
BRUSHING WITH ADDITIONAL CLEANING RESTRICTIONS

PIOTR BOROWIECKI, DARIUSZ DERENIOWSKI, AND PAWE L PRA LAT

Abstract. In graph cleaning problems, brushes clean a graph by traversing it subject to
certain rules. We consider the process where at each time step, a vertex that has at least
as many brushes as incident, contaminated edges, sends brushes down these edges to clean
them. Various problems arise, such as determining the minimum number of brushes (called
the brush number) that are required to clean the entire graph. Here, we study a new variant
of the problem in which no more than k brushes can be sent at any time step.

1. Introduction

Imagine a network of pipes that must be periodically cleaned of a regenerating contami-
nant, say algae. In cleaning such a network (see [11] for a paper that introduced this process),
there is an initial configuration of brushes on vertices; every vertex and edge is initially re-
garded as dirty. A vertex is ready to be cleaned if it has at least as many brushes as incident
dirty edges. When a vertex is cleaned, it sends one brush along each incident dirty edge;
these edges are now said to be clean. (No brush ever traverses a clean edge.) The vertex is
also deemed clean. Excess brushes remain on the clean vertex and take no further part in
the process. (In fact, for our purpose in this paper, we may think about clean vertices as if
they were removed from the graph.) Figure 1 illustrates the cleaning process for a graph G
where there are initially two brushes at vertex b and one brush at vertex c. The solid edges
indicate dirty edges while the dashed edges indicate clean edges. For example, the process
starts with vertex b being cleaned, sending a brush to each of vertices a and d.

This model, perhaps surprisingly, corresponds to the minimum total imbalance of the
graph which is used in graph drawing theory [5] and is well-studied, in particular, for random
graphs [1, 15]. (See also [9] for algorithmic aspects, [12, 14] for a related model of cleaning
with brooms, [4] for a variant with no edge capacity restrictions, [7] for a combinatorial game,
and [13] for a relation to more general family of perfect vertex elimination schemes leading
to upper-locally distributed lattices.) Having been inspired by chip firing processes [3, 10],
the manner in which brushes disperse from an individual vertex is such that they do so in
unison, provided that their vertex meets the criteria to be cleaned. Models in which multiple
vertices may be cleaned simultaneously are called parallel cleaning models (see [6] for more
details). In contrast, sequential cleaning models mandate that vertices are cleaned one at a
time. The variant considered in [11] and the one we consider in this paper are sequential in
nature.

Key words and phrases. graph searching, brush number, chip firing.
The first author was partially supported by National Science Centre grant DEC-2011/02/A/ST6/00201.
The second author was partially supported by National Science Centre grant DEC-2011/02/A/ST6/00201

and a scholarship for outstanding young researchers founded by the Polish Ministry of Science and Higher
Education.

The third author was supported by NSERC and Ryerson University.
1

b

a c

d

e g

f
2 brushes at b

1 brush at c

b

a c

d

e g

f
1 brush at a

1 brush at c

1 brush at d

b

a c

d

e g

f
1 brush at a

2 brushes at d

b

a c

d

e g

f
3 brushes at d

b

a c

d

e g

f
1 brush at e

1 brush at f

1 brush at g

Figure 1. An example of the cleaning process for graph G.

In this paper, we consider the variant of the process in which there is one additional
restriction, namely, it is not allowed to clean vertices with more than k dirty neighbours (k
is a fixed parameter). For example, 3 brushes were enough to clean the graph presented on
Figure 1. However, if at most k = 2 brushes can be sent in each time step, vertex d cannot
be cleaned; one additional brush has to be introduced (say, at vertex e) and our task can be
accomplished with 4 brushes in total.

The formal definition of the k-restricted process and th k-brush number, bk(G), is in-
troduced in Section 2 (b(G) denotes the original brush number introduced in [11] and also
defined in Section 2). In Section 3, we characterize graphs that can be cleaned in this pro-
cess. Moreover, we show that for any k ∈ N, x ∈ [1, 2], and ε > 0, there exists a tree T such
that |bk(T)/b(T)−x| < ε. This result is sharp, that is, this property does not hold for other
values of x. Similarly, it is shown that for any k ∈ N \ {1}, x ∈ [1,∞), and ε > 0, there
exists a graph G such that |bk(G)/b(G)− x| < ε. In Section 4, we study a polynomial-time
algorithm that, given any tree T and any k ∈ N, computes the k-brush number of T . The
paper is concluded with a few open problems (see Section 5).

Throughout, we consider only finite, simple, undirected graphs in the paper. For back-
ground on graph theory, the reader is directed to [16].

2. Definitions

As already noted, the graph cleaning model we consider here differs from the one presented
in [11] in that one is not allowed to clean vertices with more than k dirty neighbours. Now,
we formally define the cleaning process we are considering in this paper. Let k ∈ N and
let G = (V,E) be any graph. The initial configuration of brushes is given by the function
ω0 : V → N∪{0}, where ω0(v) is the number of brushes initially at vertex v, and all vertices
and edges of the graph are initially dirty. At the end of each step t of the process, ωt(v)
denotes the number of brushes at vertex v ∈ V , and Dt ⊆ V denotes the set of dirty vertices.
An edge uv ∈ E is dirty if and only if both u and v are dirty; that is, {u, v} ⊆ Dt. Finally,
let Dt(v) denote the number of dirty edges incident to v at the end of step t; that is,

Dt(v) =

{
|N(v) ∩Dt| if v ∈ Dt

0 otherwise
2

(where N(v) denotes, as usual, the neighbourhood of v).

Definition 1. Let k ∈ N. The k-restricted cleaning process P(G, k, ω0) = {(ωt, Dt)}Lt=0

of an undirected graph G = (V,E) with an initial configuration of brushes ω0 is as
follows:

0 : Initially, all vertices are dirty: D0 = V ; set t := 0.
1 : Let αt+1 be any vertex in Dt such that ωt(αt+1) ≥ Dt(αt+1) and Dt(αt+1) ≤ k. If no such

vertex exists, then stop the process (set L := t), return the cleaning sequence α =
(α1, α2, . . . , αL), the final set of dirty vertices DL, and the final configuration
of brushes ωL.

2 : Clean αt+1 and all dirty incident edges by moving a brush from αt+1 to each dirty
neighbour. More precisely, Dt+1 = Dt \ {αt+1}, ωt+1(αt+1) = ωt(αt+1) − Dt(αt+1),
and for every v ∈ N(αt+1)∩Dt, ωt+1(v) = ωt(v) + 1, the other values of ωt+1 remain
the same as in ωt.

3 : Set t := t+ 1 and go back to 1 .

In the model considered in [11], there is no restriction that Dt(αt+1) ≤ k. All other rules
remain the same. It was shown in [11] that, given a graph G and an initial configuration
ω0, the cleaning process of [11] returns a unique final set of dirty vertices. Consequently, if
for a given ω0, there exists a cleaning sequence that cleans G, we know that every cleaning
sequence will cleanG. This is also the case here and easily follows from the simple observation
that once a vertex v is ready to be cleaned it stays in this state until it is actually cleaned.

Finally, let us note that, for a fixed natural number k, some graphs cannot be cleaned at
all. However, it is straightforward to obtain a characterization of graphs that can be cleaned
(see Theorem 4). Thus, the following definition is natural.

Definition 2. Let k ∈ N. A graph G = (V,E) can be cleaned (by the k-restricted cleaning
process) by the initial configuration of brushes ω0 if the cleaning process P(G, k, ω0) returns
an empty final set of dirty vertices (that is, DL = ∅).

Let the k-brush number, bk(G), be the minimum number of brushes needed to clean G
if G can be cleaned; otherwise, bk(G) =∞. That is, if G can be cleaned, then

bk(G) = min
ω0:V→N∪{0}

{∑
v∈V

ω0(v) : G can be cleaned by ω0

}
.

Recall that the brush number for the model in [11] was denoted by b(G). Since there
were less restrictions for this process than for the k-restricted one which we are considering
here, we immediately get that for every k ∈ N we have bk(G) ≥ b(G). As we will see,
the difference can be arbitrarily large although there are some classes of graphs for which
bk(G) = b(G) (consider, for example, paths). It also follows immediately from the definition
that bk1(G) ≥ bk2(G) whenever 1 ≤ k1 < k2. On the other hand, it is clear that the additional
restriction is trivially satisfied for k ≥ ∆(G) and so bk(G) = b(G) for every k ≥ ∆(G).

When a graph G is cleaned using the cleaning process, each edge of G is traversed by ex-
actly one brush. Note that no brush may return to a vertex it has already visited, motivating
the following definition.

Definition 3. The brush path of a given brush is the path formed by the set of edges
cleaned by that brush.

3

By definition, G can be decomposed into b(G) brush paths. The minimum number of
paths a graph G can be decomposed into therefore yields a lower bound for b(G) (and so for
bk(G) as well). This is only a lower bound because some path decompositions would not be
valid in the cleaning process. For example, K4 can be decomposed into 2 undirected paths
but b(K4) = 4.

Finally, let us mention that for any graph G consisting of ` components G1, G2, . . . , G`,
we have bk(G) =

∑`
i=1 bk(Gi) and so, without loss of generality, we will always assume that

G is connected.

3. Characterization of graphs that can be cleaned and relation to the
ordinary brush number

As we already mentioned, not every graph can be cleaned in the new model. For a given
k ∈ N, let Fk be the family of all (connected) graphs that can be cleaned by the k-restricted
cleaning process. Clearly, this family is ascending; that is, Fk ⊂ Fk+1 for every k ∈ N. We
start this section with characterizing graphs that can be cleaned. However, before we do it,
we need to introduce a few more definitions.

Let k ∈ N. The k-core of a graph is the largest subgraph of minimum degree at least
k. The k-core can be found by the vertex deletion algorithm that repeatedly deletes
vertices with degree less than k. This algorithm always terminates with the k-core of the
graph, which is possibly empty. This concept is related to the degeneracy one. A graph G is
k-degenerate if every subgraph of G has a vertex of degree at most k. The degeneracy of
a graph is the smallest value of k for which it is k-degenerate. In other words, the degeneracy
of a graph is the largest value of k such that it has non-empty k-core.

Since cleaning vertices can be viewed as deleting them, the connection between the two
processes is straightforward. In order to decide if a graph G can be cleaned, it is enough to
start with, say, ω0(v) = deg(v) for each v ∈ V so that the only restriction is the additional
restriction that Dt(αt+1) ≤ k. (We do not care about optimizing the number of brushes used
at this point.) Vertex v can be cleaned if the number of dirty neighbours is at most k, which
is equivalent to the property that the degree of v is at most k (in the graph induced by the
set of dirty vertices). We get immediately the following result.

Theorem 4. Let k ∈ N. A graph G ∈ Fk if and only if G is k-degenerate.

In other words, Theorem 4 says that a graph G can be cleaned by the k-restricted cleaning
process if and only if (k + 1)-core of G is empty.

We will be investigating the following sets. For k ∈ N, let

Ak =

{
bk(G)

b(G)
: G ∈ Fk

}
,

and

Bk =

{
bk(G)

b(G)
: G ∈ F1

}
⊆ Ak.

Clearly A1 = B1. Since bk(G) ≥ b(G) for any graph G, we get that Bk ⊆ Ak ⊆ [1,∞).
We will show that, in fact, the closure of Bk is [1, 2], regardless of the value of k ∈ N (see
Theorem 6 for the k = 1 case and Theorem 7 for the k ≥ 2 case). Moreover, we will show that

4

the closure of Ak is [1,∞) for any k ≥ 2 (see Theorem 8). Recall that we restrict ourselves to
connected graphs; the corresponding properties for families containing disconnected graphs
could be analyzed much easier.

3.1. 1-restricted cleaning process. In this section, we investigate 1-restricted cleaning
process. The analysis is relatively simple, since F1 consists of trees only. It is known
(see [11]) that for every tree T we have b(T) = do(T)/2, where do(T) denotes the number of
vertices of T of odd degree. (Note that do(G)/2 is a trivial lower bound that holds for every
graph G, since each vertex of odd degree has to start or finish at least one brush path). It
turns out that b1(T) might be substantially larger.

Theorem 5. For any tree T with d`(T) leaves, b1(T) = d`(T)− 1.

Proof. Let T be any tree with d`(T) leaves. If T consists of an isolated vertex, then the claim
trivially holds (b1(K1) = 0). Suppose then that T has at least 2 vertices (and so at least 2
leaves).

First, we will show that T can be cleaned with d`(T) − 1 brushes. We put exactly one
brush on all leaves but one (the leaf with no brush can be chosen arbitrarily). Since T has
at least 2 leaves, at least one leaf contains a brush. We clean arbitrarily selected leaf with a
brush and after that the desired property still holds; that is, all but one leaf contain at least
one brush. We continue this process until we are left with an isolated vertex and the process
can be easily finished.

Now, we will show that T cannot be cleaned with d`(T)− 2 brushes. For a contradiction,
suppose that it is possible. Let v1 and v2 be any two leaves that have no brush in the
initial configuration (if more than 2 leaves have no brush, then the two leaves can be chosen
arbitrarily). Note that when either vertex is cleaned (say, v1), the only neighbour of v1 is
already cleaned, exactly one brush occupies v1, and no brush is moved. Moreover, without
loss of generality, we may assume that v1 is cleaned before v2.

Let us consider a graph G that is obtained from T by adding an edge v1v2; that is,
V (G) = V (T) and E(G) = E(T)∪ {v1v2}. It is clear that G can be cleaned under the same
model—the same initial configuration and cleaning sequence can be used; when v1 is cleaned
it sends now exactly one brush to v2 but this causes no problem. However, this gives us the
desired contradiction, since G contains a cycle and so does not belong to F1; in other words,
G cannot be cleaned by 1-restricted cleaning process. The lower bound of d`(T) − 1 holds
and the proof is finished. �

It follows immediately from Theorem 5 that for every tree T we have

(1)
b1(T)

b(T)
=
d`(T)− 1

do(T)/2
≤ 2

d`(T)− 1

d`(T)
< 2,

so the closure of B1(= A1) is contained in [1, 2]. We will construct a family of trees that can
be used to get the ratio arbitrarily close to any real number x ∈ [1, 2]. This will prove the
following result.

Theorem 6. The closure of B1 is [1, 2].
5

Proof. Consider first a complete binary tree Zh of height h ≥ 1 (there are 2h leaves and
2h − 1 internal vertices). Since all vertices but the root are odd, we have

(2)
b1(Zh)

b(Zh)
=
d`(Zh)− 1

do(Zh)/2
=

2h − 1

(2h + (2h − 1)− 1)/2
= 1.

Hence 1 ∈ A1.
Let x ∈ (1, 2]. We will show that x belongs to the closure of A1. Suppose that ` is a large

integer of the form 2h for some integer h. Put i = b`(2− x)/xc. Since (2− x)/x ∈ [0, 1) and
so i ≤ `−2 for ` large enough, we may assume that this is the case. Our goal is to construct
a tree with ` leaves, i+1 internal vertices that are all (but perhaps one vertex) of odd degree.
We start with ` = 2h isolated vertices. We create (one by one) 2h−1 complete binary trees of
height one (that is, P3’s). After that we continue ‘gluing’ binary trees (again, one by one)
creating larger complete binary trees. We stop once the number of internal vertices reaches i
(recall that i ≤ `−2 so we are done before the complete binary tree with ` leaves is created).
We finish the construction with adding a root that is adjacent to all binary trees created up
to this point, and call this graph T = T (x, h). It follows

b1(T)

b(T)
=
d`(T)− 1

do(T)/2
=

`− 1

(`+ i+ a)/2
,

where a = 1 if the root has odd degree and a = 0 otherwise. In either case, it is clear that
the ratio tends to x as h → ∞. Hence, x belongs to the closure of A1 and the proof is
complete. �

3.2. k-restricted cleaning process for trees with k ≥ 2. In this section, we continue
investigating trees but this time we focus on k-restricted cleaning process for k ≥ 2. Since
for every graph G we have bk1(G) ≥ bk2(G) whenever 1 ≤ k1 ≤ k2, it follows immediately
that for every tree T and k ∈ N, we have

bk(T)

b(T)
≤ b1(T)

b(T)
< 2.

(See (1) to justify the second inequality.) Hence, the closure of Bk is contained in [1, 2].
For k = 1 we were able to find an explicit formula for b1(T) and then to construct a family

of trees that can be used to get the ratio arbitrarily close to any real number x ∈ [1, 2].
Investigating bk(T) for k ≥ 2 seems to be more complicated and perhaps no simple formula
can be found. However, we are going to use a simple non-constructive argument that will
prove the following result. Alternatively, one could construct a family of trees for which both
bk(T) and b(T) can be calculated (or, at least, estimated) but a non-constructive argument
might be of independent interest.

Theorem 7. Let k ≥ 2 be an integer. The closure of Bk is [1, 2].

Proof. First let us observe the following property. For every graph G ∈ Fk and any edge
uv ∈ E(G), we have G− uv ∈ Fk and

(3) bk(G− uv) ≤ bk(G) + 1.

(G−uv denotes a graph with an edge uv removed; that is, V (G−uv) = V (G) and E(G−uv) =
E(G) \ {uv}.) Indeed, suppose that a cleaning sequence α can be used to clean G with an
initial configuration ω0 of bk(G) brushes. Without loss of generality, we may assume that

6

vertex v is cleaned before u. Note that the same cleaning sequence can be used to clean
G − uv. The required condition for the number of brushes sent in each step is trivially
satisfied. However, it might happen that a brush sent from v to u in the process for G (that
is not sent in the process for G− uv) might be necessary to be able to clean u. Adding one
additional brush to the initial configuration (to vertex u) solves this potential problem and
so the claim holds.

Similarly, for every graph G ∈ Fk and any vertex v ∈ V (G), we have Gv ∈ Fk and

(4) bk(Gv) ≤ bk(G) + 1.

(Gv denotes a graph with an edge attached to v; that is, V (Gv) = V (G)∪{u} and E(Gv) =
E(G)∪{uv}.) To see this one can add an additional brush to a new vertex u, clean this vertex
first and use the cleaning sequence for G that yields bk(G) to finish the process. Clearly, the
required condition is satisfied.

Finally, consider a complete binary tree Zh of height h ≥ 1 and a star Sh with 2h+1 − 2
leaves (note that both trees have 2h+1 − 1 vertices). We already know that

(5) 1 ≤ bk(Zh)

b(Zh)
≤ b1(Zh)

b(Zh)
= 1

(see (2)) and so bk(Zh)/b(Zh) = 1. It is also clear that

bk(Sh)

b(Sh)
=
d`(Sh)− k
do(Sh)/2

=
d`(Sh)− k
d`(Sh)/2

= 2− 2k

d`(Sh)
= 2− k

2h − 1
→ 2,

as h→∞.
Now, we have all ingredients to finish the proof. We fix h ∈ N and consider the following

graph process starting with G0 = Zh, binary tree rooted at vertex v. In every step t ≥ 1,
graph Gt is obtained from Gt−1 by removing any leaf at distance at least 2 from v and adding
an edge attached to v. Clearly, the number of vertices does not change during this process
and the process terminates at time L with GL = Sh, star with 2h+1 − 2 leaves. Moreover,
the number of leaves does not decrease during this process; as a result, do(Gt) ≥ d`(Gt) ≥
d`(G0) = 2h for each t ≥ 1. We concentrate on the sequence of numbers (rt)

L
t=0, where

rt = bk(Gt)/b(Gt). As we already mentioned, r0 = 1 and rL = 2−k/(2h−1). It follows from
(3) and (4) that bk(Gt+1) ≤ bk(Gt) + 2. Moreover, b(Gt+1) = do(Gt+1)/2 ≥ (do(Gt)− 1)/2 =
b(Gt)− 1/2. Hence,

rt+1 =
bk(Gt+1)

b(Gt+1)
≤ bk(Gt) + 2

b(Gt)(1− 1
2b(Gt)

)
=
bk(Gt) + 2

b(Gt)

(
1 +

1

2b(Gt)
+

(
1

2b(Gt)

)2

+ . . .

)

≤ bk(Gt) + 2

b(Gt)

(
1 +

1

b(Gt)

)
=
bk(Gt)

b(Gt)

(
1 +

1

b(Gt)

)
+

2

b(Gt)

(
1 +

1

b(Gt)

)
<

bk(Gt)

b(Gt)
+

2

b(Gt)
+

4

b(Gt)
= rt +

12

do(Gt)
≤ rt + 12 · 2−h

(the second inequality follows from the fact that 1/(1 − x) = 1 + x + x2 + . . . ≤ 1 + 2x
for x ∈ [0, 1/2]; the second last inequality follows from the fact that bk(Gt)/b(Gt) < 2 and,
trivially, we have 1 + 1/b(Gt) ≤ 2). Hence, for every real number x ∈ [1, 2] there is an
integer 0 ≤ t ≤ L such that |x− rt| ≤ δ(h) := max{k/(2h − 1), 12 · 2−h}. Since δ(h)→ 0 as

7

h→∞, we are guaranteed to have a graph with the ratio arbitrarily close to x. The proof
is complete. �

3.3. k-restricted cleaning process for graphs with k ≥ 2. In this section, we continue
investigating k-restricted cleaning process for k ≥ 2 but we take into account all graphs that
can be cleaned (that is, graphs from Fk). It turns out that graphs with cycles can be used
to obtain the ratio of bk(G)/b(G) larger than 2. In fact, the ratio can be arbitrarily close to
any real number at least 1.

We will need one more definition. The lexicographic product G ·H of graphs G and H
is a graph such that the vertex set of G ·H is the cartesian product V (G)× V (H); and any
two vertices (u, v) and (x, y) are adjacent in G · H if and only if either u is adjacent with
x in G or u = x and v is adjacent with y in H. Note that the lexicographic product is in
general noncommutative, that is, it might be that G ·H 6= H ·G.

Theorem 8. Let k ≥ 2 be an integer. The closure of Ak is [1,∞).

Proof. We start the proof by showing that the ratio of bk(G)/b(G) can be arbitrarily large.
Consider a graph Pn · Kk+1 (see Figure 2). A graph Gn is obtained from Pn · Kk+1 after
subdividing each edge. Graph Gn has 2(k + 1) vertices of degree (k + 1), (n − 2)(k + 1)
vertices of degree 2(k + 1), and (n− 1)(k + 1)2 vertices of degree 2.

...

...

... ..
.

... ...

... ...

......

...

... ..
.

... ...

... ...

......

...

...

... ..
.

... ...

... ...

......

...
...

...

...

..
....

..
. ...

...

...

...

k + 1

Figure 2. The graph Gn with bk(Gn)/b(Gn) ≥ 2(n− 2)/(k + 1).

It is clear that b(Gn) ≤ (k + 1)2, since one can put (k + 1) brushes on vertices of degree
(k+ 1) that lie on one ‘side’ of the graph Gn, and clean Gn layer by layer, along Pn. (Let us
note that it should be straightforward to find the exact value of b(Gn) but it is not needed
for our argument.) On the other hand, when vertex of degree 2(k + 1) is cleaned in a k-
restricted process, at most k brushes are sent and so at least 2 brushes get stuck on this
vertex. (Note that a lot of brushes start on vertices of degree 2 due to the restriction on the
number of brushes sent at each step.) Hence, no matter how we clean the graph, at least
2(n− 2)(k+ 1) brushes get stuck on these vertices. It follows that bk(Gn) ≥ 2(n− 2)(k+ 1)
and so bk(Gn)/b(Gn) ≥ 2(n − 2)/(k + 1) which can be made arbitrarily large by taking n
large enough. In fact, it is straightforward to show that it is possible to clean the graph so
that exactly 2 brushes are left on vertices of degree 2(k+ 1) and no brush is stuck on vertex
of degree 2. By counting the number of brushes after the process we get the following upper
bound:

bk(G) ≤ 2(n− 2)(k + 1) + 2(k + 1)2.
8

(Again, let us stress the fact that it should be possible to determine bk(G) precisely but it
would be tedious and is not needed for our purpose.)

Now, we are ready to finish the proof. We already showed that for a complete binary tree
Zh of height h ≥ 1, we have bk(Zh) = 2h − 1 (see (2) and (5)). Hence 1 ∈ Ak.

Let x ∈ (1,∞). Our goal is to show that x belongs to the closure of Ak. For a positive
integer h, let us take

n = n(h) =

⌈
x− 1

2(k + 1)
2h
⌉
≥ 1,

and consider graph Gn constructed above. Let Zh + Gn denote a graph obtained from Zh
and Gn after connecting them with an edge (arbitrarily). It is clear that

b(Zh +Gn) = b(Zh) + b(Gn) +O(1) = 2h +O(1),

where the constant hidden in O(·) notation is a function of k but does not depend on n.
Similarly,

bk(Zh +Gn) = bk(Zh) + bk(Gn) +O(1) = 2h + 2n(k + 1) +O(1) = x2h +O(1).

Hence,
bk(Zh +Gn)

b(Zh +Gn)
=
x2h +O(1)

2h +O(1)
→ x,

as h→∞. This finishes the proof of this theorem. �

4. An efficient algorithm for trees

In this section we describe a polynomial-time algorithm that, given any tree T and any
k ∈ N, computes the k-brush number of T . In the following we consider T to be rooted
at an arbitrarily selected leaf. Then, for any vertex v of T define T [v] to be the subtree
of T rooted at v, i.e., the subtree of T induced by v and all its descendants in T . Define
T+[v] to be a tree obtained from T [v] by adding one additional vertex that is the parent
of v; the additional vertex of T+[v] is denoted by rv. Note that T+[v] is a subtree of T for
each vertex v of T except for the root. Finally, for any X ⊆ V (T), we write for brevity
ω0(X) =

∑
v∈X ω0(v).

We start with an informal description of our method. Our algorithm uses a dynamic
programming approach. More precisely, a bottom-up tree processing allows us to compute
a label for each vertex of T , except for the root. The label of a vertex v, formally defined
below, consists of two integers giving the minimum number of brushes needed to clean T+[v].
We use the two integers to distinguish ‘directions’ of cleaning the edge rvv. Once all labels
are computed, the label of the only child of the root of T contains our final answer.

We define a label of a vertex v of T as a pair of integers (l1, l2), where l1 (respectively
l2) is the minimum i such that there exists a k-restricted cleaning process {(ωt, Dt)}Lt=0 of T
with ω0(V (T+[v])) = i and having the property that the edge rvv is cleaned by a brush that
moves from rv to v (from v to rv, respectively). Note that the label is well defined because for
each k ≥ 1 and for any pair of adjacent vertices u and u′ there exists a k-restricted process
(not necessarily an optimal one) that cleans u prior to u′.

Lemma 9. Let T be a rooted tree and suppose that u ∈ V (T) is not the root of T . Let
P = P(T, k, ω0) be a k-restricted cleaning process of T and let (l1, l2) be the label of u in T .
Then,

9

(i) if u is cleaned by P prior to its parent, then ω0(V (T [u])) ≥ l2,
(ii) if u is cleaned by P after its parent, then ω0(V (T [u])) ≥ l1 − 1.

Proof. Follows directly from the definition of the label. �

Procedure CL (Compute Label) given below computes a label of a given vertex v of T ,
provided that the integer k and the labels of the children v1, . . . , vp of v are given.

Procedure CL (Compute Label).

Input: A rooted tree T , a vertex v of T , an integer k, and the labels (l11, l
1
2), . . . , (lp1, l

p
2) of

the children v1, . . . , vp of v in T .
Output: The label of v.

1: Find a permutation π of {1, . . . , p} such that l
π(i)
2 − l

π(i)
1 ≥ l

π(i+1)
2 − l

π(i+1)
1 for each

i ∈ {1, . . . , p− 1}.
2: Let x1 := +∞ and x2 := +∞.
3: for each i ∈ {0, . . . , p} do
4: for each j ∈ {1, 2} do

5: z := max{i− p+ 2− j,−i+ j − 1}+
∑i

t=1 l
π(t)
2 +

∑p
t=i+1 l

π(t)
1

6: if z ≤ xj and p− i+ j − 1 ≤ k then
7: xj := z

return (x1, x2)

We now give some intuitions on Procedure CL and then we formally prove its correctness.
The permutation π in Line 1 of Procedure CL provides a non-decreasing order of the children
of v with respect to the value of li2 − li1. The permutation π has the following property: if
π(i) < π(i′) for some i, i′ ∈ {1, . . . , p} and in some k-restricted process of T+[v] the vertex
v is cleaned after vi′ but before vi, then there exists another k-restricted cleaning process
P(T, k, ω0) of T+[v] that does not use more brushes than the former one and in which v is
cleaned after vi and before vi′ . The values of x1 and x2, initially set to +∞ in line 2, give the
label of v at the end of the computation. In lines 5, 6, and 7 of Procedure CL, for a particular
choice of i ∈ {1, . . . , p} and j ∈ {1, 2}, the algorithm tests the existence of a k-restricted
cleaning process of T+[v] with several constraints:

• the value of j indicates the ‘direction’ of cleaning the edge rvv,
• i equals the number of children of v cleaned prior to v,
• the value of z computed in line 5 equals the number of brushes needed to clean T+[v],
• the condition in line 6 verifies whether the cleaning process with the above restrictions

is k-restricted and whether the value of z improves the best bound found so far.

Note that, if i children of v need to be selected as the ones cleaned prior to v, then we pick
them greedily according to the permutation π.

In Lemma 10 we formally prove the properties that the value of z has. In Lemma 11, we
prove the correctness of Procedure CL. Then, we state our main algorithm that computes
the k-brush number of a given tree. Finally, Theorem 12 summarizes the main result of this
section.

Lemma 10. Suppose that z is computed in line 5 of Procedure CL for a particular choice of
i ∈ {0, . . . , p} and j ∈ {1, 2}. If p − i + j − 1 ≤ k, then there exists a k-restricted cleaning
process P(T+[v], k, ω0) of T+[v] that satisfies:

10

(a) ω0(V (T+[v])) = z,
(b) if j = 1 (respectively j = 2) then the edge rvv is cleaned by a brush that moves from rv

to v (from v to rv, respectively),
(c) there exist exactly i children of v that are cleaned prior to v.

Proof. Let T , v ∈ V (T), an integer k and the labels (l11, l
1
2), . . . , (lp1, l

p
2) of the children

v1, . . . , vp of v in T be the input to Procedure CL. Let π be the permutation selected in
line 1.

We first define a cleaning process P = P(T+[v], k, ω0) of T+[v] and then we prove that it
is indeed a cleaning process that is k-restricted and satisfies conditions (a),(b) and (c). We
define the process by first stating the initial brush placement ω0. Let

ω0(rv) = 2− j and ω0(v) = max{0, p− 2i+ 2j − 3}.

The placement on the remaining vertices of T+[v] is ‘derived’ from the definition of the
label. In particular, for each t ∈ {1, . . . , i}, there exists a k-restricted cleaning process

Pπ(t)(T
+[vπ(t)], k, ω

π(t)
0) of T+[vπ(t)] that uses l

π(t)
2 brushes and cleans vπ(t) prior to its parent;

note that such a process places no brushes on the root of T+[vπ(t)]. Similarly, for each

t ∈ {i + 1, . . . , p}, there exists a k-restricted cleaning process Pπ(t)(T
+[vπ(t)], k, ω

π(t)
0) of

T+[vπ(t)] that uses l
π(t)
2 brushes and cleans vπ(t) after its parent; note that such a process places

one brush on the root of T+[vπ(t)]. Let for each t ∈ {1, . . . , p} and for each u ∈ V (T [vt]),
ω0(u) = ωt0(u).

The cleaning process P cleans T+[v] as follows:

1. if j = 1, then the root is fired, i.e., the brush at rv is moved from rv to v,
2. for each t ∈ {1, . . . , i} (in any order) the subtree T+[vπ(t)] is cleaned by cleaning its vertices

in the same order as in Pπ(t)(T [vπ(t)], k, ω0),
3. the vertex v is cleaned, and
4. for each t ∈ {i + 1, . . . , p} (in any order) the subtree T [vπ(t)] is cleaned by cleaning its

vertices in the same order as in Pπ(t)(T [vπ(t)], k, ω0).

We now prove that P is a k-restricted cleaning process of T+[v]. To that end it is enough
to argue that firing v results in cleaning all dirty edges incident to v and that the number of
those dirty edges is at most k. We have that

a1 = i+ 2− j

equals the number of brushes that ‘arrive’ at v due to the vertices cleaned prior to v. The
number of edges to be cleaned by brushes moving away from v is

a2 = p− i+ j − 1.

Since ω0(v) = max{0, a2 − a1}, we obtain that there are enough brushes present at v when
it is cleaned by P. Note that the condition p− i+ j − 1 ≤ k is equivalent to a2 ≤ k. Thus,
P is a valid k-restricted cleaning process of T+[v].

Clearly, P satisfies (b) and (c). It remains to prove (a). By construction of P,

i∑
t=1

ω0(V (T [vπ(t)])) =
i∑
t=1

l
π(t)
2 .

11

Moreover, the value of l
π(t)
1 for t > i already accommodates pre-placing a brush at v that

then moves from v to vπ(t), which means that the sum
∑p

t=i+1 l
π(t)
1 accommodates pre-placing

p− i brushes at v in total, i.e.,
p∑

t=i+1

ω0(V (T [vπ(t)])) = −(p− i) +

p∑
t=i+1

l
π(t)
1 .

Thus, according to the definition of z,

ω0(V (T+[v])) = ω0(v) + ω0(rv)− (p− i) +
i∑
t=1

l
π(t)
2 +

p∑
t=i+1

l
π(t)
1

= max{i− p+ 2− j,−i+ j − 1}+
i∑
t=1

l
π(t)
2 +

p∑
t=i+1

l
π(t)
1

= z.

This proves (a). �

Lemma 11. Given a tree T rooted at its leaf, an integer k, a vertex v of T and the labels of
the children of v, Procedure CL returns the label of v.

Proof. Let (x1, x2) be the pair of integers returned by Procedure CL. Fix the integer j ∈ {1, 2}
arbitrarily. We prove that whenever Pj = Pj(T

+[v], k, ω0) is a k-restricted process of T+[v]
in which the root of T+[v] is cleaned prior to v if j = 1 and after v if j = 2, then

(6) xj ≤ ω0(V (T+[v])).

Let i ∈ {0, . . . , p} be the number of children of v cleaned prior to v in Pj. Suppose
without loss of generality that v1, . . . , vi are the children of v cleaned prior to v in Pj Note
that ω0(rv) ≥ 2 − j and ω0(v) ≥ max{0, p − 2i + (2j − 3)}. Thus, the number of brushes
used by Pj satisfies

ω0(V (T+[v])) ≥ 2− j + max{0, p− 2i+ (2j − 3)}+

p∑
t=1

ω0(V (T [vt]))

= max{2− j, p− 2i+ j − 1} − (p− i) +
i∑
t=1

ω0(V (T [vt])) +

p∑
t=i+1

(
1 + ω0(V (T [vt]))

)
= max{i− p+ 2− j,−i+ j − 1}+

i∑
t=1

ω0(V (T [vt])) +

p∑
t=i+1

(
1 + ω0(V (T [vt]))

)
.

(7)

Note that the above inequality is strict only in case when Pj does not use the minimum
number of brushes. We prove that the value of z computed in line 5 of Procedure CL for the
given values of i and j satisfies

(8) z ≤ ω0(V (T+[v])).

Let π be the permutation selected in line 1 of Procedure CL. Now we define four sets
A, Ā, B, B̄ such that A ∪ Ā = {1, . . . , i} and B ∪ B̄ = {i+ 1, . . . , p}. Let

A = {t ∈ {1, . . . , i}
∣∣ π(t) ≤ i}, Ā = {t ∈ {1, . . . , i}

∣∣ π(t) > i},
12

B = {t ∈ {i+ 1, . . . , p}
∣∣ π(t) ≥ i+ 1}, B̄ = {t ∈ {i+ 1, . . . , p}

∣∣ π(t) < i+ 1}.

Now we bound
∑i

t=1 l
π(t)
2 +

∑p
t=i+1 l

π(t)
1 . By Lemma 9(i),

(9)
∑
t∈A

l
π(t)
2 ≤

∑
t∈A

ω0(V (T [vπ(t)])),

and by Lemma 9(ii),

(10)
∑
t∈Ā

l
π(t)
2 =

∑
t∈Ā

(l
π(t)
2 − lπ(t)

1) +
∑
t∈Ā

l
π(t)
1 ≤

∑
t∈Ā

(l
π(t)
2 − lπ(t)

1) +
∑
t∈Ā

(
1 + ω0(V (T [vπ(t)]))

)
.

Using Lemma 9(ii) again we get

(11)
∑
t∈B

l
π(t)
1 ≤

∑
t∈B

(
1 + ω0(V (T [vπ(t)]))

)
,

and by Lemma 9(i),

(12)
∑
t∈B̄

l
π(t)
1 =

∑
t∈B̄

(l
π(t)
1 − lπ(t)

2) +
∑
t∈B̄

l
π(t)
2 ≤

∑
t∈B̄

(l
π(t)
1 − lπ(t)

2) +
∑
t∈B̄

ω0(V (T [vπ(t)])).

By (9),(10),(11), and (12),

i∑
t=1

l
π(t)
2 +

p∑
t=i+1

l
π(t)
1 ≤ |Ā|+ |B|+

p∑
t=1

ω0(V (T [vπ(t)])) +
∑
t∈Ā

(l
π(t)
2 − lπ(t)

1)−
∑
t∈B̄

(l
π(t)
2 − lπ(t)

1).

We have that |Ā| + |B| ≤ p − i because π is a permutation. Also, |Ā| = |B̄| and by the
definitions of Ā and B̄, π(t) > i ≥ π(t′) for each t ∈ Ā and t′ ∈ B̄. Therefore, due to the
choice of π in line 1 of Procedure CL,∑

t∈Ā

(l
π(t)
2 − lπ(t)

1) ≤
∑
t∈B̄

(l
π(t)
2 − lπ(t)

1).

Thus,
i∑
t=1

l
π(t)
2 +

p∑
t=i+1

l
π(t)
1 ≤ p− i+

p∑
t=1

ω0(V (T [vπ(t)])).

Hence, by (7) and the definition of z in line 5 of Procedure CL we obtain

z ≤ max{i− p+ 2− j,−i+ j − 1}+ p− i+

p∑
t=1

ω0(V (T [vπ(t)])) ≤ ω0(V (T+[v])).

This proves (8). Since Pj is k-restricted, the condition in line 6 of Procedure CL is satisfied.
This implies that the value of z is assigned to xj in line 7 and hence (6) holds. Thus,
Lemma 10 gives us that (x1, x2) returned by Procedure CL is the label of v. �

Having a procedure that computes the label of a vertex provided that the labels of its
children are given, we can formulate Procedure RC (Restricted Cleaning).

Theorem 12. Given a tree T and an integer k, Procedure RC computes in linear time the
k-brush number of T .

13

Procedure RC (Restricted Cleaning).

Input: A tree T and an integer k.
Output: The value of bk(T).

1: Root T at an arbitrary leaf u.
2: Find an ordering v1, . . . , vn of the vertices of T such that each v ∈ V (T) \ {u} is ordered

prior to its parent.
3: for i := 1 to n− 1 do
4: Call CL to compute the label (xi1, x

i
2) of vi.

return min{xn−1
1 , xn−1

2 }

Proof. By Lemma 11 and by the ordering of vertices of T chosen in line 2 of Procedure RC,
we obtain that (xi1, x

i
2) computed in line 4 is the label of vi. Note that T is rooted at a leaf

(see line 1 of Procedure RC). Thus, by the definition of the label, bk(T) = min{xn−1
1 , xn−1

2 }.
Now we prove that the running time of Procedure RC is O(n). Note that it is enough to

argue that the complexity of Procedure CL is linear in the degree p+ 1 of the input vertex v.
It remains to analyze the running time of Procedure CL and we focus on the running

time of the sorting performed in line 1, as it is straightforward to see that the remaining
instructions can be implemented in time O(p). Observe that if (l1, l2) is the label of a vertex
u of T , then li2 − li1 ∈ {−1, 0, 1}. Indeed, if T+[u] can be cleaned by a k-restricted process
that cleans u prior to its root, then with one extra brush placed at the root, T+[u] can be
cleaned by a k-restricted process that cleans u after the root. Therefore, the sorting in line 6
of Procedure CL can be implemented in time O(p), which completes the proof. �

5. Open problems

In Theorem 5, we derive an explicit formula for the 1-restricted brush number of any tree
T ∈ F1. Unfortunately, we were less successful for bk(T) for k ≥ 2 and we leave it as an open
problem. Similarly, not much is known for bk(G) for k ≥ 2, G ∈ Fk. It is not reasonable
to expect an explicit formula here but it would be interesting to find some general upper
and lower bounds, and to determine the k-restricted brush number for some known classes
of graphs.

The problem of determining whether b(G) ≤ l for the given G and l is NP-complete for
planar graphs of maximum degree 4 and for 5-regular graphs [5, 8]. On the other hand,
the problem can be solved in polynomial time for graphs of maximum degree 3 [2]. We can
immediately conclude that the problem of determining whether bk(G) ≤ l for the given G
and l is NP-complete for planar graphs with maximum degree 4 when k ≥ 4 (with fixed k,
i.e., k is part of the problem, not part of the input) and for 5-regular graphs when k ≥ 5. An
interesting open problem lies in determining more accurate border between computationally
easy and hard instances for the k-brush number. Also, of interest are non-trivial classes of
graphs for which the complexity of the two problems differs.

References

[1] N. Alon, P. Pra lat, and N. Wormald, Cleaning regular graphs with brushes, SIAM Journal on Discrete
Mathematics 23 (2008), 233–250.

[2] T. Biedl, T. Chan, Y. Ganjali, M. Hajiaghayi, D. Wood: Balanced vertex-orderings of graphs. Discrete
Applied Mathematics 148 (2005) 27-48.

14

[3] A. Bjorner, L. Lovasz, and P.W. Shor, Chip-firing games on graphs, European J. Combin., 12 (1991),
283–291.

[4] D. Bryant, N. Francetic, P. Gordinowicz, D. Pike, and P. Pra lat, Brushing without capacity restrictions,
Discrete Applied Mathematics 170 (2014), 33–45.

[5] S. Gaspers, M.-E. Messinger, R.J. Nowakowski, and P. Pra lat, Clean the graph before you draw it!,
Information Processing Letters 109 (2009), 463–467.

[6] S. Gaspers, M.-E. Messinger, R.J. Nowakowski, and P. Pra lat, Parallel cleaning of a network with
brushes, Discrete Applied Mathematics 158 (2009) 467–478.

[7] P. Gordinowicz, R. Nowakowski, and P. Pra lat, polish—Let us play the cleaning game, Theoretical
Computer Science 463 (2012), 123–132.

[8] J. Kára, K. Kratochv́ıl, D. Wood, On the complexity of the balanced vertex ordering problem, Discrete
Mathematics and Theoretical Computer Science 9 (2007) 193-202.

[9] D. Lokshtanov, N. Misra, and S. Saurabh, Imbalance is Fixed Parameter Tractable, Proceedings of
International Computing and Combinatorics Conference (COCOON 2010).

[10] C. Merino, The chip-firing game, Discrete Mathematics 302 (2005) 188–210.
[11] M.-E. Messinger, R.J. Nowakowski, and P. Pra lat, Cleaning a network with brushes, Theoretical Com-

puter Science 399 (2008), 191–205.
[12] M.-E. Messinger, R.J. Nowakowski, and P. Pra lat, Cleaning with Brooms, Graphs and Combinatorics

27 (2011), 251–267.
[13] M.-E. Messinger, R.J. Nowakowski, and P. Pra lat, Elimination schemes and lattices, Discrete Mathe-

matics 328 (2014), 63–70.
[14] P. Pra lat, Cleaning random d–regular graphs with Brooms, Graphs and Combinatorics 27 (2011), 567–

584.
[15] P. Pra lat, Cleaning random graphs with brushes, Australasian Journal of Combinatorics 43 (2009),

237–251.
[16] D.B. West, Introduction to Graph Theory, 2nd edition, Prentice Hall, 2001.

Department of Algorithms and System Modeling, Gdańsk University of Technology,
Gdańsk, Poland

E-mail address: pborowie@eti.pg.gda.pl

Department of Algorithms and System Modeling, Gdańsk University of Technology,
Gdańsk, Poland

E-mail address: deren@eti.pg.gda.pl

Department of Mathematics, Ryerson University, Toronto, ON, Canada, M5B 2K3
E-mail address: pralat@ryerson.ca

15

