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Abstract. In this paper, we consider the firefighter problem on a graph G = (V,E)
that is either finite or infinite. Suppose that a fire breaks out at a given vertex v ∈ V . In
each subsequent time unit, a firefighter protects one vertex which is not yet on fire, and
then the fire spreads to all unprotected neighbors of the vertices on fire. The objective
of the firefighter is to save as many vertices as possible (if G is finite) or to stop the fire
from spreading (for an infinite case).

The surviving rate ρ(G) of a finite graph G is defined as the expected percentage of
vertices that can be saved when a fire breaks out at a vertex of G that is selected uni-
formly random. For a finite square grid Pn�Pn, we show that 5/8 + o(1) ≤ ρ(Pn�Pn) ≤
67243/105300 + o(1) (leaving the gap smaller than 0.0136) and conjecture that the sur-
viving rate is asymptotic to 5/8.

We define the surviving rate for infinite graphs and prove it to be 1/4 for the infinite
square grid, even for more than one (but finitely many) initial fires. For the infinite
hexagonal grid we provide a winning strategy if two additional vertices can be protected
at any point of the process, and we conjecture that the firefighter has no strategy to stop
the fire without additional help. We also show how the speed of the spreading fire can
be reduced by a constant multiplicative factor. For triangular grid, we show that two
firefighters can slow down the fire in the same sense, which is relevant to the conjecture
that two firefighters cannot contain the fire on the triangular grid, and also corrects a
previous result of Fogarty [8].

1. Introduction

The following firefighter problem on a graph G = (V,E) was introduced by Hartnell at
a conference in 1995 [9]. Suppose that a fire breaks out at a given vertex v ∈ V . In each
subsequent time unit (called a turn), a firefighter protects one vertex which is not yet on
fire and then the fire spreads to all unprotected neighbors of the vertices already on fire.
Once a vertex is on fire or is protected it stays in such state forever. Protecting a vertex
is in essence equivalent to deleting it from the graph.

The game stops if no neighbor of the vertices on fire is unprotected and the fire cannot
spread. If the graph is finite, the game finishes at some point and the goal of the firefighter
is to save as many vertices as possible. In case of an infinite graph, the goal of the firefighter
is to stop the fire from spreading or, if this is not possible, to save as many vertices as
possible in the limit (we introduce this graph parameter in Section 3).
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Today, almost 20 years later, our knowledge about this problem is much greater and a
number of papers have been published. We would like to refer the reader to the survey
of Finbow and MacGillivray for more information [6].

For finite graphs, we focus on the following property. Let sn(G, v) denote the number of
vertices in G the firefighter can save when the fire breaks out at a vertex v ∈ V , assuming
the best strategy is used. Then let ρ(G, v) = sn(G, v)/n be the proportion of vertices
saved (here and throughout the paper, n denotes the number of vertices of G, assuming
G is finite). The surviving rate ρ(G) of G, introduced in [4], is defined as the expected
ρ(G, v) when the fire breaks out at a random vertex v of G (uniform distribution is used),
that is,

ρ(G) =
1

n

∑
v∈V

ρ(G, v) =
1

n2

∑
v∈V

sn(G, v).

For example, it is not difficult to see that for cliques ρ(Kn) = 1
n
, since no matter where

the fire breaks out only one vertex can be saved. For paths we get that

ρ(Pn) =
1

n2

∑
v∈V

sn(G, v) =
1

n2
(2(n− 1) + (n− 2)(n− 2)) = 1− 2

n
+

2

n2

(one can save all but one vertex when the fire breaks out at one of the leaves; otherwise
two vertices are burned).

It is not surprising that almost all vertices on a path can be saved, and in fact, all trees
have this property. Cai, Cheng, Verbin, and Zhou [1] proved that the greedy strategy of
Hartnell and Li [10] for trees saves at least 1−Θ(log n/n) percentage of vertices on average
for an n-vertex tree. Moreover, they managed to prove that for every outer-planar graph
G, ρ(G) ≥ 1 − Θ(log n/n). Both results are asymptotically tight and improved upon
earlier results of Cai and Wang [2]. (Note that there is no hope for a similar result for
planar graphs, since, for example, ρ(K2,n) = 2/(n + 2) = o(1).) However, this does not
mean that it is easy to find the exact value of ρ(G). It is known that the decision version
of the firefighter problem is NP-complete even for trees of maximum degree three [5].

Moving to another interesting direction, the third author of this paper showed that any
graph G with average degree strictly smaller than 30/11 has the surviving rate bounded
away from zero [11] and showed that this result is sharp (the construction uses a mixture
of deterministic and random graphs). (See [12] for a generalization of this result for the k-
many firefighter problem.) These results improved earlier observations of Finbow, Wang,
and Wang [7].

1.1. Our contribution. First, we study the surviving rate of Pn�Pn, the Cartesian
product of two paths of length n− 1. It was announced by Cai and Wang that

0.625 + o(1) =
5

8
+ o(1) ≤ ρ(Pn�Pn) ≤ 37

48
+ o(1) ≈ 0.7708

but a formal proof has not been published. We will prove the following result, which
provides much better upper bound.

Theorem 1. For the Cartesian product of two paths we have

0.625 + o(1) =
5

8
+ o(1) ≤ ρ(Pn�Pn) ≤ 67243

105300
+ o(1) < 0.6386.
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Our proof for the upper bound is not very sophisticated and there are ways to improve
it. On the other hand, it narrows down the surviving rate to a small interval smaller than
0.0136. It is natural to conjecture the following but this still remains open.

Conjecture 2. limn→∞ ρ(Pn�Pn) = 5/8.

For an infinite graph G = (V,E), the primary goal is to determine if the fire can be
stopped from spreading or not. All graphs we discuss here are vertex transitive so the
choice of the starting point is irrelevant.

It is known (and easy to show) that it is impossible to surround the fire with one
firefighter in the infinite Cartesian grid (see [13, 8]). On the other hand, it is clear that
two firefighters can stop the fire (that is when two vertices can be protected in each
round) and in [13] the optimal strategy was provided that does it in 8 steps. (See [3] for a
fractional version of this problem.) It was proved in [8] that if the fire breaks out on the
triangular grid, three firefighters contain the fire easily, but the proof that two firefighters
can not contain the fire is unfortunately flawed (as we discuss below) and this question is
still open.

For the infinite square grid G�, we show that it is optimal to save a 90◦ wedge of
vertices. In Section 3 we formally introduce a measure of the surviving rate for infinite
graphs and show that ρ(G�) = 1/4.

For the infinite hexagonal grid Ghex, we show that one firefighter can save 2/3 of
the grid, and with just a little additional help of two extra protected vertices, it is possible
to stop the fire from spreading:

Theorem 3. ρ(Ghex) ≥ 2/3.
Moreover, if the firefighter is allowed to protect one extra vertex at time t1 and one at

time t2, 1 ≤ t1 ≤ t2 (possibly with t1 = t2), the firefighter will contain the fire on Ghex.
Moreover, the strategy does not need to know t1 and t2 in advance.

We also show a strategy to slow down the fire by a constant factor in the following
sense. Here and throughout the paper Nt(v) = {x ∈ V (G) : dG(x, v) = t} denotes the t-th
neighborhood of v in the graph G, and N≤t(v) = {x ∈ V (G) : dG(x, v) ≤ t} =

⋃
s≤tNs(v).

Theorem 4. There exists a universal constant c < 1 such that when only finitely many
vertices of Ghex are burning, there exist a vertex v0 ∈ V and a strategy such that for every
large enough T all vertices burning after turn T are contained in N≤c·T (v0).

Finally, even though one can contain the fire with just 2 extra protected vertices and
can slow down the fire, we conjecture that one firefighter per turn alone still cannot stop
the fire from spreading.

Conjecture 5. If a fire breaks out on the hexagonal grid, one firefighter does not suffice
to contain the fire.

For the infinite triangular grid G4 we show that two firefighters can slow down the
fire to keep NT (v0) non-burning after T turns, and even slow it down by a constant factor
as in Theorem 4:
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Theorem 6. There exists a universal constant c < 1 such that when only finitely many
vertices of G4 are burning, there exist a vertex v0 ∈ V and a strategy for two firefighters
such that for every large enough T all vertices burning after turn T are contained in
N≤c·T (v0).

This contradicts a statement in [8] in the proof of Theorem 21 stating that two fire-
fighters can not contain the fire on the triangular grid. The proof has been noted to be
flawed by one of the reviewers and perhaps others. Indeed, in the proof of Theorem 21
in [8, p. 34] it is incorrectly stated that |N+(A)| ≥ |A|+ 2 (N+(A) = N(A)∩Nk+1(v0) in
our notation), but that does not hold for every A ⊆ Bk (burning part of Nk(v0) in their
paper) as required by Theorem 1 of [8]; for example with A = {v} with v ∈ Bk not on
cone boundary we have |N+(A)| = 2.

Our result shows that it is not possible to prove that two firefighters are not sufficient
argumenting only with the burning vertices of Nt(v0) in turn t, as there might be none,
but it would still seem possible (or even likely) that two firefighters can not contain the
fire on the triangular grid. As far as we know, this has been conjectured but we are not
aware of any written reference.

2. Finite square grid

A square grid graph Pn�Pn = (V,E) is the graph whose vertices correspond to the
points in the plane with integer coordinates from

C = {−bn/2c,−bn/2c+ 1, . . . ,−1, 0, 1, . . . , dn/2e − 1}
and two vertices are connected by an edge whenever the corresponding points are at
distance 1. In other words,

V = {(a, b) : a, b ∈ C},
E = {vu : v, u ∈ V and ‖v − u‖ = 1}.

Vertices (a, dn/2e−1), a ∈ C form the north border. Similarly, vertices (a,−bn/2c), a ∈ C
form the south border, (−bn/2c, b), b ∈ C form the west border, and vertices (dn/2e −
1, b), b ∈ C form the east border.

We prove the lower bound and the upper bound stated in Theorem 1 in two separate
subsections.

2.1. Lower bound. Consider the square grid Pn�Pn for some integer n. Suppose that
a fire breaks out at a vertex (a, b). Due to the symmetry, we may assume that 0 ≤ a ≤
dn/2e − 1 and that 0 ≤ b ≤ a. The firefighter can protect the following sequence of
vertices in the first few rounds (see Figure 1 (a)):

(a− 1, b), (a− 1, b+ 1), (a− 2, b− 1), (a− 2, b+ 2), . . .

Once the north border is reached (note that the last vertex protected is (a − dn/2e +
1 + b, dn/2e − 1)), the firefighter goes straight down to the south border protecting the
sequence

(a− dn/2e+ b, 2b− dn/2e+ 1), (a− dn/2e+ b, 2b− dn/2e), . . . .
(For a ‘big picture’ of this strategy see Figure 1 (b).)
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Figure 1. The beginning of the defense strategy and the ‘big picture’.
The numbers indicate the turn in which the vertex was lit or protected,
i indicates the turn before firefighters reach north border and j, k, . . . z
indicate later turns.

Suppose that a = xn + o(1) and b = yn + o(1) for some 0 ≤ x ≤ 1/2 and 0 ≤ y ≤ x.
Using the described strategy, it is easy to see what percentage of vertices can be saved,
which gives us the following bound.

sn(Pn�Pn, (a, b))

n2
≥
(

1

2
− y
)2

+

(
1

2
+ x

)
−
(

1

2
− y
)

+ o(1) =

(
1

2
− y
)2

+ x+ y+ o(1).

Hence, since there are 8 symmetric regions to consider,

ρ(Pn�Pn) =
1

n2

∑
(a,b)∈V

sn(Pn�Pn, (a, b))

n2

≥ 8

∫ 1/2

0

∫ x

0

((
1

2
− y
)2

+ x+ y

)
dydx+ o(1)

= 8

∫ 1/2

0

(
−1

3

(
1

2
− x
)3

+
3

2
x2 +

1

24

)
dx+ o(1)

=
5

8
+ o(1).

The lower bound holds.

2.2. Upper bound. Consider the square grid Pn�Pn for some integer n. For a given ver-
tex (a, b) and r ∈ N, we abuse slightly the notation and use Nr(a, b) instead of Nr((a, b)),
the set of vertices at distance r from (a, b). We will use NNE

r (a, b) to denote vertices of
Nr(a, b) of the form (a + s, b + r − s), s = 0, 1, . . . , r and call such vertices North-East
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fire-front. Fire-fronts to other directions and sets NNW
r (a, b), NSE

r (a, b), NSW
r (a, b) are

defined analogously. Finally, note that the intersection of any two fire-fronts may be non-
empty (for example, NNE

r (a, b)∩NNW
r (a, b) = {(a, b+ r)}, provided that b+ r ∈ C). We

will call such vertices corners.
We start with the following simple but very powerful observation.

Lemma 7. Suppose that a fire breaks out at a vertex (a, b) of Pn�Pn. Regardless of the
strategy used by the firefighter, there are at most r vertices in Nr(a, b) that are not burning
at time r, for every r ≥ 1.

Proof. In order to prove the theorem, we prove the following stronger claim: At time
r ≥ 1, for every non-burning vertex v of Nr(a, b) there is a path Pv from v to some
protected vertex p(v). It is allowed that a path is trivial (that is, v = p(v)) when v is itself
protected. Moreover, all the paths Pv are vertex disjoint.

r

r

r

r

r

r

rs

s

s

s

s

s

s

s

s

s

s

v Pv

p(v)

group

corner

fire-front

vertex not burning in time r

vertex not burning in time r + 1

protected vertex

an extension of a path from a
non-burning vertex to a pro-
tected vertex

group

Figure 2. Extending paths in time r to time s = r + 1.

We prove the claim by induction. Clearly, the property holds for r = 1: if a neighbor of
(a, b) is not burning at time r = 1, then it must be protected. Suppose that the property
holds for r ≥ 1, our goal is to show that it holds for r+ 1. Let v be a vertex of Nr+1(a, b)
that is not burning at time r + 1. If v is protected, then it yields a trivial path. Suppose
then that v is not protected. It is clear that no neighbor of v was burning in time r;
otherwise, v would be on fire in time r + 1 too. Hence, each neighbor of v in Nr(a, b) is
associated with a unique path; v has two such neighbors, unless v is a corner vertex in
which case there is only one such neighbor. It follows that paths can be extended to all
non-burning vertices of Nr+1(a, b) by choosing one extension direction for every group of
non-burning vertices (see Figure 2). This is always possible unless the whole fire-front
(one of NE, NW, SE, or SW) is a non-burning group that does not touch the boarder
(that is, both corners and their neigbours are in C). Fortunately, this situation cannot
occur since this would imply that there were r+ 1 vertices of Nr(a, b) not burning at time
r and therefore r + 1 paths to r + 1 protected vertices, which is impossible. (Note that
|Nr(a, b)| = 4r but each fire-front consists of r+ 1 vertices, including two corner vertices.)
Therefore the claim holds for r + 1 and the proof is finished. �
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Before we move to investigating the surviving rate of Pn�Pn let us focus on the case
(a, b) = (0, 0) in order to explain the idea in a simple setting. Consider first the graph G
induced by the set of vertices at distance at most dn/2e− 1 from (0, 0) (that is, ‘diamond
shape’ square grid). It follows from Lemma 7 that for every 1 ≤ r ≤ dn/2e − 1, the
fraction of vertices from Nr(0, 0) that are saved is at most 1/4 (since |Nr(0, 0)| = 4r for
1 ≤ r ≤ dn/2e − 1). On the other hand, the strategy for the firefighter provided in the
previous subsection guarantees that this can be achieved. Hence, sn(G, (0, 0))/|V (G)| =
1/4 + o(1).

For the original grid Pn�Pn the situation is slightly more complicated, even for the
starting point (a, b) = (0, 0). We need to investigate the number of vertices at distance r
from (0, 0) which changes once we reach the boarder. We have

|Nr(0, 0)| =

{
4r if 1 ≤ r ≤ dn/2e − 1

4(n− r) +O(1) if dn/2e − 1 < r ≤ 2bn/2c.

It follows from Lemma 7 that the number of vertices burnt is at least
2bn/2c∑
r=1

max(|Nr(0, 0)| − r, 0) ≥ n2

(∫ 1/2

0

3xdx+

∫ 4/5

1/2

(4− 5x)dx+ o(1)

)

= n2

(
3

5
+ o(1)

)
.

We get that the fraction of vertices saved is at most 2/5+o(1). Clearly, this bound can be
improved. In order to play optimally and save r vertices at distance r during the first phase
(r ≤ n/2) the firefighter has to follow the strategy described in the previous subsection.
But if this is the case, the strategy is not optimal in the second phase (r > n/2) and there
is no way to keep saving r vertices at distance r. As we already mentioned, we conjecture
that the strategy yielding the lower bound is optimal, giving the following conjecture for
the case (a, b) = (0, 0).

Conjecture 8.

lim
n→∞

sn(Pn�Pn, (0, 0))

n2
=

1

4
.

The proof for the general case is rather technical and we present it with all details in
Appendix A.

3. Infinite graphs

In this section we introduce the concept of surviving rate for infinite graphs with all
finite degrees, and present a few results for infinite square, hexagonal and triangular grid.
Assuming a fixed and deterministic firefighter strategy, a vertex v is considered saved
if the strategy guarantees that v never catches fire (v does not have to get protected
during the process). This is well defined even for infinite graphs—given a fixed and
deterministic strategy, the game is pre-determined and either there is a point of the
process when v catches fire or it is never on fire (that is, v is saved). The surviving rate of
a strategy F (used in the process in which the fire breaks out at vertex v) is then defined

as ρF(G, v) = lim infi→∞
|N≤i(v)∩S|
|N≤i(v)|

where S = S(F) is the set of saved vertices and N≤i(v)
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is the set of vertices at distance at most i from v. As we assume that all degrees are finite,
|N≤i(v)| is always finite. Let the optimal surviving rate be ρ(G, v) = supF ρF(G, v). We
always distinguish whether this ratio can be attained or not. Note that this coincides
with the definition of ρ(G, v) for finite graphs.

For example, for an infinite binary tree T2 rooted at r, we have ρ(T2, r) = 1 as we can
save all the vertices but a single infinite ray (path) from r. This follows from the fact
that for trees, it is always optimal to protect a neighbor of a burning vertex rather than
a vertex further away. Note that it is not possible to save all but finite number of vertices
of T2. Similarly, for an infinite ternary tree T3 rooted at r we have ρ(T3, r) = 1/2. We
omit the proof of this statement and leave it as an exercise.

The expected surviving rate is not extensible to infinite graphs without explicitly stat-
ing the distribution (there is no uniform distribution on an infinite number of vertices).
However, for vertex-transitive graphs, we have ρ(G, v1) = ρ(G, v2) for any two vertices
v1, v2, and we denote it as ρ(G). Note that both square grid and hexagonal grid are
vertex-transitive.

To see the robustness of our definition, let us generalize the definition by allowing

a different center of measurement: ρF(G, v, c) = lim infi→∞
|N≤i(c)∩S|
|N≤i(c)|

where S are the

vertices saved by F , provided that the first breaks out at vertex v. Generally, the ratio
depends on the choice of c (as can be seen in T3 and other fast-expanding graphs; in T3
we can place c to the root), but when |Ni(c)| grows asymptotically strictly slower than
|N≤i(c)|, we get the following result:

Lemma 9. Given an infinite connected graph G with finite degrees, let Cc(i) = |Ni(c)| and
Ac(i) = |N≤i(c)|. If we have Cc(i) = o(Ac(i))

1 for some c ∈ V (G), we have ρF(G, v, c) =
ρF(G, v, c′) for any c′ ∈ V (G).

Note that this is the case for square, hexagonal, triangular and many other grid-like
graphs.

Proof. Assume fixed c, c′, F and S and let d = d(c′, c). Then for any i we have

|N≤i(c′) ∩ S| ≥ |N≤i−d(c) ∩ S|

= |N≤i(c) ∩ S| −
i∑

j=i−d+1

|Nj(c) ∩ S|

= |N≤i(c) ∩ S| − o(|N≤i(c)|),

since |N≤i(c)| is non-decreasing. Similarly, we get |N≤i(c′)∩S| ≤ |N≤i(c)∩S|+o(|N≤i+d(c)|).
By omitting the intersection with S above, we get |N≤i(c′)| ≥ |N≤i(c)| − o(|N≤i(c)|) and
|N≤i(c′)| ≤ |N≤i(c)|+ o(|N≤i+d(c)|).

Now we will show that there exists q > 0 such that Ac(j + 1) ≤ qAc(j) for all j. For
a contradiction, suppose that it is not the case. Then, the value of Ac(j) compared to
Ac(j − 1) at least doubles at infinitely many j’s. At these points, Cc(j) ≥ (1/2)Ac(j),
contradicting Cc(j) = o(Ac(j)). Therefore we have |N≤i+d(c)| ≤ qd|N≤i(c)| and we can
replace o(|N≤i+d(c)|) with o(|N≤i(c)|) in the above expressions.

1The standard notation f(i) = o(g(i)) denotes f(i)/g(i)→ 0 as i→∞
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Applying to the terms of the limit in ρF(G, v, c′) we get

|N≤i(c′) ∩ S|
|N≤i(c′)|

≤ |N≤i(c) ∩ S|+ o(|N≤i(c)|)
|N≤i(c)| − o(|N≤i(c)|)

≤ |N≤i(c) ∩ S|
|N≤i(c)|

+ o(1).

Proving the other direction is analogous, and so we get ρF(G, v, c′) = ρF(G, v, c). �

3.1. Infinite square grid. For the infinite square grid we show that the surviving rate
is equal to 1/4.

Theorem 10. For the infinite square grid G� we have ρ(G�) = 1/4.

Proof. Let v be the vertex that catches fire initially. Then, after the i-th turn, at least
(3/4)|Ni(v)| vertices of Ni(v) burn by Lemma 7. So we have ρ(G�) ≤ 1/4 by the definition
of ρ(G, v).

On the other hand, the strategy outlined in Section 2.1, applied to the infinite grid
saves vertices in 90◦ wedge, giving ρ(G�) ≥ 1/4. �

3.2. Infinite hexagonal grid. When we assume the fire starts at vertex v0, the hexag-
onal grid is naturally divided into six 60◦ cones, see Figure 3(a).
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Figure 3. (a) Six cones of the hex grid centered at v0, the dash-dotted
hexagons indicate N4(v0), N5(v0) and N6(v0). (b) Construction of two seg-
ments of the spiral for t0 = 3.

Let us start with the following simple but convenient observation that allows us to
treat general situations. At some point in the game, let B be the set of burning vertices
and A ⊆ B be the active burning vertices, that is vertices of B with a free neighbor that
can start burning in the next turn. Let v0 and t be such that A ⊆ N≤t(v0). Then the
firefighters may play as if exactly Nt(v0) were burning and all the vertices of B \ A were
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protected (that is the new setting) and any strategy playable in the new setting will be
playable in the original situation as well.

This follows from the fact that only the vertices of A will ever cause new fire and
assuming more vertices to be burning only helps the fire. Interchanging burning non-active
fires with protected vertices makes no difference for the progress of the game (except for
counting saved vertices), as non-active vertices will never spread fire. Below, this allows
us to assume that the already burnt area is some N≤t(v0).

Spiral construction. Assuming that N≤t0(v0) burn, we show how one firefighter can
build a spiral of protected vertices delaying the fire by a constant factor. Without loss
of generality, let t0 + 1 be the number of the next turn to take place. This matches the
situation of fire starting at v0 in turn 0.

The spiral is composed of successive segments, each segment a line contained in one of
the six cones. In turn t, the firefighter will protect a vertex in Nt(v0), so it can not be on
fire at that time. The construction of two successive segments is illustrated on Figure 3(b)
for the case t0 = 3. Starting a segment in turn t on one cone boundary means that the
next segment (starting at another cone boundary) will start in turn 2t or 2t+1 depending
on the cone type, however, 2t+O(1) is sufficient for our purposes.

Proof of Theorem 3. The initial strategy is best illustrated and explained by Figure 4(a).
The firefighter alternates between protecting two rays, always playing to Nt(v0) in turn
t, therefore making the strategy valid. Note the rays are chosen such that one intersects
only Nt(v0) with t odd and the other with t even.

At the point we get the first extra protected vertex, we can bend one of the rays by 60◦

as indicated in Figure 4(b). The letters indicate consecutive turn numbers, in the turns
a, c, e and g, the firefighter protects the other ray, f is the turn at time t1 with the first
extra firefighter. Note that from this point on, 5/6 of the grid is protected — in the limit,
the fire would only occupy a 60◦ wedge.

When we get the second extra firefighter at time t2, we bend the other ray in a symmetric
way. Note that in case the extra firefighter came in a turn we play on the other ray, we
can protect the desired vertex one turn in advance.

After the two extra protections, the fire is restricted to a strip extending only in one
direction as in Figure 4(c). Note that the strip might be very wide, depending on t1 and
t2, but the width does not change and there is some t such that in every turn, all the
active fire is contained in some ball of radius t. We let the strip grow to length at least
27t to make the following step possible.

The firefighter stops protecting the two rays and start building a spiral around Nt(v0)
for suitable v0 as described in Section 3.2. If we start the spiral in the angle indicated in
Figure 4(c), the fifth spiral segment hits the wall of the strip and we have enclosed the
fire with protected vertices. Since the first segment of the spiral starts in distance t from
v0, the fifth segment ends in distance 26t + O(1) from v0, so stripe length 27t is enough
for the spiral and the strip boundary to meet. �

Proof of Theorem 4. Choose v0 and t so that all burning vertices are contained in N≤t(v0)
and start building a spiral in distance t+ 1 from v0 as described above. We may, without
loss of generality, assume that the construction starts in turn t+ 1.
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N≤t(v0)

0

(c)

Figure 4. (a) Start of the strategy protecting 2/3 of the grid with indi-
cated protected rays. (b) Bending the protected ray with one extra fire-
fighter at time f . (c) Overview of the strategy of Theorem 3. Starting
with two bends, we build a long enough strip, then start spiraling. (Note
that the spiral is deformed to fit in the figure.) v0 and N≤t(v0) are as in
the spiral construction description in Section 3.2, the thin lines indicate the
active fire at certain time points.

Now consider turn T and assume T ≥ 28t. Let t′ be such that t′ = 2kt+O(k) for some
k be a length of a segment of the spiral and 27t′+O(k) ≤ T < 28t′+O(k). The differences
O(k) come from the fact that the spiral segment lengths do not double exactly but up to
O(1). The situation with seven largest segments is illustrated on Figure 5 (a).

Notice that even when considering only the last seven consecutive segments of the
spiral as protected, the fire has to take a detour proportional to the size of the smallest
considered segment, which is t′, to reach any vertex of NT (v0).

More precisely, let C1, C2, . . . , C6 denote the cones around v0 as on Figure 5 (a). Let
Bi = NT (v0) ∩ Ci. To reach Bi from v0, the fire has to travel at least the distance
v0 · · · 2i−1t′ · · ·Bi. Any such path has length at least 2i−1t′ + O(1) + T which is minimal
for B1. The actual grid distance v0 . . . Bi is always T .
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Figure 5. (a) Seven consecutive segments of a spiral. The numbers indi-
cate the distances of the segment ends from v0 up to O(1) additive factor.
Note that the spiral is deformed to fit the figure. (b) Cones C1, . . . C6 in
G4 and the construction of first four segments of a spiral in case t = 0.

Therefore, we can take any constant c such that for T large enough we have c >
T

20t′+O(1)+T
. Since t′ > 2−8T , this is satisfied by any c > 1

1+2−8 ≈ 0.9961 for T large

enough compared to t. �

3.3. Infinite triangular grid. In this section we prove results similar to those on hexag-
onal grid. The triangular grid shares many characteristics with the hexagonal one, Fig-
ure 5 (b) shows a definition of a cone, and the constructions are generally very similar in
nature, allowing us to reuse certain arguments from Section 3.2, which we do for the sake
of brevity.

Proof of Theorem 6. The proof follows the structure of the proof of Theorem 4, please
refer to it for some of the common details.

We assume that all fire is contained within N≤t(v0) for some t and v0 and assume
that the next turn has number t + 1. We then start building a spiral as illustrated on
Figure 5 (b) for t = 0 (but the general case is analogous to the construction in C2 and C3).
Note that we also have that if we start the construction on the boundary of Ci in turn t,
we reach the other boundary of Ci in turn 2t. Again, the correctness of the construction
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follows from the fact that in turn k, the firefighters play to vertices in Nk(v0), avoiding
any possibly burning vertices.

The rest of the proof is almost identical to that of Theorem 4, namely the choice of
t′, the overall situation within the cones is identical to Figure 5 (a), and the resulting
constant can be chosen within the same interval, that is c > 1

1+2−8 ≈ 0.9961 for T large
enough. �

4. Acknowledgement
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similar to the relation between the square lattice and the square lattice with diagonals,
which is described in [3] (see Proposition 11).

Claim. Every strategy given 2xi firefighters on the i-th turn (i = 1, 2, . . . , t) on G4 which
stops the fire from spreading after t turns leaving b burnt vertices, can be translated into
a strategy to stop the fire in 2t+ 1 turns on Ghex using xdi/2e firefighters on the i-th turn
(i = 1, 2, . . . , 2t) and no firefighters on the last turn, leaving at most 2b+f burning vertices
(f is the number of firefighters used in total, which is the same for both strategies).

Proof. Let

A =

{
ai+ b

(√
3

2
+
i

2

)
+ c

(√
3

2
− i

2

)
: a, b, c ∈ Z

)
be the collection of the vertices of the triangular lattice G4, represented by complex
numbers. Here, two vertices share an edge if and only if they are at distance 1. Let

B = A ∪
{
a+

1√
3

: a ∈ A
}
,

and observe the graph whose vertices are the elements of B and two vertices are connected
by an edge if and only if they are at distance 1/

√
3 is exactly the hexagonal lattice Ghex.

(See Figure 6.)

0

Figure 6. Relationship between strategies for Ghex and for G4.
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Without loss of generality, assume that the fire starts at 0, and we are given a winning
strategy on G4 (that is, a strategy on A) which uses 2xi firefighters on the i-th turn and
contains the fire after t turns. We will mimic this strategy to get another one for Ghex

(that is, a strategy on B ⊇ A) that protects vertices of A only. We observe that for any
such strategy the following properties hold:

• in every odd turn, the fire spreads to some vertices of B \A that are unprotected
and at distance 1/

√
3 from some vertices of A that are burning; no vertex of A

catches fire,
• in every even turn, the fire spreads to some vertices of A that are unprotected

and at distance 1 from some vertices of A that are burning (that is, as if we were
playing on A); no vertex of B catches fire.

We play in the following way on Ghex. On the turns 2i− 1 and 2i we place xi firefighters
on the vertices indicated by the strategy for G4; the order in which we place them (that is,
which vertices should be protected on each of the two turns) is not important. Observing
that the fire spreads to vertices of A only every second turn, and that while playing using
this strategy it spreads exactly as though it would have on A, we get that after t rounds
consisting of two turns, the fire will never spread again to a vertex in A and thus after
one additional turn it will stop spreading completely.

We know that b vertices of A are burnt. It remains to calculate how many vertices
are burnt in total. Here we use the following observation. We know that every burning
vertex a ∈ B \ A has the property that the three vertices of A at distance 1/

√
3 from a

are either burning or protected. One of them, say, a−1/
√

3 is unique for a so the number
of vertices of B \ A that are burnt is at most b. The proof is finished. �
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Appendix A. Proof of the upper bound from Theorem 1

Here we examine the upper bound in the general case when a fire breaks out at a vertex
(a, b) of Pn�Pn. As before, due to the symmetry, we may assume that a = xn + o(1),
b = yn + o(1) for some 0 ≤ x ≤ 1/2 and 0 ≤ y ≤ x. We want to investigate the size of
Nr(a, b) so we are interested in two things: the time (ti + o(1))n when we reach each of
the 4 borders (i = N,S,E,W ), and the time (ti + o(1))n when each of the 4 fire fronts
(i = NE,SE, SW,NW ) disappear. Clearly,

tE =
1

2
− x, tN =

1

2
− y, tS =

1

2
+ y, tW =

1

2
+ x,

and tE ≤ tN ≤ tS ≤ tW . Moreover,

tNE = 1− x− y, tSE = 1− x+ y, tNW = 1 + x− y, tSW = 1 + x+ y,

and tNE ≤ tSE ≤ tNW ≤ tSW . The order in which these events occur determines the
formula for |Nr(a, b)|. It is easy to see that tNE ≥ tN , tSE ≥ tS, and tNW ≥ tW , and so
there are only 5 cases to consider. Unfortunately, since the number of vertices burnt is at
least

∑
r≥1 max(|Nr(0, 0)|−r, 0) (by Lemma 7), sometimes we need to consider some sub-

cases depending on in which time interval |Nr(0, 0)|− r becomes negative. Let (t+o(1))n
be the first time this happens. The calculations are elementary but quite tedious, so we
refer the reader to the Maple worksheet [14] to check integrals, etc.

Case 1: tE ≤ tN ≤ tS ≤ tW ≤ tNE ≤ tSE ≤ tNW ≤ tSW .
The condition tW ≤ tNE is equivalent to y ≤ 1/2 − 2x so we are concerned with the
Region 1 presented on Figure 7. The number of vertices at distance rn from (a, b) (for
some r = r(n)) behaves as follows:

|Nrn(a, b)|
n

= o(1) +



4r if 0 ≤ r ≤ tE

1− 2x+ 2r if tE ≤ r ≤ tN

2− 2x− 2y if tN ≤ r ≤ tS

3− 2x− 2r if tS ≤ r ≤ tW

4− 4r if tW ≤ r ≤ tNE

3 + x+ y − 3r if tNE ≤ r ≤ tSE

2 + 2x− 2r if tSE ≤ r ≤ tNW

1 + x+ y − r if tNW ≤ r ≤ tSW .

Case 1a: tW ≤ t ≤ tNE.
The condition t ≤ tNE implies that y ≤ 1/5 − x (as before, we direct the reader to
Figure 7). Provided (a, b) is from the region we consider in this sub-case, t = 4/5 (note
that |Nrn(a, b)| − rn = (4 − 5r + o(1))n for tW ≤ r ≤ tNE). In other words, at time
(4/5+o(1))n, Lemma 7 stops working in the sense that it does not give us any non-trivial
bound for the number of vertices burning. We stop investigating the process at that time
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5
x
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1
/2
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x

1/5-x

Figure 7. The regions corresponding to the individual cases.

and assume the worst case scenario that all remaining vertices will become protected.
Hence, the proportion of vertices burnt is at least

B1a(x, y) :=

∫ tE

0

3rdr +

∫ tN

tE

(1− 2x+ r)dr +

∫ tS

tN

(2− 2x− 2y − r)dr

+

∫ tW

tS

(3− 2x− 3r)dr +

∫ t

tW

(4− 5r)dr =
3

5
− 2x2 − 2y2.

(Indeed, in the first time interval, there are 4rn vertices at distance rn from (a, b) and
at most rn of them are protected by Lemma 7. In the second time interval, there are
(1− 2x+ 2r+ o(1))n vertices at distance rn from (a, b) but the lemma still gives us that
at most rn of them are protected. Hence the term 1 − 2x + r. Other terms are derived
in a similar way.) The contribution from vertices from this region is calculated as follows
(as usual, we refer to Figure 7).

C1a :=

∫ 1/10

0

∫ x

0

B1a(x, y)dydx+

∫ 1/5

1/10

∫ 1/5−x

0

B1a(x, y)dydx =
43

7500
≈ 0.005733.

(The region has a triangular shape so we have to split it into two integrals.)
Case 1b: tNE ≤ t ≤ tSE.

The condition t ≤ tSE implies that y ≥ −1/3 + 5x/3. It follows that t = 3/4 + x/4 + y/4
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and the proportion of vertices burnt is at least

B1b(x, y) :=

∫ tE

0

3rdr +

∫ tN

tE

(1− 2x+ r)dr +

∫ tS

tN

(2− 2x− 2y − r)dr

+

∫ tW

tS

(3− 2x− 3r)dr +

∫ tNE

tW

(4− 5r)dr +

∫ t

tNE

(3 + x+ y − 4r)dr

=
5

8
− x

4
− 11x2

8
− y

4
− 11y2

8
+

5xy

4
.

The contribution from vertices from this region is

C1b :=

∫ 1/6

1/10

∫ x

1/5−x
B1b(x, y)dydx+

∫ 1/5

1/6

∫ 1/2−2x

1/5−x
B1b(x, y)dydx

+

∫ 5/22

1/5

∫ 1/2−2x

−1/3+5x/3

B1b(x, y)dydx =
459563

89842500
≈ 0.005115.

Case 1c: tSE ≤ t ≤ tNW .
The condition t ≤ tNW is equivalent to y ≤ 1/3 + x/3 which is satisfied by all points in
the Case 1. It follows that t = 2/3 + 2x/3 and the proportion of vertices burnt is at least

B1c(x, y) :=

∫ tE

0

3rdr +

∫ tN

tE

(1− 2x+ r)dr +

∫ tS

tN

(2− 2x− 2y − r)dr

+

∫ tW

tS

(3− 2x− 3r)dr +

∫ tNE

tW

(4− 5r)dr +

∫ tSE

tNE

(3 + x+ y − 4r)dr

+

∫ t

tSE

(2 + 2x− 3r)dr =
2

3
− 2x

3
− x2

3
− y2.

The contribution from vertices from this region is

C1c :=

∫ 5/22

1/5

∫ −1/3+5x/3

0

B1c(x, y)dydx+

∫ 1/4

5/22

∫ 1/2−2x

0

B1c(x, y)dydx

=
434549

766656000
≈ 0.000567.

Case 2: tE ≤ tN ≤ tS ≤ tNE ≤ tW ≤ tSE ≤ tNW ≤ tSW .
The condition tS ≤ tNE is equivalent to y ≤ 1/4 − x/2 and the condition tW ≤ tSE to
y ≥ −1/2 + 2x, so we are concerned with the Region 2 presented on Figure 7. This time

|Nrn(a, b)|
n

= o(1) +



4r if 0 ≤ r ≤ tE

1− 2x+ 2r if tE ≤ r ≤ tN

2− 2x− 2y if tN ≤ r ≤ tS

3− 2x− 2r if tS ≤ r ≤ tNE

2− x+ y − r if tNE ≤ r ≤ tW

3 + x+ y − 3r if tW ≤ r ≤ tSE

2 + 2x− 2r if tSE ≤ r ≤ tNW

1 + x+ y − r if tNW ≤ r ≤ tSW .

Case 2a: tW ≤ t ≤ tSE.
The condition t ≤ tSE implies that y ≥ −1/3 + 5x/3. It follows that t = 3/4 + x/4 + y/4
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and the proportion of vertices burnt is at least

B2a(x, y) :=

∫ tE

0

3rdr +

∫ tN

tE

(1− 2x+ r)dr +

∫ tS

tN

(2− 2x− 2y − r)dr

+

∫ tNE

tS

(3− 2x− 3r)dr +

∫ tW

tNE

(2− x+ y − 2r)dr

+

∫ t

tW

(3 + x+ y − 4r)dr

=
5

8
− x

4
− 11x2

8
− y

4
− 11y2

8
+

5xy

4
= B1b(x, y).

The contribution from vertices from this region is

C2a :=

∫ 5/22

1/6

∫ 1/4−x/2

1/2−2x
B2a(x, y)dydx+

∫ 7/26

5/22

∫ 1/4−x/2

−1/3+5x/3

B2a(x, y)dydx

=
358687

157907178
≈ 0.002275.

Case 2b: tSE ≤ t ≤ tNW .
The condition t ≤ tNW is equivalent to y ≤ 1/3 + x/3 which is satisfied by all points in
the Case 2. It follows that t = 2/3 + 2x/3 and the proportion of vertices burnt is at least

B2b(x, y) :=

∫ tE

0

3rdr +

∫ tN

tE

(1− 2x+ r)dr +

∫ tS

tN

(2− 2x− 2y − r)dr

+

∫ tNE

tS

(3− 2x− 3r)dr +

∫ tW

tNE

(2− x+ y − 2r)dr

+

∫ tSE

tW

(3 + x+ y − 4r)dr +

∫ t

tSE

(2 + 2x− 3t)dr

=
2

3
− 2x

3
− x2

3
− y2 = B1c(x, y).

The contribution from vertices from this region is

C2b :=

∫ 1/4

5/22

∫ −1/3+5x/3

1/2−2x
B2b(x, y)dydx+

∫ 7/26

1/4

∫ −1/3+5x/3

−1/2+2x

B2b(x, y)dydx

+

∫ 3/10

7/26

∫ 1/4−x/2

−1/2+2x

B2b(x, y)dydx =
478988221

280723872000
≈ 0.001706.

Case 3: tE ≤ tN ≤ tS ≤ tNE ≤ tSE ≤ tW ≤ tNW ≤ tSW .
In this case, we are concerned with the Region 3 presented on Figure 7. This time

|Nrn(a, b)|
n

= o(1) +



4r if 0 ≤ r ≤ tE

1− 2x+ 2r if tE ≤ r ≤ tN

2− 2x− 2y if tN ≤ r ≤ tS

3− 2x− 2r if tS ≤ r ≤ tNE

2− x+ y − r if tNE ≤ r ≤ tSE

1 if tSE ≤ r ≤ tW

2 + 2x− 2r if tW ≤ r ≤ tNW

1 + x+ y − r if tNW ≤ r ≤ tSW .
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In this case, tW ≤ t ≤ tNW . It follows that t = 2/3 + 2x/3 and the proportion of vertices
burnt is at least

B3(x, y) :=

∫ tE

0

3rdr +

∫ tN

tE

(1− 2x+ r)dr +

∫ tS

tN

(2− 2x− 2y − r)dr

+

∫ tNE

tS

(3− 2x− 3r)dr +

∫ tSE

tNE

(2− x+ y − 2r)dr

+

∫ tW

tSE

(1− r)dr +

∫ t

tW

(2 + 2x− 3t)dr

=
2

3
− 2x

3
− x2

3
− y2 = B2b(x, y) = B1c(x, y).

The contribution from vertices from this region is

C3 :=

∫ 3/10

1/4

∫ −1/2+2x

0

B3(x, y)dydx+

∫ 1/2

3/10

∫ 1/4−x/2

0

B3(x, y)dydx =
2807

576000
≈ 0.004873.

Case 4: tE ≤ tN ≤ tNE ≤ tS ≤ tSE ≤ tW ≤ tNW ≤ tSW .
In this case, we are concerned with the Region 4 presented on Figure 7. This time

|Nrn(a, b)|
n

= o(1) +



4r if 0 ≤ r ≤ tE

1− 2x+ 2r if tE ≤ r ≤ tN

2− 2x− 2y if tN ≤ r ≤ tNE

1− x− y + r if tNE ≤ r ≤ tS

2− x+ y − r if tS ≤ r ≤ tSE

1 if tSE ≤ r ≤ tW

2 + 2x− 2r if tW ≤ r ≤ tNW

1 + x+ y − r if tNW ≤ r ≤ tSW .

In this case, tW ≤ t ≤ tNW . It follows that t = 2/3 + 2x/3 and the proportion of vertices
burnt is at least

B4(x, y) :=

∫ tE

0

3rdr +

∫ tN

tE

(1− 2x+ r)dr +

∫ tNE

tN

(2− 2x− 2y − r)dr

+

∫ tS

tNE

(1− x− y)dr +

∫ tSE

tS

(2− x+ y − 2r)dr

+

∫ tW

tSE

(1− r)dr +

∫ t

tW

(2 + 2x− 3t)dr

=
2

3
− 2x

3
− x2

3
− y2 = B3(x, y) = B2b(x, y) = B1c(x, y).

The contribution from vertices from this region is

C4 :=

∫ 1/2

3/10

∫ −1/2+2x

1/4−x/2
B4(x, y)dydx =

473

36000
≈ 0.013139.
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Case 5: tE ≤ tN ≤ tNE ≤ tS ≤ tW ≤ tSE ≤ tNW ≤ tSW .
In this case, we are concerned with the Region 5 presented on Figure 7. This time

|Nrn(a, b)|
n

= o(1) +



4r if 0 ≤ r ≤ tE

1− 2x+ 2r if tE ≤ r ≤ tN

2− 2x− 2y if tN ≤ r ≤ tNE

1− x− y + r if tNE ≤ r ≤ tS

2− x+ y − r if tS ≤ r ≤ tW

3 + x+ y − 3r if tW ≤ r ≤ tSE

2 + 2x− 2r if tSE ≤ r ≤ tNW

1 + x+ y − r if tNW ≤ r ≤ tSW .

In this case, tS ≤ t ≤ tW . It follows that t = 1−x/2 + y/2 and the proportion of vertices
burnt is at least

B5(x, y) :=

∫ tE

0

3rdr +

∫ tN

tE

(1− 2x+ r)dr +

∫ tNE

tN

(2− 2x− 2y − r)dr

+

∫ tS

tNE

(1− x− y)dr +

∫ t

tS

(2− x+ y − 2r)dr

=
3

4
− x− x2

4
− 5y2

4
+
xy

2
.

The contribution from vertices from this region is

C5 :=

∫ 3/10

1/6

∫ x

1/4−x/2
B5(x, y)dydx+

∫ 1/2

3/10

∫ x

−1/2+2x

B5(x, y)dydx =
1907

162000
≈ 0.011772.

Finally, since there are 8 symmetric regions to consider,

ρ(Pn�Pn) ≤ 1− 8(C1a + C1b + C1c + C2a + C2b + C3 + C4 + C5) + o(1)

=
67243

105300
+ o(1) < 0.6386.

The proof of the upper bound is finished.

Department of Applied Mathematics, Charles University, Praha, Czech Republic
E-mail address: gavento@kam.mff.cuni.cz

Department of Applied Mathematics, Charles University, Praha, Czech Republic
E-mail address: honza@kam.mff.cuni.cz

Department of Mathematics, Ryerson University, Toronto, ON, Canada
E-mail address: pralat@ryerson.ca


	1. Introduction
	1.1. Our contribution

	2. Finite square grid
	2.1. Lower bound
	2.2. Upper bound

	3. Infinite graphs
	3.1. Infinite square grid
	3.2. Infinite hexagonal grid
	3.3. Infinite triangular grid

	4. Acknowledgement
	References
	Appendix A. Proof of the upper bound from Theorem 1

