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Abstract. The size-Ramsey number r̂(F ) of a graph F is the smallest integer m such
that there exists a graph G on m edges with the property that every colouring of the
edges of G with two colours yields a monochromatic copy of F . In 1983, Beck provided
a beautiful argument that shows that r̂(Pn) is linear, solving a problem of Erdős. In this
note, we provide another proof of this fact that actually gives a better bound, namely,
r̂(Pn) < 137n for n sufficiently large.

1. Introduction

For given two finite graphs F and G, we write G→ F if for every colouring of the edges
of G with two colours (say blue and red) we obtain a monochromatic copy of F (that is,
a copy that is either blue or red). The size-Ramsey number of a graph F , introduced by
Erdős, Faudree, Rousseau and Schelp [7] in 1978, is defined as follows:

r̂(F ) = min{|E(G)| : G→ F}.
In this note, we consider the size-Ramsey number of the path Pn on n vertices. It is

obvious that r̂(Pn) = Ω(n) and that r̂(Pn) = O(n2) (for example, K2n → Pn) but the exact
behaviour of r̂(Pn) was not known for a long time. In fact, Erdős [6] offered $100 for a
proof or disproof that

r̂(Pn)/n→∞ and r̂(Pn)/n2 → 0.

The problem was solved by Beck [2] in 1983 who, quite surprisingly, showed that r̂(Pn) <
900n for sufficiently large n. A variant of his proof was provided by Bollobás [5] and it gives
r̂(Pn) < 720n for sufficiently large n. It is worth mentioning that both of these bounds
are not explicit constructions. Later Alon and Chung [1] gave an explicit construction of
graphs G on O(n) vertices with G→ Pn.

Here we provide an alternative and elementary proof of the linearity of the size-Ramsey
number of paths that gives a better bound. The proof relies on a simple observation,
Lemma 2.1, which may be applicable elsewhere.

Theorem 1.1. For n sufficiently large, r̂(Pn) < 137n.

In order to show the result, similarly to Beck and Bollobás, we are going to use binomial
random graphs. The binomial random graph G(n, p) is the random graph G on vertex set

[n] for which for every pair {i, j} ∈
(
[n]
2

)
, {i, j} appears independently as an edge in G
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with probability p. Note that p = p(n) may, and usually does, tend to zero as n tends to
infinity. All asymptotics throughout are as n → ∞. We say that a sequence of events En
in a probability space holds asymptotically almost surely (or a.a.s.) if the probability that
En holds tends to 1 as n goes to infinity. For simplicity, we do not round numbers that are
supposed to be integers either up or down; this is justified since these rounding errors are
negligible to the asymptomatic calculations we will make.

2. Proof of Theorem 1.1

We start with the following elementary observation.1

Lemma 2.1. Let c > 1 be a real number and let G = (V,E) be a graph on cn vertices.
Suppose that the edges of G are coloured with the colours blue and red and there is no
monochromatic Pn. Then the following two properties hold:

(i) there exist two disjoint sets U,W ⊆ V of size n(c− 1)/2 such that there is no blue
edge between U and W ,

(ii) there exist two disjoint sets U ′,W ′ ⊆ V of size n(c− 1)/2 such that there is no red
edge between U ′ and W ′.

Proof. We perform the following algorithm on G and construct a blue path P . Let v1 be
an arbitrary vertex of G, let P = (v1), U = V \ {v1}, and W = ∅. We investigate all edges
from v1 to U searching for a blue edge. If such an edge is found (say from v1 to v2), we
extend the blue path as P = (v1, v2) and remove v2 from U . We continue extending the
blue path P this way for as long as possible. Since there is no monochromatic Pn, we must
reach the point of the process in which P cannot be extended, that is, there is a blue path
from v1 to vk (k < n) and there is no blue edge from vk to U . This time, vk is moved to
W and we try to continue extending the path from vk−1, reaching another critical point in
which another vertex will be moved to W , etc. If P is reduced to a single vertex v1 and no
blue edge to U is found, we move v1 to W and simply re-start the process from another
vertex from U , again arbitrarily chosen.

An obvious but important observation is that during this algorithm there is never a blue
edge between U and W . Moreover, in each step of the process, the size of U decreases by
1 or the size of W increases by 1. Finally, since there is no monochromatic Pn, the number
of vertices of the blue path P is always smaller than n. Hence, at some point of the process
both U and W must have size at least n(c− 1)/2. Part (i) now holds after removing some
vertices from U or W , if needed, so that both sets have sizes precisely n(c− 1)/2.

Part (ii) can be proved by a symmetric argument; this time the algorithm tries to build
a red path. The proof is finished. �

Now, we prove the following straightforward properties of random graphs. For every two
disjoint sets S and T , e(S, T ) denotes the number of edges between S and T .

Lemma 2.2. Let c = 7.29 and d = 5.14, and consider G = (V,E) ∈ G(cn, d/n). Then,
the following two properties hold a.a.s.:

(i) |E(G)| = (1 + o(1))nc2d/2 < 137n,
(ii) for every two disjoint sets of vertices S and T such that |S| = |T | = n(c− 3)/4 we

have e(S, T ) 6= 0.

1A similar result was independently obtained by Pokrovskiy [10].
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Proof. Part (i) is obvious. The expected number of edges in G is
(
cn
2

)
d
n

= (1 +o(1))nc2d/2,
and the concentration around the expectation follows immediately from Chernoff’s bound.

For part (ii), let X be the number of pairs of disjoint sets S and T of desired size such
that e(S, T ) = 0. Putting α = α(c) = (c− 3)/4 for simplicity, we get

E[X] =

(
cn

αn

)(
(c− α)n

αn

)(
1− d

n

)αn·αn

≤ (cn)!

(αn)!(αn)!((c− 2α)n)!
exp

(
− dα2n

)
.

Using Stirling’s formula (x! = (1 + o(1))
√

2πx(x/e)x) we get that E[X] ≤ exp(f(c, d)n),
where

f(c, d) = c ln c− 2α lnα− (c− 2α) ln(c− 2α)− dα2.

Putting numerical values of c and d into the formula, we get f(c, d) < −0.008 and so
E[X] → 0 as n → ∞. (The values of c and d were chosen so as to minimize c2d/2 under
the condition f(c, d) < 0.) Now part (ii) holds by Markov’s inequality. �

Now, we are ready to prove the main result.

Proof of Theorem 1.1. Let c = 7.29 and d = 5.14, and consider G = (V,E) ∈ G(cn, d/n).
We show that a.a.s. G→ Pn which will finish the proof by Lemma 2.2(i).

For a contradiction, suppose that G 6→ Pn. Thus, there is a blue-red colouring of E
with no monochromatic Pn. It follows (deterministically) from Lemma 2.1(i) that V can
be partitioned into three sets P,U,W such that |P | = n, |U | = |W | = n(c − 1)/2, and
there is no blue edge between U and W . Similarly, by Lemma 2.1(ii), V can be partitioned
into three sets P ′, U ′,W ′ such that |P ′| = n, |U ′| = |W ′| = n(c− 1)/2, and there is no red
edge between U ′ and W ′.

Now, consider X = U ∩U ′, Y = U ∩W ′, X ′ = W ∩U ′, Y ′ = W ∩W ′ and let x = |X|, y =
|Y |, x′ = |X ′|, y′ = |Y ′| be their sizes, respectively. Observe that

x+ y = |U ∩ (U ′ ∪W ′)| = |U \ P ′| ≥ |U | − |P ′| = n(c− 3)/2. (1)

Similarly, one can show that x′ + y′ ≥ n(c− 3)/2, x + x′ ≥ n(c− 3)/2, and that y + y′ ≥
n(c − 3)/2. We say that a set is large if its size is at least n(c − 3)/4; otherwise, we say
that it is small. We need the following straightforward observation.

Claim. Either both X and Y ′ are large or both Y and X ′ are large.

(In fact one can easily show that the constant (c− 3)/4 in the definition of being large is
optimal.)

Proof of the claim. For a contradiction, suppose that at least one of X, Y ′ is small and
at least one of Y,X ′ is small, say, X and Y are small. But this implies that x + y <
n(c− 3)/4 +n(c− 3)/4 = n(c− 3)/2, which contradicts (1). The remaining three cases are
symmetric, and so the claim holds.

Now, let us come back to the proof. Without loss of generality, we may assume that
X = U ∩ U ′ and Y ′ = W ∩ W ′ are large. Since X ⊆ U and Y ′ ⊆ W , there is no
blue edge between X and Y ′. Similarly, one can argue that there is no red edge between
X and Y ′, and so e(X, Y ′) = 0. On the other hand, Lemma 2.2(ii) implies that a.a.s.
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e(X, Y ′) 6= 0, reaching the desired contradiction. It follows that a.a.s. G → Pn which
finishes the proof. �

3. Remarks

In this note we showed that r̂(Pn) < 137n. On the other hand, the best known lower
bound, r̂(Pn) ≥ (1 +

√
2)n− 2, was given by Bollobás [4] who improved the previous result

of Beck [3] that shows that r̂(Pn) ≥ 9
4
n. Decreasing the gap between the lower and upper

bounds might be of some interest. One approach to improving the upper bound could be
to deal with non-symmetric cases in our claim or to use random d-regular graphs instead
of binomial graphs.

Another related problem deals with longest monochromatic paths in G(n, p). Observe
that it follows from the proof of Theorem 1.1 that for every ω = ω(n) tending to infinity
arbitrarily slowly together with n we have that a.a.s. any 2-colouring of the edges of

G(n, ω/n) yields a monochromatic path of length (1−ε)
3
n for an arbitrarily small ε > 0.

On the other hand, a simple construction of Gerencsér and Gyárfás [8] shows that such
path cannot be longer than 2

3
n. We conjecture that actually (1+o(1))2

3
n is the right answer

for random graphs with average degree tending to infinity.2
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[6] P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica 1

(1981), no. 1, 25–42.
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