes
are initially assigned unique non-positive integer weights from {0,−1,−2, . . . ,−|V (G)|+ 1}. In the
context of the web or other complex networks, weights may be correlated with some popularity
measure such as in-degree or PageRank. The robot crawler starts at the dirtiest node (that is,
the one with the smallest weight), which immediately gets its weight updated to 1. Then at each
subsequent time-step it moves greedily to the dirtiest neighbour of the current node. On moving
to such a node, we update the weight to the positive integer equalling the time-step of the process.
The process stops when all weights are positive (that is, when all nodes have been cleaned). Note
that while such a walk by the crawler may indeed be a Hamilton path, it usually is not, and some
weightings of nodes will result in many re-visits to a given node. Similar models to the robot crawler
have been studied in other contexts; see [18, 21, 27].

A rigorous definition of the robot crawler is given in Section 2. We consider there the mini-
mum, maximum, and average number of time-steps required for the robot crawler process. We give
asymptotic (and in some cases exact) values for these parameters for paths, trees, and complete
multi-partite graphs. In Section 3, we consider the average number of time-steps required for the
robot crawler to explore binomial random graphs. The robot crawler is studied on the preferential
attachment model, one of the first stochastic models for complex networks, in Section 4. We con-
clude with a summary and a list of open problems for further study. Due to lack of space, some of
the proofs are omitted from this extended abstract and deferred to the extended version.

Throughout, we consider only finite, simple, and undirected graphs. For a given graph G =
(V,E) and v ∈ V , N(v) denotes the neighbourhood of v and deg(v) = |N(v)| its degree. For
background on graph theory, the reader is directed to [28]. For a given n ∈ N, we use the notation
Bn = {−n + 1,−n + 2, . . . ,−1, 0} and [n] = {1, 2, . . . , n}. All logarithms in this paper are with
respect to base e. We say that an event An holds asymptotically almost surely (a.a.s.) if it holds
with probability tending to 1 as n tends to infinity.

2 The robot crawler process: definition and properties

We now formally define the robot crawler process and the various robot crawler numbers of a graph.
Some proofs are omitted owing to space constraints, and will appear in the full version of the paper.

The robot crawler RC(G,ω0) =
(

(ωt, vt)
)L

t=1
of a connected graph G = (V,E) on n nodes with an

initial weighting ω0 : V → Bn, that is a bijection from the node set to Bn, is defined as follows.

1. Initially, set v1 to be the node in V with weight ω0(v1) = −n + 1.
2. Set ω1(v1) = 1; the other values of ω1 remain the same as in ω0.
3. Set t = 1.
4. If all the weights are positive (that is, minv∈V ωt(v) > 0), then set L = t, stop the process, and

return L and RC(G,ω0) =
(

(ωt, vt)
)L

t=1
.

2

5. Let vt+1 be the dirtiest neighbour of vt. More precisely, let vt+1 be such that

ωt(vt+1) = min{ωt(v) : v ∈ N(vt)}.

6. ωt+1(vt+1) = t + 1; the other values of ωt+1 remain the same as in ωt.
7. Increment to time t + 1 and return to 4.

If the process terminates, then define
rc(G,ω0) = L,

that is rc(G,ω0) is equal to the number of steps in the crawling sequence (v1, v2, . . . , vL) (including
the initial state) taken by the robot crawler until all nodes are clean; otherwise rc(G,ω0) = ∞. We
emphasize that for a given ω0, all steps of the process are deterministic. Note that at each point of
the process, the weighting ωt is an injective function. In particular, there is always a unique node
vt+1, neighbour of vt of minimum weight (see step (4) of the process). Hence, in fact, once the initial
configuration is fixed, the robot crawler behaves like a cellular automaton. It will be convenient to
refer to a node as dirty if it has a non-positive weight (that is, it has not been yet visited by the
robot crawler), and clean, otherwise.

The next observation that the process always terminates in a finite number of steps is less
obvious, but we omit the proof owing to space constraints.

Theorem 1. For a connected graph G = (V,E) on n nodes and a bijection ω0 : V → Bn, RC(G,ω0)
terminates after a finite number of steps; that is, rc(G,ω0) < ∞.

The fact that every node in a graph will be eventually visited inspires the following definition.
Let G = (V,E) be any connected graph on n nodes. Let Ωn be the family of all initial weightings
ω0 : V → Bn. Then

rc(G) = min
ω0∈Ωn

rc(G,ω0) and RC(G) = max
ω0∈Ωn

rc(G,ω0).

In other words, rc(G) and RC(G) the are minimum and maximum number of time-steps, respec-
tively, needed to crawl G, over all choices of initial weightings. Now let ω0 be an element taken
uniformly at random from Ωn. Then we have the average case evaluated as

rc(G) = E [rc(G,ω0)] =
1

|Ωn|
∑

ω0∈Ωn

rc(G,ω0).

The following result is immediate. (Part 5. follows from the observation that, if a node v is cleaned
by the robot crawler ∆ + 1 times within an interval of time-steps, then every neighbour of v must
be cleaned at least once during that interval.)

Lemma 1. Let G be a connected graph of order n, maximum degree ∆, and diameter d. Let Cn

and Kn denote the cycle and the clique of order n, respectively.

1. rc(G) ≤ rc(G) ≤ RC(G).
2. rc(Kn) = rc(Kn) = RC(Kn) = n
3. rc(Cn) = rc(Cn) = RC(Cn) = n.
4. rc(G) = n if and only if G has a hamiltonian path.

5. RC(G) ≤ n(∆ + 1)d.

3

The model introduced in [23] is analogous to the robot crawler process, in a way we make precise.
For any connected graph G = (V,E) and any k ∈ N, a k-subdivision of G, Lk(G), is a graph that is
obtained from G by replacing each edge of G by a path of length k. The following theorem shows
the connection between the two models. Recall that s(G) is the analogue of rc(G) in the robot
vacuum model.

Theorem 2. If G = (V,E) is a connected graph, then

s(G) =

⌊

rc(L3(G)) + 1

3

⌋

.

Theorem 2 shows that, indeed, the model we consider in this paper is a generalization of the edge
model introduced in [23]. Instead of analyzing s(G) for some connected graph G, we may construct
L3(G) and analyze rc(L3(G)).

Let us start with the following elementary example to illustrate the robot crawler parameters.
For the path Pn of length n − 1 ≥ 2, we have that rc(Pn) = n and RC(Pn) = 2n − 2. In order to
achieve the minimum, one has to start the process from a leaf of Pn. Regardless of ω0 used, the
process takes n steps to finish (see Lemma 1(4) and Theorem 4 for more general results). In order
to achieve the maximum, the robot crawler has to start from a neighbour of a leaf and a weighting
that forces the process to move away from the leaf (again, see Theorem 4 for more general result).
By direct computation, we have the following result.

Theorem 3. For any n ∈ N,

rc(Pn) =
3n

2
− 3

2
+

1

n
∼ 3n

2
.

We next give the precise value of rc and RC for trees. The main idea behind the proof of this
result is comparing the robot crawler to the Depth-First Search algorithm on a tree.

Theorem 4. Let T = (V,E) be a tree on n ≥ 2 nodes. Then we have that

rc(T) = 2n− 1 − diam(T) and RC(T) = 2n− 2,

where diam(T) is the diameter of T .

Now, let us move to more sophisticated example. For k ∈ N\{1} and n ∈ N, denote the complete

k-partite graph with partite sets V1, . . . , Vk of size n by Kk
n. Note that for any n ∈ N and k = 2, we

have that
rc(K2

n) = rc(K2
n) = RC(K2

n) = |V (K2
n)| = 2n.

Indeed, since K2
n has a hamiltonian path, rc(K2

n) = 2n (see Lemma 1(4)). However, in fact, regard-
less of the ω0 used, the robot crawler starts at a node v0 and then oscillates between the two partite
sets visiting all nodes in increasing order of weights assigned initially to each partite set of K2

n.
We next consider the case k ≥ 3. Since Kk

n still has a hamiltonian path, rc(Kk
n) = kn. For

RC(Kk
n) the situation is slightly more complicated.

Theorem 5. For any k ∈ N \ {1, 2} and n ∈ N, we have that

rc(Kk
n) = kn and RC(Kk

n) = (k + 1)n− 1.

Investigating rc(Kk
n) appears more challenging. However, we derive the asymptotic behaviour.

4

Theorem 6. For any k ∈ N \ {1, 2}, we have that

rc(Kk
n) = kn + O(log n) ∼ kn.

Before we sketch the proof of Theorem 6, we need a definition. Suppose that we are given an
initial weighting ω0 of Kk

n. For any ℓ ∈ [kn], let Aℓ be the set of ℓ cleanest nodes; that is,

Aℓ = {v ∈ V1 ∪ V2 ∪ . . . ∪ Vk : ω0(v) ≥ −ℓ + 1}.

Finally, for any ℓ ∈ [kn] and j ∈ [k], let ajℓ = ajℓ(ω0) = |Aℓ ∩ Vj|; that is, ajℓ is the number of nodes
of Vj that are among ℓ the cleanest ones (in the whole graph Kk

n). Note that for a random initial

weighing ω0, the expected value of ajℓ is ℓ/k. Let ε > 0. We say that ω0 is ε-balanced if for each
j ∈ [k] and 6ε−2k log n ≤ ℓ ≤ kn, we have that

∣

∣

∣

∣

ajℓ −
ℓ

k

∣

∣

∣

∣

<
εℓ

k
.

A crucial observation is that almost all initial weightings are ε-balanced, regardless of how small
ε is. We will use the following version of Chernoff’s bound. Suppose that X ∈ Bin(n, p) is a binomial
random variable with expectation µ = np. If 0 < δ < 3/2, then

Pr (|X − µ| ≥ δµ) ≤ 2 exp

(

−δ2µ

3

)

. (1)

(For example, see Corollary 2.3 in [17].) It is also true that (1) holds for a random variable with
the hypergeometric distribution. The hypergeometric distribution with parameters N , n, and m
(assuming max{n,m} ≤ N) is defined as follows. Let Γ be a set of size n taken uniformly at
random from set [N]. The random variable X counts the number of elements of Γ that belong
to [m]; that is, X = |Γ ∩ [m]|. It follows that (1) holds for the hypergeometric distribution with
parameters N , n, and m, with expectation µ = nm/N . (See, for example, Theorem 2.10 in [17].)

Now we are ready to state the important lemma which is used in the proof of Theorem 6. Its
proof follows from the Chernoff’s bound (1) for hypergeometric distributions, and is omitted.

Lemma 2. Let ε > 0 and k ∈ N \ {1, 2}, and let ω0 be a random initial weighting of Kk
n. Then we

have that ω0 is ε-balanced with probability 1 −O(n−1).

Proof of Theorem 6. Let k ∈ N \ {1, 2} and fix ε = 0.01. We will show that for any ε-balanced
initial weighting ω0, rc(Kk

n, ω0) = kn + O(log n). This will finish the proof since, by Lemma 2, a
random initial weighting is ε balanced with probability 1 − O(n−1), and for any initial weighting
ω0 we have rc(Kk

n, ω0) ≤ RC(Kk
n) = (k + 1)n − 1 = O(n). Indeed,

rc(Kk
n) = Pr (ω0 is ε-balanced) (kn + O(log n)) + Pr (ω0 is not ε-balanced)O(n)

= (kn + O(log n)) + O(1) = kn + O(log n).

Let ω0 be any ε-balanced initial weighting. Fix ℓ ∈ [kn] and let us run the process until the robot
crawler is about to move for the first time to a node of Aℓ. Suppose that the robot crawler occupies
node v ∈ Vi for some i ∈ [k] (v 6∈ Aℓ) and is about to move to node u ∈ Vj for some j ∈ [k], j 6= i
(u ∈ Aℓ). Let us call Vi a ℓ-crucial partite set. Concentrating on non-crucial sets, we observe that
for any s 6= i, all the nodes of Vs \ Aℓ are already cleaned; otherwise, the robot crawler would go

5

to such node, instead of going to u. On the other hand, it might be the case that not all nodes of
Vi \ Aℓ, that belong to a ℓ-crucial set, are already visited; we will call such nodes ℓ-dangerous. Let
f(ℓ) be the number of ℓ-dangerous nodes.

Our goal is to control the function f(ℓ). We say that ℓ is good if f(ℓ) ≤ 0.6ℓ/k. Clearly, ℓ = kn
is good, as f(kn) = 0. We use the following claim.

Claim. If ℓ is good, then ℓ′ = ⌊2ℓ/3⌋ is good, provided that ⌊2ℓ/3⌋ ≥ 6ε−2k log n.

To show the claim, we run the process and stop at time Tℓ when the robot crawler is about to
move to the fist node of Aℓ. We concentrate on the time interval from Tℓ up to time-step Tℓ′ when
a node of Aℓ′ is about to be cleaned. First, note that during the first phase of this time interval, the
crawler oscillates between nodes of Aℓ \Aℓ′ that are not in the ℓ-crucial set and ℓ-dangerous nodes.
Clearly, there are ℓ− ℓ′ ≥ ℓ/3 nodes in Aℓ \Aℓ′ . Since ω0 is ε-balanced, the number of nodes of the
ℓ-crucial set that belong to Aℓ and Aℓ′ is at most (1 + ε)ℓ/k and at least (1 − ε)ℓ′/k, respectively.
Since

ℓ

3
−
(

(1 + ε)ℓ

k
− (1 − ε)ℓ′

k

)

=
ℓ

3
− (1 + 5ε)ℓ

3k
+ O(1) ≥

(

k − 1

3
− 2ε

)

ℓ

k
> 0.64

ℓ

k
≥ f(ℓ),

this phase lasts 2f(ℓ) steps and all ℓ-dangerous nodes are cleaned. The claim now follows easily as
one can use a trivial bound for the number of ℓ′-dangerous nodes. Regardless which partite set is
ℓ′-crucial, since ω0 is ε-balanced, we can estimate the number of nodes in ℓ′-crucial set that belong
to Aℓ \ A′

ℓ. Since ℓ′-dangerous nodes must be in Aℓ \A′
ℓ, we obtain that

f(ℓ′) ≤ (1 + ε)ℓ

k
− (1 − ε)ℓ′

k
=

(

1

2
+

5

2
ε

)

ℓ′

k
+ O(1) < 0.53

ℓ′

k
.

It follows that ℓ′ is good and the claim holds by induction.

To finish the proof, we keep applying the claim recursively concluding that there exists ℓ <
(3/2)6ε−2k log n = O(log n) that is good. At time Tℓ of the process, ℓ+f(ℓ) ≤ ℓ+0.6ℓ/k = O(log n)
nodes are still dirty and every other node is visited exactly once. The process ends after at most
2(ℓ + f(ℓ)) another steps for the total of at most kn + (ℓ + f(ℓ)) = kn + O(log n) steps. ⊓⊔

3 Binomial random graphs

The binomial random graph G(n, p) is defined as a random graph with node set [n] in which a pair
of nodes appears as an edge with probability p, independently for each pair of nodes. As typical in
random graph theory, we consider only asymptotic properties of G(n, p) as n → ∞, where p = p(n)
may and usually does depend on n.

It is known (see, for example, [19]) that a.a.s. G(n, p) has a hamiltonian cycle (and so also
a hamiltonian path) provided that pn ≥ log n + log log n + ω, where ω = ω(n) is any function
tending to infinity together with n. On the other hand, a.a.s. G(n, p) has no hamiltonian cycle if
pn ≤ log n+log log n−ω. It is straightforward show that in this case a.a.s. there are more than two
nodes of degree at most 1 and so a.a.s. there is no hamiltonian path. Combining these observations,
we derive immediately the following result.

Corollary 1. If ω = ω(n) is any function tending to infinity together with n, then the following

hold a.a.s.

6

1. If pn ≥ log n + log log n + ω, then rc(G(n, p)) = n.
2. If pn ≤ log n + log log n− ω, then rc(G(n, p)) > n.

The next upper bound on RC(G(n, p)) follows from Lemma 1(5) and the fact that G(n, p) has
maximum degree at most n− 1 and a.a.s. diameter 2 for p in the range of discussion.

Corollary 2. Suppose pn ≥ C
√
n log n, for a sufficiently large constant C > 0. Then a.a.s. we

have that

RC(G(n, p)) ≤ n3.

Moreover, we give the following lower bound (whose proof is omitted here).

Theorem 7. Suppose C
√
n log n ≤ pn ≤ (1 − ε)n, for constants C > 1 and ε > 0. Then a.a.s. we

hae that

RC(G(n, p)) ≥ (2 − p + o(p))n.

The rest of this section is devoted to the following result.

Theorem 8. Let p = p(n) such that pn ≫
√
n log n. Then a.a.s.

rc(G(n, p)) = n + o(n).

The main ingredient to derive Theorem 8 is the following key lemma.

Lemma 3. Let G = (V,E) ∈ G(n, p) for some p = p(n) such that pn ≫
√
n log n, and let ω0 : V →

Bn be any fixed initial weighting. Then with probability 1 − o(n−3), we have that

rc(G,ω0) = n + o(n).

We are going to fix an initial weighting before exposing edges of the random graph. For a given
initial weighting ω0 : V → Bn, we partition the node set V into 3 types with respect to their initial
level of dirtiness: type 1 consists of nodes with initial weights from Bn \B⌊2n/3⌋, type 2 with initial
weights from B⌊2n/3⌋ \ B⌊n/3⌋; the remaining nodes are of type 3. Before we move to the proof of
Lemma 3, we state the following useful claim that holds even for much sparser graphs (the proof
is immediate by a standard Chernoff bound (1)).

Claim 1. Let G = (V,E) ∈ G(n, p) for some p = p(n) such that pn ≫ log n. Let ω0 : V → Bn be
any initial weighting. Then the following property holds with probability 1 − o(n−3). Each node
v ∈ V has (1 + o(1))pn/3 neighbours of each of the three types.

We will use the claim in the proof of the main result but not explicitly; that is, we do not want
to condition on the property stated in the claim. Instead, we uncover edges of the (unconditional)
random graph (one by one, in some order) and show that the desired upper bound for rc(G(n, p), ω0)
holds with the desired probability unless the claim is false. Now we can move to the proof of
Lemma 3.

Proof of Lemma 3. We consider four phases of the crawling process.
Phase 1 : We start the process from the initial node (which is of type 1, since it has initial

weight −n+ 1), and then we clean only nodes of type 1. The phase ends when the robot crawler is
not adjacent to any dirty node of type 1; that is, when the crawler is about to move to a node of

7

some other type than type 1 or to re-clean some node of type 1. An important property is that, at
any point of the process, potential edges between the crawler and dirty nodes are not exposed yet.
Hence, if x ≥ 5 log n/p nodes of type 1 are still dirty, the probability that this phase ends at this
point is equal to

(1 − p)x ≤ exp(−px) ≤ n−5.

Hence, it follows from the union bound that, with probability at least 1 − n−4 = 1 − o(n−3), this
phase ends after T1 steps, where ⌈n/3⌉ − 5 log n/p ≤ T1 ≤ ⌈n/3⌉, at most 5 log n/p nodes of type 1
are still dirty, and the other type 1 nodes are cleaned exactly once. Observe that during this phase
we exposed only edges between type 1 nodes.

Phase 2 : During this phase we are going to clean mostly nodes of type 2, with a few “detours”
to type 1 nodes that are still dirty. Formally, the phase ends when the robot crawler is not adjacent
to any dirty node of type 1 or 2; that is, when the crawler is about to move to a node of type 3 or
to re-clean some node (of type 1 or 2). Arguing as before, we deduce that, with probability at least
1− o(n−3), this phase ends after the total of T2 steps (counted from the beginning of the process),
where ⌈2n/3⌉ − 5 log n/p ≤ T2 ≤ ⌈2n/3⌉, at most 5 log n/p nodes of type 1 or 2 are still dirty, and
the other type 1 or 2 nodes are cleaned exactly once.

Suppose that at the end of this phase some node v of type 1 is still dirty. This implies that v
has at most 10 log n/p neighbours that are type 2. Indeed, at most 5 log n/p of them are perhaps
not visited by the crawler yet; at most 5 log n/p of them were visited by the crawler but it did not
move to v from them but went to some other of the at most 5 log n/p dirty nodes of type 1 instead.
Since pn ≥ 10

√
n log n, we obtain that 10 log n/p ≤ pn/10 and so this implies that the property

stated in Claim 1 is not satisfied. If this is the case, then we simply stop the argument. We may
then assume that all nodes of type 1 are cleaned at this point of the process. Finally, let us mention
that during this phase we exposed only edges between type 2 nodes, and between type 1 nodes that
were dirty at the end of phase 1 and type 2 nodes.

Phase 3 : This phase ends when the robot crawler is not adjacent to any dirty node; that is,
when the crawler is about to re-clean some node. During this phase we are going to clean mostly
nodes of type 3, with a few “detours” to type 2 nodes that are still dirty. Arguing as before, we
deduce that, with probability at least 1− o(n−3), this phase ends after the total of T3 steps, where
n − 5 log n/p ≤ T2 ≤ n. Moreover, we may assume that at the end of this phase at most 5 log n/p
nodes of type 3 are still dirty whereas all other nodes are cleaned exactly once; otherwise, the
property stated in Claim 1 is not satisfied. As usual, the main observation is that during this phase
we exposed only edges between type 3 nodes, and between type 2 nodes that were dirty at the end
of phase 2 and type 3 nodes.

Phase 4 : During this final phase we are going to re-clean (for the second time) some nodes of
type 1, with a few “detours” to type 3 nodes that are still dirty. This phase ends when one of the
following properties is satisfied:

(a) all nodes are cleaned,

(b) this phase takes more than 20 log n/p2 steps,

(c) the robot crawler is not adjacent to any dirty node nor to any type 1 node that was cleaned
only once, during phase 1 (note that these nodes have the smallest weights at this point of the
process).

8

Recall that our goal is to show that either the property stated in Claim 1 is not satisfied or, with
probability at least 1 − o(n−3), the phase ends when all nodes are cleaned. From this it will follow
that the process takes n + O(log n/p2) = n + o(n) steps with probability at least 1 − o(n−3), and
the proof will be finished.

Suppose first that the phase ends because of property (c). It follows that the crawler occupies
a node v that has at most 25 log n/p neighbours that are type 1: at most 20 log n/p of them were
re-cleaned during this phase, and at most 5 log n/p of them were cleaned during phase 2. Since
pn ≥ 10

√
n log n, 25 log n/p ≤ pn/4 and so the property in Claim 1 is not satisfied. Hence, we may

assume that the phase does not end because of (c).
Suppose now that the phase ends because of property (b) and that property (c) is never satisfied.

This implies that all nodes visited during phase 4 must be different, since otherwise property (c)
would hold. Moreover, the robot crawler can be adjacent to a dirty node at most 5 log n/p out
of the first ⌊20 log n/p2⌋ steps in this phase, since each time this happens one dirty node will be
cleaned in the next step, and there were at most 5 log n/p nodes of type 3 that were dirty at the
end of phase 3. A crucial observation is that no edges between type 1 and type 3 nodes (and also
no edges between dirty nodes of type 3) were exposed at the beginning of this phase. Using this we
can estimate the probability that at the end of this phase some node is still dirty. Indeed, at each
step, the probability that the robot crawler is adjacent to a dirty node (provided that some dirty
node still exists) is at least p. Hence, using Chernoff bound (1), the probability that phase 4 ends
because of property (b) and not (c) is at most

Pr
(

Bin(⌊20 log n/p2⌋, p) ≤ 5 log n/p
)

≤ exp

(

−(3/4)220 log n/p

3 + o(1)

)

= o(n−3).

This shows that phase 4 does not stop because of property (b) with probability 1 − o(n−3), as
required. ⊓⊔

4 Preferential Attachment Model

The results in Section 3 demonstrate that for the binomial random graph, for most initial weightings
the robot crawler will finish in approximately n steps. We now consider the robot crawler on a
stochastic model for complex networks. The preferential attachment model, introduced by Barabási
and Albert [4], was an early stochastic model of complex networks. We will use the following precise
definition of the model, as considered by Bollobás and Riordan in [5] as well as Bollobás, Riordan,
Spencer, and Tusnády [6].

Let G0
1 be the null graph with no nodes (or let G1

1 be the graph with one node, v1, and one
loop). The random graph process (Gt

1)t≥0 is defined inductively as follows. Given Gt−1
1 , we form

Gt
1 by adding node vt together with a single edge between vt and vi, where i is selected randomly

with the following probability distribution:

Pr (i = s) =

{

deg(vs, t− 1)/(2t − 1) 1 ≤ s ≤ t− 1,

1/(2t − 1) s = t,

where deg(vs, t − 1) denotes the degree of vs in Gt−1
1 . (In other words, we send an edge e from vt

to a random node vi, where the probability that a node is chosen as vi is proportional to its degree
at the time, counting e as already contributing one to the degree of vt.)

9

For m ∈ N \ {1}, the process (Gt
m)t≥0 is defined similarly with the only difference that m edges

are added to Gt−1
m to form Gt

m (one at a time), counting previous edges as already contributing to
the degree distribution. Equivalently, one can define the process (Gt

m)t≥0 by considering the process
(Gt

1)t≥0 on a sequence v′1, v
′
2, . . . of nodes; the graph Gt

m if formed from Gtm
1 by identifying nodes

v′1, v
′
2, . . . , v

′
m to form v1, identifying nodes v′m+1, v

′
m+2, . . . , v

′
2m to form v2, and so on. Note that

in this model Gt
m is in general a multigraph, possibly with multiple edges between two nodes (if

m ≥ 2) and self-loops. For the purpose of the robot crawler, loops can be ignored and multiple
edges between two nodes can be treated as a single edge.

It was shown in [6] that for any m ∈ N a.a.s. the degree distribution of Gn
m follows a power

law: the number of nodes with degree at least k falls off as (1 + o(1))ck−2n for some explicit
constant c = c(m) and large k ≤ n1/15. Let us start with the case m = 1, which is easy to deal
with, since Gn

1 is a forest. Each node sends an edge either to itself or to an earlier node, so the
graph consists of components which are trees, each with a loop attached. The expected number of
components is then

∑n
t=1 1/(2t− 1) ∼ (1/2) log n and, since events are independent, we derive that

a.a.s. there are (1/2 + o(1)) log n components in Gn
1 by Chernoff’s bound (1). Moreover, Pittel [26]

essentially showed that a.a.s. the largest distance between two nodes in the same component of
Gn

1 is (γ−1 + o(1)) log n, where γ is the solution of γe1+γ = 1 (see Theorem 13 in [5]). Hence, the
following result holds immediately from Theorem 4.

Theorem 9. The following properties hold a.a.s. for any connected component G of Gn
1 :

rc(G) = 2|V (G)| − 1 − diam(G) = 2|V (G)| −O(log n),

RC(G) = 2|V (G)| − 2.

We may modify slightly the definition of the model to ensure Gn
1 is a tree on n nodes, by starting

from G2
1 being an isolated edge and not allowing loops to be created in the process (this is in fact

the original model in [4]). For such variant, we would have that a.a.s. rc(Gn
1) ∼ RC(Gn

1) ∼ 2n, as
the diameter would be negligible comparing to the order of the graph.

The case m ≥ 2 is more difficult to investigate. It is known that a.a.s. Gn
m is connected and

its diameter is (1 + o(1)) log n/ log log n, as shown in [5], and in contrast to the result for m = 1
presented above. We managed to show that for the case m = 2, the robot crawler needs substantially
more than n steps to clean the graph in this model. This immediately implies (in a strong sense)
that Gn

2 is not hamiltonian a.a.s.

Theorem 10. A.a.s. rc(Gn
2) ≥ (1 + ξ + o(1))n, where

ξ = max
c∈(0,1/2)

(

2
√
c

3
− c− c2

6

)

≈ 0.10919.

Proof. Many observations in the argument will be valid for any m but, of course, we will eventually
fix m = 2. Consider the process (Gt

m)t≥0 on the sequence of nodes (vt)t≥0. We will call node vi
lonely if deg(vi, n) = m; that is, no loop is created at the time vi is introduced and no other node is
connected to vi later in the process. Moreover, vi is called old if i ≤ cn for some constant c ∈ (0, 1)
that will be optimized at the end of the argument; otherwise, vi is called young. Finally, vi is called
j-good if vi is lonely and exactly j of its neighbours are old.

Let us begin with the big picture for the case m = 2. Suppose that an nodes are young and
1-good, bn nodes are young and 2-good, and dn nodes are old and lonely (which implies that they

10

are 2-good). Clearly, the robot crawler needs to visit all young nodes and all old and lonely ones,
which takes at least (1−c)n+dn steps. Observe that each time a young and 2-good node is visited,
the crawler must come from an old but not-lonely node and move to another such one right after.
Similarly, each time the crawler visits a young and 1-good node, it must come from or move to some
node that is old but not lonely. It follows that nodes that are old but not lonely must be visited at
least an/2 + bn + O(1) times. Hence, the process must take at least (1 − c + d + a/2 + b + o(1))n
steps, and our hope is that it gives a non-trivial bound for some value of c ∈ (0, 1).

The probability that vi is lonely is easy to estimate from the equivalent definition of Gn
m obtained

in terms of Gmn
1 . For i ≫ 1, we derive that

Pr (vi is lonely) = Pr (deg(vi, i) = m)

nm
∏

t=im+1

(

1 − m

2t− 1

)

∼ exp

(

−
nm
∑

t=im+1

m

2t− 1
+ O

(

nm
∑

t=im+1

t−2

))

∼ exp

(

−m

2

nm
∑

t=im+1

t−1

)

∼ exp
(

−m

2
log
(nm

im

))

=

(

i

n

)m/2

.

We will also need to understand the behaviour of the following random variable: for ⌊cn⌋ ≤ t ≤ n,
let

Yt =
∑

j≤cn

deg(vj , t).

In view of the identification between the models Gn
m and Gmn

1 , it will be useful to investigate the
following random variable instead: for m⌊cn⌋ ≤ t ≤ mn, let

Xt =
∑

j≤cmn

degGt
1

(v′j , t).

Clearly, Yt = Xtm. It follows that Xm⌊cn⌋ = Y⌊cn⌋ = 2m⌊cn⌋. Moreover, for m⌊cn⌋ < t ≤ mn,

Xt =

{

Xt−1 + 1 with probability Xt−1

2t−1 ,

Xt−1 otherwise.

The conditional expectation is given by

E [Xt|Xt−1] = (Xt−1 + 1) · Xt−1

2t− 1
+ Xt−1

(

1 − Xt−1

2t− 1

)

= Xt−1

(

1 +
1

2t− 1

)

.

Taking expectation again, we derive that

E [Xt] = E [Xt−1]

(

1 +
1

2t− 1

)

.

Hence, arguing as before, it follows that

E [Yt] = E [Xtm] = 2m⌊cn⌋
tm
∏

s=m⌊cn⌋+1

(

1 +
1

2s − 1

)

∼ 2cmn

(

tm

cmn

)1/2

= 2mn
√

ct/n.

11

Noting that E [Yt] = Θ(n) for any ⌊cn⌋ ≤ t ≤ n, and that Yt increases by at most m each time (Xt

increases by at most one), we obtain that with probability 1− o(n−1), Yt = E [Yt] + O(
√
n log n) ∼

E [Yt] (using a standard martingale argument; see Azuma-Hoeffding inequality (see, for example,
[17]). Hence, we may assume that Yt ∼ 2mn

√

ct/n for any ⌊cn⌋ ≤ t ≤ n.

The rest of the proof is straightforward. Note that, for a given t = xn with c ≤ x ≤ 1, the
probability that an edge generated at this point of the process goes to an old node is asymp-
totic to (2mn

√

ct/n)/(2mt) =
√

cn/t =
√

c/x. Moreover, recall that vt is lonely with probability
asymptotic to (t/n)m/2 = x for the case m = 2. It follows that

a ∼
∫ 1

c
2
√

c/x(1 −
√

c/x)xdx =
4
√
c

3
− 2c +

2c2

3
,

b ∼
∫ 1

c
(
√

c/x)2xdx = c− c2,

d ∼
∫ c

0
xdx =

c2

2
.

Since

1 − c + d + a/2 + b ∼ 1 +
2
√
c

3
− c− c2

6

is maximized at c =

(

(4+4
√
5)

2/3−4
)2

4(4+4
√
5)

2/3 ≈ 0.10380, the proof follows. ⊓⊔

5 Conclusion and open problems

We introduced the robot crawler model, which is a simplified model of web crawling. We studied
the minimum, maximum, and average time for the robot crawler process to terminate. We found
exact values for these parameters in several graph classes such as trees and complete multi-partite
graphs. We have successfully addressed the robot crawler model in binomial random graphs, and
considered the rc parameter for preferential attachment graphs in the cases m = 1, 2.

Several problems concerning the robot crawler model remain open. We list some of these relevant
to our investigation below.

1. Let Gn be the complete k-partite graph with partite sets of sizes c1n, c2n, . . . , ckn for some
constants 0 < c1 ≤ c2 ≤ . . . ≤ ck. Derive the asymptotic behaviour of rc(Gn), rc(Gn), and
RC(Gn).

2. Theorem 8 holds for dense random graphs; that is, for pn ≫ √
n log n. What about sparser

random graphs?

3. Can the bound in Corollary 2 be improved? Is it true that RC(G(n, p)) = O(n) for a wide range
of p? Recall, in view of Theorem 7, that we cannot achieve RC(G(n, p)) = (1 + o(1))n, provided
that p < 1 − ε for some ε > 0.

4. Properties of the robot crawler remain open in the preferential attachment model when m > 2.
Fix m ≥ 3. Is it true that a.a.s. rc(Gn

m) ≥ (1+ξ)n for some constant ξ > 0? Or maybe rc(Gn
m) ∼

n? It is possible that there is some threshold m0 such that for m ≤ m0, rc(Gn
m) ≥ (1 + ξ)n for

some constant ξ > 0 but rc(Gn
m) ∼ n for m > m0.

12

Our work with the robot crawler is a preliminary investigation. As such, it would be interesting
to study the robot crawler process on other models of complex networks, such as random graphs
with given expected degree sequence [11], preferential attachment graphs with increasing average
degrees [14], or geometric models such as the spatially preferred attachment model [1, 12], geo-
graphical threshold graphs [9], or GEO-P model [7].

References

1. W. Aiello, A. Bonato, C. Cooper, J. Janssen, P. Pra lat, A spatial web graph model with local influence regions,
Internet Mathematics 5 (2009) 175–196.

2. N. Alon, P. Pra lat, N. Wormald, Cleaning regular graphs with brushes, SIAM Journal on Discrete Mathematics

23 (2008) 233–250.
3. D.L. Applegate, R.E. Bixby, V. Chvátal, W.J. Cook, The Traveling Salesman Problem, Princeton University

Press, 2007.
4. A.L. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509–512.
5. B. Bollobás, O. Riordan, The diameter of a scale-free random graph, Combinatorica 24(1) (2004) 5–34.
6. B. Bollobás, O. Riordan, J. Spencer, G. Tusnády, The degree sequence of a scale-free random graph process,

Random Structures and Algorithms 18 (2001) 279–290.
7. A. Bonato, J. Janssen, P. Pra lat, Geometric protean graphs, Internet Mathematics 8 (2012) 2–28.
8. A. Bonato, R.J. Nowakowski, The Game of Cops and Robbers on Graphs, American Mathematical Society, 2011.
9. M. Bradonjić, A. Hagberg, A. Percus, The structure of geographical threshold graphs, Internet Mathematics, 5

(2008) 113–140.
10. S. Brin, L. Page, Anatomy of a large-scale hypertextual web search engine, In: Proceedings of the 7th International

World Wide Web Conference, 1998.
11. F. Chung, L. Lu. Complex Graphs and Networks, American Mathematical Society, August 2006.
12. C. Cooper, A. Frieze, P. Pra lat, Some typical properties of the spatial preferred attachment model, Internet

Mathematics, 10 (2014) 27–47.
13. C. Cooper, D. Ilcinkas, R. Klasing, A. Kosowski, Derandomizing random walks in undirected graphs using locally

fair exploration strategies, Distributed Computing, 24 (2011) 91–99.
14. C. Cooper, P. Pra lat, Scale free graphs of increasing degree, Random Structures and Algorithms 38 (2011) 396–

421.
15. A. Gajardo, A. Moreira, E. Goles, Complexity of Langton’s ant, Discrete Applied Mathematics 117 (2002) 41–50.
16. M.R. Henzinger, Algorithmic challenges in web search engines, Internet Mathematics 1 (2004) 115–126.
17. S. Janson, T. Luczak, A. Ruciński, Random Graphs, Wiley, New York, 2000.
18. S. Koenig, B. Szymanski, Y. Liu, Efficient and inefficient ant coverage methods, Annals of Mathematics and

Artificial Intelligence, 31 (2001) 41–76.
19. J. Komlós, E. Szemerédi, Limit distribution for the existence of hamiltonian cycles in a random graph, Discrete

Mathematics, 43(1) (1983) 55–63.
20. Z. Li, A. Vetta, Bounds on the cleaning times of robot vacuums, Operations Research Letters, 38(1) (2010)

69–71.
21. N. Malpani, Y. Chen, N. H. Vaidya, J. L. Welch, Distributed token circulation in mobile ad hoc networks, IEEE

Transactions on Mobile Computing, 4 (2005) 154–165.
22. C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge University Press,

2008.
23. M.E. Messinger, R.J. Nowakowski, The Robot cleans up, Journal of Combinatorial Optimization, 18(4) (2009)

350–361.
24. M.E. Messinger, R.J. Nowakowski, P. Pra lat, Cleaning a network with brushes, Theoretical Computer Science

399 (2008) 191–205.
25. C. Olston, M. Najork, Web Crawling, Foundations and Trends in Information Retrieval, 4(3) (2010) 175–246.
26. B. Pittel, Note on the heights of random recursive trees and random m-ary search trees, Random Structures and

Algorithms 5 (1994) 337–347.
27. I. A. Wagner, M. Lindenbaum, A. M. Bruckstein, Efficiently searching a graph by a smell-oriented vertex process,

Annals of Mathematics and Artificial Intelligence, 24 (1998) 211–223.
28. D.B. West, Introduction to Graph Theory, 2nd edition, Prentice Hall, 2001.
29. V. Yanovski, I. A. Wagner, A. M. Bruckstein, A distributed ant algorithm for efficiently patrolling a network,

Algorithmica, 37 (2003) 165–186.

13

